Dynamics of Scene Representations in the Human Brain revealed by MEG and
Deep Neural Networks

Radoslaw M. Cichy

Aditya Khosla

Dimitrios Pantazis Aude Oliva

Massachusetts Institute of Technology

{rmcichy, khosla, pantazis, oliva}@mit.edu

Abstract

Human scene recognition is a rapid multistep process
evolving over time from single scene image to spatial lay-
out processing. We used multivariate pattern analyses on
magnetoencephalography (MEG) data to unravel the time
course of this cortical process. Following an early sig-
nal for lower-level visual analysis of single scenes at ~
100ms, we found a marker of real-world scene size, i.e.,
spatial layout processing, at ~ 250ms indexing neural rep-
resentations robust to changes in unrelated scene proper-
ties and viewing conditions. For a quantitative explanation
that captures the complexity of scene recognition, we com-
pared MEG data to a deep neural network model trained on
scene classification. Representations of scene size emerged
intrinsically in the model, and resolved emerging neural
scene size representation. Together our data provide a
first description of an electrophysiological signal for lay-
out processing in humans, and a novel quantitative model
of how spatial layout representations may emerge in the hu-
man brain. The supplemental materials are available at:
http://brainmodels.csail.mit.edu/scene-size

1. Introduction

Perceiving the geometry of space is a core ability shared
by all animals, with brain structures for spatial layout
perception and navigation preserved across rodents, mon-
keys and humans [18, 17, 15, 14, 40, 19, 29, 61]. Spa-
tial layout perception, the demarcation of the boundaries
and size of real-world visual space, plays a crucial me-
diating role in spatial cognition [4, 19, 63, 47, 31] be-
tween image-specific processing of individual scenes and
navigation-related processing. Although the cortical loci
of spatial layout perception in humans have been well de-
scribed [1, 32, 37, 46, 5], the dynamics of spatial cogni-
tion remain unexplained, partly because neuronal markers
indexing spatial processing remain unknown.

Operationalizing spatial layout as scene size, that is the

size of the space a scene subtends in the real-world [3 1, 46,
], we report here an electrophysiological signal of spatial
layout perception in the human brain. Using multivariate
pattern classification [7, 9, 23] and representational simi-
larity analysis [34, 33, 9] on millisecond-resolved magne-
toencephalography data (MEG), we identified a marker of
scene size around 250ms, preceded by and distinct from an
early signal for lower-level visual analysis of scene images
at ~ 100ms. Furthermore, we demonstrated that the scene
size marker was independent of both low-level image fea-
tures (i.e., luminance, contrast, clutter) and semantic prop-
erties (the category of the scene, i.e., kitchen, ballroom),
thus indexing neural representations robust to changes in
viewing conditions as encountered in real-world settings.

To provide a quantitative explanation how space size
representations emerge in cortical circuits, we compared
brain data to a deep neural network model trained to per-
form scene categorization [06, 65], termed deep scene net-
work.The deep scene network intrinsically exhibited recep-
tive fields specialized for layout analysis, such as textures
and surface layout information, without ever having been
explicitly taught any of those features.We showed that the
deep scene neural network model predicted the human neu-
ral representation of single scenes and scene space size bet-
ter than a deep object model and standard models of scene
and object perception [44, 51]. This demonstrates the abil-
ity of the deep scene model to approximate human neural
representations at successive levels of processing as they
emerge over time.

Together our findings provide a first description of an
electrophysiological signal for scene space processing in
humans, and offer a novel quantitative and computational
model of the dynamics of visual scene space representation
in the cortex. Our results suggest that spatial layout repre-
sentations naturally emerge in cortical circuits learning to
differentiate visual environments [44].
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2. Materials and Methods
2.1. Participants

Participants were 15 right-handed, healthy volunteers
with normal or corrected-to-normal vision (mean age =+ s.d.
= 25.87 + 5.38 years, 11 female). The Committee on
the Use of Humans as Experimental Subjects (COUHES)
at MIT approved the experiment and each participant gave
written informed consent for participation in the study, for
data analysis and publication of study results.

2.2. Stimulus Material and Experimental Design

The image set consisted of 48 scene images differing in
four factors with two levels each, namely two scene prop-
erties: physical size (small, large) and clutter level (low,
high); and two image properties: contrast (low, high) and
luminance (low, high) (Figure 1A). There were 3 unique
images for every level combination, for example 3 images
of small size, low clutter, low contrast and low luminance.
The image set was based on behaviorally validated images
of scenes differing in size and clutter level, sub-sampling
the two highest and lowest levels of factors size and clut-
ter [47]. Small scenes were of size that would typically
fit 2-8 people, whereas large scenes would fit hundreds to
thousands. Similarly, low clutter level scenes were empty or
nearly empty rooms, whereas high clutter scenes contained
multiple objects throughout. The contrast and luminance
was adjusted to specific values for each image: images of
low and high contrast had root mean square values of 34%
and 50% respectively; images of low and high luminance
had root mean square values of 34% and 51% respectively.

