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Abstract

In this paper, we study the problem of fine-grained im-
age categorization. The goal of our method is to explore
fine image statistics and identify the discriminative image
patches for recognition. We achieve this goal by combin-
ing two ideas, discriminative feature mining and random-

ization. Discriminative feature mining allows us to model
the detailed information that distinguishes different classes
of images, while randomization allows us to handle the
huge feature space and prevents over-fitting. We propose a
random forest with discriminative decision trees algorithm,
where every tree node is a discriminative classifier that is
trained by combining the information in this node as well
as all upstream nodes. Our method is tested on both subor-
dinate categorization and activity recognition datasets. Ex-
perimental results show that our method identifies semanti-
cally meaningful visual information and outperforms state-
of-the-art algorithms on various datasets.

1. Introduction

Psychologists have shown that the ability of humans to

perform basic-level categorization (e.g. cars vs. dogs;

kitchen vs. highway) develops well before their abil-

ity to perform subordinate-level categorization, or fine-

grained visual categorization (e.g. Golden retrievers vs.

Labrador) [12]. It is interesting to observe that computer vi-

sion research has followed a similar trajectory. Basic-level

object and scene recognition has seen great progress [10,

13, 16, 20] while fine-grained categorization has received

little attention. Unlike basic-level recognition, even humans

might have difficulty with some of the fine-grained catego-

rization [21]. Thus, an automated visual system for this task

could be valuable in many applications.

Fig.1 captures the difficulty of dealing with such tasks.

The bounding boxes demarcate the distinguishing charac-

teristics between closely related bird species, or different

musical instruments or human poses that differentiate the
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Figure 1. We consider two fine-grained image classification prob-

lems: subordinate categorization where fine image parts distin-

guishes different classes (top row) and human activity recognition

where the human body dominates the image region (bottom row).

Bounding boxes indicate discriminative image patches.

different playing activities. Models and algorithms de-

signed for basic-level object or image categorization tasks

are often unprepared to capture such subtle differences

among the fine-grained visual classes. In this paper, we ap-

proach this problem from the perspective of finding a large

number of image patches with arbitrary shapes, sizes, or lo-

cations, as well as interactions between pairs of patches that

carry discriminative image statistics [6, 22] (Sec.3). How-

ever, this approach poses a fundamental challenge: with-

out any feature selection, even a modestly sized image will

yield millions or billions of image patches. Furthermore,

these patches are highly correlated because many of them

overlap significantly. To address these issues, we propose

the use of randomization that considers a random subset of

features at a time.

In this paper, we propose a random forest with discrim-
inative decision trees algorithm to discover image patches

and pairs of patches that are highly discriminative for fine-

grained categorization tasks. Unlike conventional decision

trees [3, 1], our algorithm uses strong classifiers at each

node and combines information at different depths of the

tree to effectively mine a very dense sampling space. Our
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method significantly improves the strength of the decision

trees in the random forest while still maintaining low corre-

lation between the trees. This allows our method to achieve

low generalization error according to the theory of random

forest [3].

We evaluate our method on two fine-grained categoriza-

tion tasks: human activity recognition in still images [22, 7]

and subordinate categorization of closely related animal

species [21], outperforming state-of-the-art results. Further-

more, our method identifies semantically meaningful image

patches that closely match human intuition. Additionally,

our method tends to automatically generate a coarse-to-fine

structure of discriminative image regions, which parallels

the human visual system [4].

The remaining part of this paper is organized as follows:

Sec.2 discusses related work. Sec.3 describes our dense

feature space and Sec.4 describes our algorithm for min-

ing this space. Experimental results are discussed in Sec.5,

and Sec.6 concludes the paper.

2. Related Work
Image classification has been studied for many years.

Most of the existing work focuses on basic-level categoriza-

tion such as objects [8, 1, 10] or scenes [16, 9, 13]. In this

paper we focus on fine-grained image categorization [11, 2],

which requires an approach to capture the fine and detailed

information in images.

In this work, we explore a dense feature representation to

distinguish fine-grained image classes. Our previous work

has shown the advantage of dense features (“Grouplet” fea-

tures [22]) in classifying human activities. Instead of using

the generative local features as in Grouplet, here we con-

sider a richer feature space in a discriminative setting where

both local and global visual information are fused together.

Inspired by [6, 22], our approach also considers pairwise

interactions between image regions.

We use a random forest framework to identify discrimi-

native image regions. Random forests have been used suc-

cessfully in many vision tasks such as object detection [1],

segmentation [17] and codebook learning [15]. Inspired

from [18], we combine discriminative training and random-

ization to obtain an effective classifier with good generaliz-

ability. Our method differs from [18] in that for each tree

node, we train an SVM classifier from one of the randomly

sampled image regions, instead of using AdaBoost to com-

bine weak features from a fixed set of regions. This allows

us to explore an extremely large feature set efficiently.