Participants viewed a series of scene images while MEG
data was recorded (Figure 1B). Images subtended 8 of vi-
sual angle in both width and height and were presented cen-
trally on a gray screen (42.5% luminance) for 0.5s in ran-
dom order with an inter-stimulus interval (ISI) of 1-1.2s,
overlaid with a central red fixation cross. Every 4 trials on
average (range 3-5 trials, equally probable) a target image
depicting concentric circles was presented prompting par-
ticipants to press a button and blink their eyes in response.
ISI between the concentric-circles and the next trial was 2s
to allow time for eye blinks. Target image trials were not
included in analysis. Each participant completed 15 runs of
312s each. Every image was presented four times in a run,
resulting in 60 trials per image per participant in total.

2.3. MEG Recording

We recorded continuous MEG signals from 306 channels
(Elektra Neuromag TRIUX, Elekta, Stockholm) at a sam-
pling rate of 1000Hz. Raw data was band-pass filtered be-
tween 0.03 and 330Hz, and pre-processed using spatiotem-
poral filters (maxfilter software, Elekta, Stockholm). We
used Brainstorm [56] to extract peri-stimulus MEG signals

from —100 to +900ms with respect to stimulus onset, and
then normalized each channel by its baseline (—100 to Oms)
mean and standard deviation, and temporally smoothed the
time series with a 20ms sliding window.

2.4. MEG Multivariate Pattern Classification

Single image classification: To determine whether
MEG signals can discriminate experimental conditions
(scene images), data were subjected to classification anal-
yses using linear support-vector machines (SVM) [41] in
the libsvm implementation' [8] with a fixed regulariza-
tion parameter C' = 1. For each time point ¢, the pro-
cessed MEG sensor measurements were concatenated to
306-dimensional pattern vectors, resulting in M = 60 raw
pattern vectors per condition (Figure 1B). To reduce com-
putational load and improve signal-to-noise ratio, we sub-
averaged the M vectors in groups of £k = 5 with random
assignment, thus obtaining M /k averaged pattern vectors.
We then measured the performance of the SVM classifier to
discriminate between every pair (4, j) of conditions using a
leave-one-out approach: M /k — 1 vectors were randomly
assigned to the training test, and 1 vector to the testing set
to evaluate the classifier decoding accuracy. The above pro-
cedure was repeated 100 times, each with random assign-
ment of the M raw pattern vectors to M /k averaged pattern
vectors, and the average decoding accuracy was assigned
to the (7, ) element of a 48x48 decoding matrix indexed
by condition. The decoding matrix is symmetric with an
undefined diagonal. We obtained one decoding matrix (rep-
resentational dissimilarity matrix or RDM) for each time
point £.

Representational clustering analysis for size: Inter-
preting decoding accuracy as a measure of dissimilarity be-
tween patterns, and thus as a distance measure in represen-
tational space [33, 9], we partitioned the RDM decoding
matrix into within- and between-level segments for the fac-
tor scene size (Figure 2A). The average of between-size mi-
nus within-size matrix elements produced representational
distances (percent decoding accuracy difference) indicative
of clustering of visual representations by scene size.

Cross-classification: To assess whether scene size rep-
resentations were robust to changes of other factors, we
used SVM cross-classification assigning different levels of
experimental factors to the training and testing set. For ex-
ample, Figure 2C shows the cross-classification of scene
size (small vs. large) across clutter, implemented by lim-
iting the training set to high clutter scenes and the testing
set to low clutter scenes. The procedure was repeated with
reverse assignment (low clutter for training set and high
clutter for testing set) and decoding results were averaged.
The training set was 12 times larger (M = 720 raw pat-
tern vectors) than for single-image decoding, as we pooled

Uhttp://www.csie.ntu.edu.tw/cjlin/libsvm
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Figure 1: Image set and single-image decoding. (A) The stimulus set comprised 48 indoor scene images differing in the
size of the space depicted (small vs. large), as well as clutter, contrast, and luminance level; here each experimental factor
combination is exemplified by one image.The image set was based on behaviorally validated images of scenes differing in
size and clutter level, de-correlating factors size and clutter explicitly by experimental design [47].Note that size refers to the
size of the real-world space depicted on the image, not the stimulus parameters; all images subtended 8 visual angle during
the experiment. (B) Time-resolved (1ms steps from —100 to +900ms with respect to stimulus onset) pair-wise support vector
machine classification of experimental conditions based on MEG sensor level patterns. Classification results were stored in
time-resolved 48 x 48 MEG decoding matrices. (C) Decoding results for single scene classification independent of other
experimental factors. Decoding results were averaged across the dark blocks (matrix inset), to control for luminance, contrast,
clutter level and scene size differences. Inset shows indexing of matrix by image conditions. Horizontal line below curve
indicates significant time points (n = 15, cluster-definition threshold P < 0.05, corrected significance level P < 0.05); gray
vertical line indicates image onset.

1 — ‘ ;)gs(jgater;cl}; ‘ lol;e?folgtenigl) l onset latency l peak latency
clutter leve — — -
Tuminance level | 644 (68 —709) | 625 (146 — 725) size across clutter level 226 (134 —491) | 283 (191 — 529)

size across luminance level | 183 (138 — 244) | 217 (148 — 277)
size across contrast level 138 (129 — 179) | 238 (184 — 252)

contrast level 53 (42 — 128) 74 (68 — 87)

(a) Clutter, luminance and contrast level representation

. . . (b) Time course of cross-classification for scene size.
time course information.