A classical image classification framework [20] is Fea-
ture Extraction → Coding → Pooling → Concatenating.

Feature extraction [14] and better coding and pooling meth-

ods [20] have been extensively studied for object recogni-

tion. In this work, we use discriminative feature mining

and randomization to propose a new feature concatenating

(a) (b)

Figure 2. (a) Illustration of our dense sampling space. We

densely sample rectangular image patches with varying widths and

heights. The regions are closely located and have significant over-

laps. The red × denote the centers of the patches, and the ar-

rows indicate the increment of the patch width or height. (The ac-

tual density of regions considered in our algorithm is significantly

higher. This figure has been simplified for visual clarity.) We note

that the regions considered by Spatial Pyramid Matching [13] is

a very small subset lying along the diagonal of the height-width

plane that we consider. (b) Illustration of some image patches that

may be discriminative for “playing-guitar”. All those patches can

be sampled from our dense sampling space.

approach, and demonstrate its effectiveness on fine-grained

image categorization tasks.

3. Dense Sampling Space

Our algorithm aims to identify fine image statistics that

are useful for fine-grained categorization. For example, in

order to classify whether a human is playing a guitar or

holding a guitar without playing it, we want to use the im-

age patches below the human face that are closely related to

the human-guitar interaction (Fig.2(b)). An algorithm that

can reliably locate such regions is expected to achieve high

classification accuracy. We achieve this goal by searching

over rectangular image patches of arbitrary width, height,

and image location. We refer to this extensive set of image

regions as the dense sampling space, as shown in Fig.2(a).

Furthermore, to capture more discriminative distinctions,

we consider interactions between pairs of arbitrary patches.

The pairwise interactions are modeled by applying concate-

nation, absolute of difference, or intersection between the

feature representations of two image patches.

However, the dense sampling space is very huge. Sam-

pling image patches of size 50 × 50 in a 400 × 400 im-

age every four pixels leads to thousands of patches. This

increases many-folds when considering regions with arbi-

trary widths and heights. Further considering pairwise in-

teractions of image patches will effectively lead to trillions

of features for each image. In addition, there is much

noise and redundancy in this feature set. On the one hand,

many image patches are not discriminative for distinguish-

ing different image classes. On the other hand, the image

patches are highly overlapped in the dense sampling space,

which introduces significant redundancy among these fea-
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tures. Therefore, it is challenging to explore this high-

dimensional, noisy, and redundant feature space. In this

work, we address this issue using randomization.

4. Random Forest with Discriminative Deci-
sion Trees

In order to explore the dense sampling feature space for

fine-grained visual categorization, we combine two con-

cepts: (1) Discriminative training to extract the information

in the image patches effectively; (2) Randomization to ex-

plore the dense feature space efficiently. Specifically, we

adopt a random forest [3] framework where each tree node

is a discriminative classifier that is trained on one or a pair

of image patches. In our setting, the discriminative training

and randomization can benefit from each other. We summa-

rize the advantages of our method below:

∙ The random forest framework allows us to consider a

subset of the image regions at a time, which allows

us to explore the dense sampling space efficiently in a

principled way.

∙ Random forest selects a best image patch in each node,

and therefore it can remove the noise-prone image

patches and reduce the redundancy in the feature set.

∙ By using discriminative classifiers to train the tree

nodes, our random forest has much stronger decision

trees with small correlation. This allows our method to

have low generalization error (Sec.4.4) compared with

the traditional random forest [3] which uses weak clas-

sifiers in the tree nodes.

An overview of the random forest framework we use

is shown in Algorithm 1. In the following sections, we

first describe this framework (Sec.4.1). Then we elabo-

rate on our feature sampling (Sec.4.2) and split learning

(Sec.4.3) strategies in detail, and describe the generalization

theory [3] of random forest which guarantees the effective-

ness of our algorithm (Sec.4.4).

4.1. The Random Forest Framework

Random forest is a multi-class classifier consisting of an

ensemble of decision trees where each tree is constructed

via some randomization. As illustrated in Fig.3(a), the leaf

nodes of each tree encode a distribution over the image

classes. All internal nodes contain a binary test that splits

the data and sends the splits to its children nodes. The split-

ting is stopped when a leaf node is encountered. An image

is classified by descending each tree and combining the leaf

distributions from all the trees. This method allows the flex-

ibility to explore a large feature space effectively because it

only considers a subset of features in every tree node.