Table 1: Onset and peak latencies for MEG classification analyses. Onset and peak latency (n = 15, P < 0.05, cluster-
level corrected, cluster-definition threshold P < 0.05) with 95% confidence intervals in brackets.

trials across single images that had the same level of clut- 2.5. Low and High-Level Computational Models of
ter and size. We averaged pattern vectors by sub-averaging Image Statistics

groups of k = 60 raw pattern vectors before the leave-one-

out SVM classification. Cross-classification analysis was We assessed whether computational models of object
performed for the cross-classification of the factors scene and scene recognition predicted scene size from our image
size (Figure 2D) and scene clutter (Supplementary Figure material. For this we compared four models: two deep con-
3) with respect to changes across all other factors. volutional neural networks that were either trained to per-

form (1) scene or (2) object classification; (3) the GIST de-
scriptor [44], i.e., a model summarizing the distribution of
orientation and spatial frequency in an image that has been
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Figure 2: Scene size is discriminated by visual representations. (A) To determine the time course of scene size process-
ing we determined when visual representations clustered by scene size. For this we subtracted mean within-size decoding
accuracies (dark gray, —) from between-size decoding accuracies (light gray, +). (B) Scene size was discriminated by visual
representations late in time (onset of significance at 141ms (118 — 156ms), peak at 249ms (150 — 274ms).Gray shaded
area indicates 95% confidence intervals determined by bootstrapping participants. (C) Cross-classification analysis, exem-
plified for cross-classification of scene size across clutter level. A classifier was trained to discriminate scene size on high
clutter images, and tested on low clutter images. Results were averaged following an opposite assignment of clutter images
to training and testing sets. Before enteringcross-classification analysis, MEG trials were grouped by clutter and size level
respectively independent of image identity. A similar cross-classification analysis was applied for other image and scene
properties. (D) Results of cross-classification analysis indicated robustness of scene size visual representations to changes
in other scene and image properties (scene clutter, luminance, and contrast). Horizontal lines indicate significant time points
(n = 15, cluster-definition threshold P < 0.05, corrected significance level P < 0.05); gray vertical line indicates image

onset. For result curves with 95% confidence intervals see Supplementary Figure 2.

shown to predict scene properties, among them size; and
(4) HMAX model [54], a model of object recognition most
akin in structure to low-level visual areas V1/V2. We com-
puted the output of each of these models for each image as
described below.

Deep neural networks: The deep neural network ar-
chitecture was implemented following Krizhevsky et al.,
2012 [35]. We chose this particular architecture because it
was the best performing model in object classification in the
ImageNet 2012 competition [52], uses biologically-inspired
local operations (convolution, normalization, max-pooling),
and has been compared to human and monkey brain activ-
ity successfully [22, 27, 28]. The network architecture had
8 layers with the first 5 layers being convolutional and the
last 3 fully connected. For an enumeration of units and fea-
tures for each layer see Table 3. We used the convolution
stage of each layer as model output for further analysis.

We constructed two deep neural networks that differed
in the visual categorization task and visual material they
were trained on. A deep scene model was trained on 216
scene categories from the Places dataset? [66] with 1300 im-
ages per category. A deep object model was trained on 683
different objects with 900,000 images from the ImageNet
dataset® [11] with similar number of images per object cat-
egory (~1300). Both deep neural networks were trained on

Zhttp://places.csail.mit.edu/
3http://www.image-net.org/

GPUs using the Caffe toolbox [25]. In detail, the networks
were trained for 450, 000 iterations, with an initial learning
rate of 0.01 and a step multiple of 0.1 every 100, 000 itera-
tions. Momentum and weight decay were kept constant at
0.9 and 0.0005 respectively.

To visualize receptive fields (RFs) of model neurons in
the deep scene network (Figure 3B) we used a reduction
method [65]. In short, for a particular neuron we deter-
mined the K images activating the neuron most strongly.
To determine the empirical size of the RF, we replicated the
K images many times with small random occluders at dif-
ferent positions in the image. We then passed the occluded
images into the deep scene network and compared the out-
put to the original image, constructing the discrepancy map
that indicates which part of the image drives the neuron. We
then recentered discrepancy maps and averaged, generating
the final RFE. To illustrate the RFs tuning we further plot the
image patches corresponding to the top activation regions
inside the RFs (Figure 3B).

GIST: For the GIST descriptor [44], each image was fil-
tered by a bank of Gabor filters with 8 orientations and 4
spatial frequencies (32 filters). Filter outputs were averaged
in a4 x4 grid, resulting in a 512-dimensional feature vector.
The GIST descriptor represents images in terms of spatial
frequencies and orientations by position®.

HMAX: We used the HMAX model as applied and de-

4Code: http://people.csail.mit.edu:/torralba/code/spatialenvelope/
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scribed by Serre et al [54], a model inspired by the hierar-
chical organization of the visual cortex. In short, HMAX
consists of two sets of alternating S and C layers, i.e., in
total 4 layers. The S-layers convolve the input with pre-
defined filters, and the C layers perform a max operation.

2.6. Linking Computational Models of Vision to
Brain data

We used representational dissimilarity analysis to com-
pare the output of computational models to brain data. First,
we recorded the output of each model for each of the 48 im-
ages of the image set. Then, to compare to human brain
data, we calculated the pair-wise dissimilarities between
model outputs by 1- Spearman’s rank order correlation p.
This formed 48x48 model dissimilarity matrices (RDMs),
one for each layer of each model: 8 for the deep scene and
deep object network, 1 for GIST, and 4 for HMAX.

To compare models and brains, we determined whether
images that were similarly represented in a computational
network were also similarly represented in the brain. This
was achieved by computing the similarity (Spearman’s p)
of layer-specific model dissimilarity matrix with the time-
point specific MEG decoding matrix for every subject and
time point and averaging results.

We then determined whether the computational models
predicted the size of a scene. We formulated an explicit
size model, i.e., a 48x48 matrix with entries of 1 where
images differed in size and O otherwise. Equivalent ma-
trices were produced for scene clutter, contrast and lumi-
nance (Supplementary Figure 1). Correlation of the explicit
size model with any computational model RDM yielded a
measure of how well computational models predicted scene
size. Finally, we determined whether the above computa-
tional models accounted for neural representations of scene
size observed in MEG data. For this, we reformulated the
representational clustering analysis in a correlation frame-
work. The two measures are equivalent except that the cor-
relation analysis takes into account the variability of the
data, which the clustering analysis does not for the bene-
fit of clear interpretability as percent change in decoding
accuracy. The procedure had two steps. First, we calculated
the similarity (Spearman’s p) of the MEG decoding accu-
racy matrix with the explicit size model for each time point
and each participant. Second, we re-calculated the similar-
ity (Spearman’s p) of the MEG decoding accuracy matrix
with the explicit size model after partialling out all of the
layer-specific RDMs of a given computational model.

2.7. Statistical Testing

We used permutation tests for cluster-size inference, and
bootstrap tests to determine confidence intervals of onset
times for maxima, cluster onsets and peak-to-peak latency
differences [42, 9, 45].

Sign permutation tests: For the permutation tests, de-
pending on the statistic of interest our null hypothesis was
that the MEG decoding time series were equal to 50%
chance level, or that the decoding accuracy difference of
between- minus within-level segments of the MEG decod-
ing matrix was equal to 0, or that the correlation values were
equal to 0. In all cases, under the null hypothesis the sign
of the observed effect in the MEG data is randomly per-
mutable, corresponding to a sign-permutation test that ran-
domly multiplies the participant-specific data with +1 or
—1. We created 1,000 permutation samples, every time re-
computing the statistic of interest. This resulted in an em-
pirical distribution of the data, allowing us to convert our
original data, as well as the permutation samples, into P-
values. We then performed cluster-size inference by set-
ting a P = 0.05 cluster-definition threshold on the original
data and permutation samples, and computing a P = 0.05
cluster size threshold from the empirical distribution of the
resampled data.

Bootstrapping: To calculate confidence intervals (95%)
on cluster onset and peak latencies, we bootstrapped the
sample of participants 1,000 times with replacement. For
each bootstrap sample, we repeated the above permutation
analysis yielding distributions of the cluster onset and peak
latency, allowing estimation of confidence intervals. In ad-
dition, for each bootstrap sample, we determined the peak-
to-peak latency difference for scene size clustering and indi-
vidual scene image classification. This yielded an empirical
distribution of peak-to-peak latencies. Setting P < 0.05,
we rejected the null hypothesis of a latency difference if the
confidence interval did not include 0.

Label permutation tests: For testing the significance
of correlation between the computational model RDMs and
the scene size model, we relied on a permutation test of
image labels. This effectively corresponded to randomly
permuting the columns (and accordingly the rows) of the
computational model RDMs 1,000 times, and then calcu-
lating the correlation between the permuted matrix and the
explicit size model matrix. This yielded an empirical distri-
bution of the data, allowing us to convert our statistic into
P-values. Effects were reported as significant when pass-
ing a P = 0.05 threshold. Results were FDR-corrected for
multiple comparisons.

3. Results

Human participants (n = 15) viewed images of 48 real-
world indoor scenes that differed in the layout property size,
as well as in the level of clutter, contrast and luminance
(Figure 1A) while brain activity was recorded with MEG.
While often real-world scene size and clutter level corre-
late, here we de-correlated those stimulus properties explic-
itly by experimental design, based on independent behav-
ioral validation [47] to allow independent assessment. Im-



[ onset latency [ peak latency
GIST 47 (45 — 149) | 80 (76 — 159)
HMAX 48°(25 — 121) | 74 (61 — 80)
deep object network | 55 (20 —61) | 97 (83 — 117)
deep scene network | 47 (23 —59) | 83 (79 — 112)

(a) Correlation of models to MEG data.

\ onset latency \ peak latency

deep scene network

minus GIST 58 (50 — 78) | 108 (81 — 213)
deep scene network
minus HMAX 75 (62 — 86) | 108 (97 — 122)

deep scene network minus
deep object network

(b) Comparison of MEG-model correlation for the deep scene network
and all other models.