Each tree returns the posterior probability of an example

belonging to the given classes. The posterior probability of

Weak 

classifier

Leaf

(a) Conventional random decision tree.

Strong 

classifier

Leaf

(b) Discriminative decision tree.

Figure 3. Comparison of conventional random decision trees with

our discriminative decision trees. Solid blue arrows show binary

splits of the data. Dotted lines from the shaded image regions indi-

cate the region used at each node. Conventional decision trees use

information from the entire image at each node, which encodes no

spatial or structural information, while our decision trees sample

single or multiple image regions from the dense sampling space

(Fig.2(a)). The histograms below the leaf nodes illustrate the pos-

terior probability distribution 𝑃𝑡,𝑙(𝑐) (Sec.4.1). In (b), dotted red

arrows between nodes show our nested tree structure that allows

information to flow in a top-down manner. Our approach uses

strong classifiers in each node (Sec.4.3), while the conventional

method uses weak classifiers.

a particular class at each leaf node is learned as the pro-

portion of the training images belonging to that class at the

given leaf node. The posterior probability of class 𝑐 at leaf

𝑙 of tree 𝑡 is denoted as 𝑃𝑡,𝑙(𝑐). Thus, a test image can be

classified by averaging the posterior probability from the

leaf node of each tree: 𝑐∗ = argmax𝑐
1
𝑇

∑𝑇
𝑡=1 𝑃𝑡,𝑙𝑡(𝑐),

where 𝑐∗ is the predicted class label, 𝑇 is the total number

of trees, and 𝑙𝑡 is the leaf node that the image falls into.

In the following sections, we describe the process of ob-

taining 𝑃𝑡,𝑙(𝑐) using our algorithm. Readers can refer to

previous works [3, 1, 17] for more details of the conven-

tional decision tree learning procedure.

4.2. Sampling the Dense Feature Space

As shown in Fig.3(b), each internal node in our deci-

sion tree corresponds to a single or a pair of rectangular im-

age regions that are sampled from the dense sampling space

(Sec.3), where the regions can have many possible widths,

heights, and image locations. In order to sample a candidate

image region, we first normalize all images to unit width
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foreach tree 𝑡 do
- Obtain a random set of training examples 𝒟;

- SplitNode(𝒟);

if needs to split then
i. Randomly sample the candidate (pairs of) image

regions (Sec.4.2);

ii. Select the best region to split 𝒟 into two sets 𝒟1

and 𝒟2 (Sec.4.3);

iii. SplitNode(𝒟1) and SplitNode(𝒟2).
else

Return 𝑃𝑡(𝑐) for the current leaf node.

end
end

Algorithm 1: Overview of the process of growing decision

trees in the random forest framework.

and height, and then randomly sample (𝑥1, 𝑦1) and (𝑥2, 𝑦2)
from a uniform distribution 𝑈([0, 1]). These coordinates

specify two diagonally opposite vertices of a rectangular re-

gion. Such regions could correspond to small areas of the

image (e.g. the purple bounding boxes in Fig.3(b)) or even

the complete image. This allows our method to capture both

global and local information in the image.

In our approach, each sampled image region is repre-

sented by a histogram of visual descriptors. For a pair of

regions, the feature representation is formed by applying

histogram operations (e.g. concatenation, intersection, etc.)

to the histograms obtained from both regions. Furthermore,

the features are augmented with the decision value w𝑇 f
(described in Sec.4.3) of this image from its parent node

(indicated by the dashed red lines in Fig.3(b)). Therefore,

our feature representation combines the information of all

upstream tree nodes that the corresponding image has de-

scended from. We refer to this idea as “nesting”. Using

feature sampling and nesting, we obtain a candidate set of

features, f ∈ ℝ
𝑛, corresponding to a candidate image re-

gion of the current node.

Implementation details. Our method is flexible to use

many different visual descriptors. In this work, we densely

extract SIFT [14] descriptors on each image with a spacing

of four pixels. The scales of the grids to extract descrip-

tors are 8, 12, 16, 24, and 30. Using k-means clustering,

we construct a vocabulary of codewords1. Then, we use

Locality-constrained Linear Coding [20] to assign the de-

scriptors to codewords. A bag-of-words histogram repre-

sentation is used if the area of the patch is smaller than 0.2,

while a 2-level or 3-level spatial pyramid is used if the area

is between 0.2 and 0.8 or larger than 0.8 respectively.

During sampling (step i of Algorithm 1), we consider

four settings of image patches: a single image patch and

three types of pairwise interactions (concatenation, inter-

1A dictionary size of 1024, 256, 256 is used for PASCAL action [7],

PPMI [22], and Caltech-UCSD Birds [21] datasets respectively.

section, and absolute of difference of the two histograms).