Table 2: Onset and peak latencies for model-MEG representational similarity analysis. Onset and peak latency (n = 15,
P < 0.05, cluster-level corrected, cluster-definition threshold P < 0.05) with 95% confidence intervals in brackets.
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Figure 3: Predicting emerging neural representations of single scene images by computational models. (A) Architecture
of deep convolutional neural network trained on scene categorization (deep scene network). (B) Receptive field (RF) of
example deep scene neurons in layers 1, 2, 4, and 5. Each row represents one neuron. The left column indicates size of
RF, and the remaining columns indicate image patches most strongly activating these neurons. Lower layers had small RFs
with simple Gabor filter-like sensitivity, whereas higher layers had increasingly large RFs sensitive to complex forms. RFs
for whole objects, texture, and surface layout information emerged although these features were not explicitly taught to
the deep scene model. (C) We used representational dissimilarity analysis to compare visual representations in brains with
models. For every time point, we compared subject-specific MEG RDMs (Spearman’s p) to model RDMs and results were
averaged across subjects. ( D) All investigated models significantly predicted emerging visual representations in the brain,
with superior performance for the deep neural networks compared to HMAX and GIST. Horizontal lines indicate significant
time points (n = 15, cluster-definition threshold P < 0.05, corrected significance level P < 0.05); gray vertical line

indicates image onset.

ages were presented for 0.5s with an inter-trial interval of
1 — 1.2s (Figure 1B). Participants performed an orthogonal
object-detection task on an image of concentric circles ap-
pearing every four trials on average. Concentric circle trials
were excluded from further analysis.

To determine the timing of cortical scene processing we
used a decoding approach: we determined the time course
with which experimental conditions (scene images) were
discriminated by visual representations in MEG data. For
this, we extracted peri-stimulus MEG time series in Ims
resolution from —100 to +900ms with respect to stimu-
lus onset for each subject. For each time point indepen-
dently we classified scene images pair-wise by MEG sen-
sor patterns(support vector classification, Figure 1C). Time-
point specific classification results (percentage decoding ac-
curacy, 50% chance level) were stored in a 48 x48 decoding
accuracy matrix, indexed by image conditions in rows and
columns (Figure 1C, inset). This matrix is symmetric with

undefined diagonal. Repeating this procedure for every time
point yielded a set of decoding matrices (for a movie of de-
coding accuracy matrices over time, averaged across sub-
jects, see Supplementary Movie 1). Interpreting decoding
accuracies as a representational dissimilarity measure, each
48x48 matrix summarized, for a given time point, which
conditions were represented similarly (low decoding accu-
racy) or dissimilarly (high decoding accuracy). The matrix
was thus termed MEG representational dissimilarity matrix
(RDM) [9, 43].

Throughout, we determined random-effects significance
non-parametrically using a cluster-based randomization ap-
proach (cluster-definition threshold P < 0.05, corrected
significance level P < 0.05) [42, 45, 38]. 95% confi-
dence intervals for mean peak latencies and onsets (reported
in parentheses throughout the results) were determined by
bootstrapping the participant sample.



layer convl pool/norm1 conv2  pool/norm2 conv3 conv4 conv5 pool5  fcl fc2 fc3
units 96 96 256 256 384 384 256 256 4096 4096 683/216
features 55 x 55 27 x 27 27 x 27 13 x 13 13x13 13x13 13x13 6x6 1 1 1

Table 3: Number of units and features for each CNN layer. Units and features of the deep neural network architecture
were similar as proposed in [35]. All deep neural networks were identical with the exception of the number of nodes in the
last layer (output layer) as dictated by the number of training categories, i.e. 683 for the deep object network, 216 for deep
scene network. Abbreviations: conv = convolutional layer, pool = pooling layer; norm = normalization layer; fc1 — 3 = fully
connected layers. The 8 layers referred to in the manuscript correspond to the convolution stage for layers 1 — 5, and the

fcl — 3 stage for layers 6 — 8 respectively.

3.1. Neural representations of single scene images
emerged early in cortical processing

We first investigated the temporal dynamics of image-
specific individual scene information in the brain. To
determine the time course with which individual scene
images were discriminated by visual representations in
MEG data, we averaged the elements of each RDM ma-
trix representing pairwise comparisons with matched ex-
perimental factors(luminance, contrast, clutter level and
scene size)(Figure 1C). We found that the time course rose
sharply after image onset, reaching significance at 50ms
(45 — 52ms) and a peak at 97ms (94 — 102ms).This indi-
cates that single scene images were discriminated early by
visual representations, similar to single images with other
visual content [58, 7, 9, 23], suggesting a common source
in early visual areas [9].

3.2. Neural representations of scene size emerged
later in time and were robust to changes in
viewing conditions and other scene properties

When is the spatial layout property scene size processed
by the brain? To investigate, we partitioned the decoding
accuracy matrix into two subdivisions: images of differ-
ent (between subdivision light gray, +) and similar size
level (within subdivision, dark gray, —). The difference
of mean between-size minus within-size decoding accu-
racy is a measure of clustering of visual representations by
size (Figure). Peaks in this measure indicate time points
at which MEG sensor patterns cluster maximally by scene
size, suggesting underlying neural visual representations al-
lowing for explicit, linear readout [12] of scene size by the
brain. Scene size (Figure 2B) was discriminated first at
141ms (118 —156ms) and peaked at 249ms (150—274ms),
which was significantly later than the peak in single image
classification (P = 0.001, bootstrap test of peak-latency
differences).

Equivalent analyses for the experimental factors scene
clutter, contrast, and luminance level yielded diverse time
courses (Supplementary Figure 1, Table 1(a)). Impor-
tantly, representations of low-level image property contrast
emerged significantly earlier than scene size (P = 0.004)

and clutter (P = 0.006, bootstrap test of peak-latency dif-
ferences). For the factor luminance, only a weak effect and
thus no significant onset response was observed, suggesting
a pre-cortical luminance normalization mechanism.

To be of use in the real world, visual representations of
scene size must be robust against changes of other scene
properties, such as clutter level (i.e., space filled by different
types and amounts of objects) and semantic category (i.e.,
the label by which we name it), and changes in viewing con-
ditions, such as luminance and contrast. We investigated the
robustness of scene size representations to all these factors
using cross-classification (Figure 2C; for 95% confidence
intervals on curves see Supplementary Figure 2). For this
we determined how well a classifier trained to distinguish
scenes at one clutter level could distinguish scenes at the
other level, while collapsing data across single image con-
ditions of same level in size and clutter. We found that scene
size was robust to changes in scene clutter, luminance and
contrast (Figure 2D; onsets and peaks in Table 1(b)). Note
that by experimental design, the scene category always dif-
fered across size level, such that cross- classification also
established that scene size was discriminated by visual rep-
resentations independent of the scene category.

An analogous analysis for clutter level yielded evidence
for viewing-condition independent clutter level representa-
tions (Supplementary Figure 3), reinforcing the notion of
clutter level as a robust and relevant dimension of scene
representations in the human brain [47]. Finally, an anal-
ysis revealing persistent and transient components of scene
representations indicated strong persistent components for
scene size and clutter representations, with little or no ev-
idence for contrast and luminance (Supplementary Figure
4). Persistence of scene size and clutter level representa-
tions further reinforces the notion of size and clutter level
representations being important end products of visual com-
putations kept online by the brain for further processing and
behavioral guidance.

In sum, our results constitute evidence for representa-
tions of scene size in human brains from non-invasive elec-
trophysiology, apt to describe scene size discrimination un-
der real world changes in viewing conditions.



3.3. Neural representations of single scene images
were predicted by deep convolutional neural
networks trained on real world scene catego-
rization

Visual scene recognition in cortex is a complex hierar-
chical multi-step process, whose understanding necessitates
a quantitative model that captures this complexity.Here, we
evaluated whether an 8-layer deep neural network trained
to perform scene classification on 205 different scene cat-
egories [60] human scene representations. We refer to this
network as deep scene network (Figure 3A).Investigation of
the receptive fields (RFs) of model neurons using a reduc-
tion method [65] indicated a gradient of increasing com-
plexity from low to high layers, and selectivity to whole ob-
jects, texture, and surface layout information (Figure 3B).
This suggests that the network might be able to capture in-
formation about both single scenes and scene layout prop-
erties.

To determine the extent to which visual representations
learned by the deep scene model and the human brain
are comparable, we used representational similarity analy-
sis [34, 9]. The key idea is that if two images evoke similar
responses in the model, they should evoke similar responses
in the brain, too.

For the deep neural network, we first estimated image
response patterns by computing the output of each model
layer to each of the 48 images. We then constructed
layer-resolved 48 x 48 representational dissimilarity ma-
trices (RDMs) by calculating the pairwise dissimilarity (1-
Spearman’s p) across all model response patterns for each
layer output.

We then compared (Spearman’s p) the layer-specific
deep scene model RDMs with the time-resolved MEG
RDMs and averaged results over layers, yielding a time
course indicating how well the deep scene model predicted
and thus explained scene representations (Figure 3D). To
compare against other models, we performed equivalent
analyses to a deep neural network trained on object-
categorization (termed deep object network) and stan-
dard models of object (HMAX) and scene-recognition
(GIST) [44, 53].

We found that the deep object and scene network per-
formed similarly at predicting visual representations over
time (Figure 3D, for details see Table 2(a); for layer-
resolved results see Supplementary Figure 5), and better
than the HMAX and GIST models (for direct quantitative
comparison see Supplementary Figure 6).

In sum, our results show that brain representations of
single scene images were best predicted by deep neural
network models trained on real-world categorization tasks,
demonstrating the ability of the models to capture the com-
plexity of scene recognition, and their semblance to the hu-
man brain representations.

3.4. Representations of scene size emerged in the
deep scene model

Beyond prediction of neural representations of single
scene images, does the deep scene neural network indi-
cate the spatial layout property scene size? To visualize,
we used multidimensional scaling (MDS) on layer-specific
model RDMs, and plotted the 48 scene images into the re-
sulting 2D arrangement color-coded for scene size (black=
small, gray = large). We found a progression in the rep-
resentation of scene size in the deep scene network: low
layers showed no structure, whereas high layers displayed
a progressively clearer representation of scene size(A). A
similar, but weaker progression, was visible for the deep ob-
ject network (Figure 4B). Comparable analysis for HMAX
and GIST (Figure 4C,D) found no prominent representation
of size.

We quantified this descriptive finding by computing the
similarity of model RDMs with an explicit size model (an
RDM with entries 0 for images of similar size, 1 for images
of dissimilar size; Figure 4E inset).We found a significant
effect of size in all models (P < 0.05, FDR-corrected, stars
above bars indicate significance). The size effect was larger
in the deep neural networks than in GIST and HMAX, it was
more pronounced in the high layers, and the deep scene net-
work displayed a significantly stronger effect of scene size
than the deep object network in layers 6 — 8 (stars between
bars; for all pair-wise layer-specific comparisons see Sup-
plementary Figure 7). A supplementary partial correlation
analysis confirmed that the effect of size in the deep scene
network was not explained by correlation with the other ex-
perimental factors (Supplementary Figure 8).

Together, these results indicate the deep scene network
captured scene size better than all other models, and that
scene size representations emerge gradually in the deep
neural network hierarchy. Thus representations of visual
space can emerge intrinsically in neural networks con-
strained to perform visual scene categorization without be-
ing trained to do so directly.

3.5. Neural representations of scene size emerged in
the deep scene model

The previous sections demonstrated that representations
of scene size emerged in both neural signals (Figure 2) and
computational models (Figure 4). To evaluate the overlap
between these two representations, we combined represen-
tational similarity analysis with partial correlation analy-
sis [10] (Figure 5A).

We first computed the neural representations of scene
size by correlating (Spearman’s p) the MEG RDMs with
the explicit size model (black curve). We then repeated
the process, but only after partialling out all layer-specific
RDMs of a model from the explicit size model (color-coded
by model) (Figure 5B). The reasoning is that if neural sig-
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nals and computational models carry the same scene size
information, the scene size effect will vanish in the latter
case.

When partialling out the effect of the deep scene net-
work, the scene size effect was considerably reduced and
was no longer statistically significant. In all other mod-
els, the effect was reduced but was still statistically signif-
icant (Figure 5B). Further, the reduction of the size effect
was higher for the deep scene network than all other mod-
els (Figure 5C). Equivalent analyses for scene clutter, con-
trast and luminance indicated that the deep scene and object
networks abolished all effects, while other models did not
(Supplementary Figure 9).

Together, these results show that only the deep scene
model captured the neural representation of scene size in
the human brain, singling it out as the best of the scene rep-
resentation models tested here.

4. Discussion

We characterized the emerging representation of scenes
in the human brain using multivariate pattern classifica-
tion methods [7, 9] and representational similarity analy-
sis [34, 33] on combined MEG and computational model
data. We found that neural representations of individual
scenes and the low-level image property contrast emerged
early, followed by the scene layout property scene size at
around 250 ms. The neural representation of scene size was
robust to changes in viewing conditions and scene proper-
ties such as contrast, luminance, clutter level and category.
Our results provide novel evidence for an electrophysiolog-
ical signal of scene processing in humans that remained sta-
ble under real-world viewing conditions. To capture the
complexity of scene processing in the brain by a compu-
tational model, we trained a deep convolutional neural net-
work on scene classification. We found that the deep scene
model predicted representations of scenes in the brain and
accounted for abstract properties such as scene size and
clutter level better than alternative computational models,
while abstracting away low-level image properties such as
luminance and contrast level.

4.1. A multivariate pattern classification signal for
the processing of scene layout property scene
size

A large body of evidence from neuropsychology, neu-
roimaging and invasive work in humans and monkeys has
identified locally circumscribed cortical regions of the brain
dedicated to the processing of three fundamental visual cat-
egories: faces, bodies and scenes [2, 26, 1, 16, 60, 29]. For
faces and bodies, respective electrophysiological signals in
humans have been identified [2, 3, 24, 36, 55, 57]. However,
electrophysiological markers for scene-specific processing
have been identified for the auditory modality only [20, 59],

and a visual scene-specific electrophysiological signal had
not been described until now.

Our results provide the first evidence for an electrophys-
iological signal of visual scene size processing in humans.
Multivariate pattern classification analysis on MEG data re-
vealed early discrimination of single scene images (peak at
97ms) and the low-level image property contrast (peak at
74ms), whereas the abstract property of space size was dis-
criminated later (peak at 249ms).While early scene-specific
information in the MEG likely emerged from low-level vi-
sual areas such as V1 [9], the subsequent scene size sig-
nal had properties commonly ascribed to higher stages of
visual processing in ventral visual cortex: the represen-
tation of scene size was tolerant to changes occurring in
real world viewing conditions, such as luminance, contrast,
clutter level and category. The electrophysiological signal
thus reflected scene size representations that could reliably
be used for scene recognition in real world settings under
changing viewing conditions [48, 12, 13]. This result paves
the way to further studies of the representational format of
scenes in the brain, e.g. by measuring the modulation of the
scene-specific signal by other experimental factors.

The magnitude of the scene size effect, although consis-
tent across subjects and statistically robust to multiple com-
parison correction, is small with a maximum of ~ 1%. Note
however that the size effect, in contrast to single image de-
coding (peak decodability at ~ 79%), is not a measure of
how well single images differing in size can be discrimi-
nated, but a difference measure of how much better images
of different size can be discriminated rather than images of
the same size. Thus, it is a measure of information about
scene size over-and-above information distinguishing be-
tween any two single scenes. The magnitude of the size
effect is comparable to effects reported for abstract visual
properties such as animacy (1.9 and 1.1% respectively, [9]).

What might be the exact locus of the observed scene
size signal in the brain? Previous research has indicated
parametric encoding of scene size in parahippocampal place
area (PPA) and retrosplenial cortex [47], corroborating nu-
merous studies showing that spatial properties of scenes
such as boundaries and layout are represented in these corti-
cal regions [18, 17, 63]. Both onset and peak latency of the
observed scene size signal concurred with reported laten-
cies for parahippocampal cortex [39], suggesting that one
or several nodes of the human spatial navigation network
might be the source of the scene size signal.

Last, we found that not only scene size representa-
tions, but also scene clutter representations were tolerant
to changes in viewing conditions, and emerged later than
the low-level image contrast representations. These results
complement previous findings in object perception research
that representations of single objects emerge earlier in time
than representations of more abstract properties such as cat-
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egory membership [7, 9].

4.2. Neural representations of abstract scene prop-
erties such as scene size are explained by a
deep neural network model trained on scene
classification

Scene processing in the brain is a complex process ne-
cessitating a formal quantitative model that addresses this
complexity. Here, our study of several models of scene and
object recognition provided three novel results, each with
fundamental theoretical implications.

First, deep neural networks offered the best characteriza-
tion of neural scene representations compared to other mod-
els tested. The superiority of high performing deep neural
networks over simpler models indicates that hierarchical ar-
chitectures might be necessary to capture the structure of
single scene representations in the human brain. While pre-
vious research has established that deep neural networks
capture object representations in human and monkey in-
ferior temporal cortex well, we demonstrated that a deep
neural network explained millisecond-resolved dynamics
underlying scene recognition from processing of low- to
high-level properties, better than other models of object and
scene-processing tested.

Concerning high-level abstract scene properties in par-
ticular, our results shed lights into the black box of corti-
cal scene processing, providing novel insight both from the
perspective of modeling, and of experimental brain science.
From a modeling perspective, the near monotonic relation-
ship between the representation of size and clutter level in
the deep neural network and the network layer number in-
dicates that scene size is an abstract scene property emerg-
ing through complex multi-step processing. From the per-

spective of experimental brain science, our results provide
an advance in understanding neural representations of the
processing of abstract scene properties such as spatial lay-
out. Neuronal responses in high-level visual cortex are of-
ten sparse and nonlinear, making a full explanation by sim-
ple mathematical models in low-dimensional spaces or ba-
sic image statistics unlikely [21, 50, 62]. Instead, our result
concurs with the finding that complex deep neural networks
performing well on visual categorization tasks represent vi-
sual stimuli similar to the human brain [6, 64], and extends
the claim to abstract properties of visual stimuli.

The second novel finding is that a deep neural network
trained specifically on scene categorization had superior
representation of scene size compared to a deep neural net-
work trained on objects. Importantly, it also offered the best
account of neural representations of scene size in the MEG,
indicating that the underlying algorithmic computations
matched the neuronal computations in the human brain.
This indicates that the constraints imposed by the task the
network is trained on, i.e., object or scene categorization,
critically influenced the represented features. This makes
plausible the notion that spatial representations emerge nat-
urally and intrinsically in neural networks performing scene
categorization, such as in the human brain. It further sug-
gests that separate processing streams in the brain for differ-
ent visual content, such as scenes, objects or faces, might be
the result of differential task constraints imposed by classi-
fication of the respective visual input [13, 64].

The third novel finding is that representations of abstract
scene properties (size, clutter level) emerged with increas-
ing layers in deep neural networks, while low-level im-
age properties (contrast, luminance) were increasingly ab-
stracted away, mirroring the temporal processing sequence



in the human brain: representations of low-level image
properties emerged first, followed by representations of
scene size and clutter level. This suggests common mecha-
nisms in both and further strengthen the idea that deep neu-
ral networks are a promising model of the processing hierar-
chies constituting the human visual system, reinforcing the
view of the visual brain as performing increasingly complex
feature extraction over time [58, 36, 49, 53, 30, 13].

However, we did not observe a relationship between
layer-specific representations in the deep neural networks
and temporal dynamics in the human brain. Instead, the
MEG signal predominantly reflected representations in low
neural network layers (Supplementary Figure 5). One rea-
son for this might be that our particular image set differed
strongly in low-level features, thus strongly activating early
visual areas that are best modeled by low neural network
layers. Activity in low-level visual cortex was thus very
strong, potentially masking weaker activity in high-level vi-
sual cortex that is invariant to changes in low level features.
Another reason might be that while early visual regions are
close to the MEG sensors, creating strong MEG signals,
scene-processing cortical regions such as PPA are deeply
harbored in the brain, creating weaker MEG signals. Future
studies using image sets optimized to drive low-and high
level visual cortex equally are necessary, to test whether
layer-specific representations in deep neural networks can
be mapped in both time and in space onto processing stages
in the human brain.

4.3. Conclusions

Using a combination of multivariate pattern classifica-
tion and computational models to study the dynamics in
neuronal representation of scenes, we identified a neural
marker of spatial layout processing in the human brain, and
showed that a deep neural network model of scene catego-
rization explains representations of spatial layout better than
other models. Our results pave the way to future studies
investigating the temporal dynamics of spatial layout pro-
cessing, and highlight deep hierarchical architectures as the
best models for understanding visual scene representations
in the human brain.
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