We sample 25 and 50 image regions (or pairs of regions)

in the root node and the first level nodes respectively, and

sample 100 regions (or pairs of regions) in all other nodes.

Sampling a smaller number of image patches in the root can

reduce the correlation between the resulting trees.

4.3. Learning the Splits

In this section, we describe the process of learning the

binary splits of the data using SVM (step ii in Algorithm 1).

This is achieved in two steps: (1) Randomly assigning all

examples from each class to a binary label; (2) Using SVM

to learn a binary split of the data.

Assume that we have 𝐶 classes of images at a given

node. We uniformly sample 𝐶 binary variables, b, and as-

sign all examples of a particular class 𝑐𝑖 a class label of 𝑏𝑖.
As each node performs a binary split of the data, this al-

lows us to learn a simple binary SVM at each node. This

improves the scalability of our method to a large number of

classes and results in well-balanced trees. Using the feature

representation f of an image region (or pairs of regions) as

described in Sec.4.2, we find a binary split of the data:

{
w𝑇 f ≤ 0, go to left child

otherwise, go to right child

where w is the set of weights learned from a linear SVM.

We evaluate each binary split that corresponds to an im-

age region or pairs of regions with the information gain cri-

teria [1], which is computed from the complete training im-

ages that fall at the current tree node. The splits that maxi-

mize the information gain are selected and the splitting pro-

cess (step iii in Algorithm 1) is repeated with the new splits

of the data. The tree splitting stops if a pre-specified max-

imum tree depth has been reached, or the information gain

of the current node is larger than a threshold, or the number

of samples in the current node is small.

4.4. Generalization Error of Random Forests

In [3], it has been shown that an upper bound for the gen-

eralization error of a random forest is given by 𝜌(1−𝑠2)/𝑠2,

where 𝑠 is the strength of the decision trees in the forest, and

𝜌 is the correlation between the trees. Therefore, the gener-

alization error of a random forest can be reduced by making

the decision trees stronger or reducing the correlation be-

tween the trees.

In our approach, we learn discriminative SVM classi-

fiers for the tree nodes. Therefore, compared to the tradi-

tional random forests where the tree nodes are weak clas-

sifiers of randomly generated feature weights [1], our de-

cision trees are much stronger. Furthermore, since we are

considering an extremely dense feature space, each deci-

sion tree only considers a relatively small subset of image
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Method Phoning
Playing

Reading
Riding Riding

Running
Taking Using

Walking Overall
instrument bike horse photo computer

CVC-BASE 56.2 56.5 34.7 75.1 83.6 86.5 25.4 60.0 69.2 60.8

CVC-SEL 49.8 52.8 34.3 74.2 85.5 85.1 24.9 64.1 72.5 60.4

SURREY-KDA 52.6 53.5 35.9 81.0 89.3 86.5 32.8 59.2 68.6 62.2

UCLEAR-DOSP 47.0 57.8 26.9 78.8 89.7 87.3 32.5 60.0 70.1 61.1

UMCO-KSVM 53.5 43.0 32.0 67.9 68.8 83.0 34.1 45.9 60.4 54.3

Our Method 45.0 57.4 41.5 81.8 90.5 89.5 37.9 65.0 72.7 64.6
Table 1. Comparison of the average precision (%) of our method with the winners of PASCAL VOC2010 action classification challenge [7].

Each row shows the results obtained from one method. The best results are highlighted with bold fonts.

patches. This means there is little correlation between the

trees. Therefore, our random forest with discriminative de-

cision trees algorithm can achieve very good performance

on fine-grained image classification, where exploring fine

image statistics discriminatively is important. In Sec.5.4,

we show the strength and correlation of different settings of

random forests with respect to the number of decision trees,

which justifies the above arguments. Please refer to [3] for

details about how to compute the strength and correlation

values for a random forest.

5. Experiments
In this section, we evaluate our algorithm on three fine-

grained image datasets: the action classification dataset

in PASCAL VOC2010 [7] (Sec.5.1), actions of people-

playing-musical-instrument (PPMI) [22] (Sec.5.2), and

a subordinate object categorization dataset of 200 bird

species [21] (Sec.5.3). Experimental results show that our

algorithm outperforms state-of-the-art methods on these

datasets. We also evaluate the strength and correlation of the

decision trees in our method, and compare the result with

the other settings of random forests to show why our method

can lead to better classification performance (Sec.5.4).

5.1. PASCAL Action Classification

The most recent PASCAL VOC challenge [7] incorpo-

rated the task of recognizing actions in still images. The

images describe nine common human activities: “Phoning”,

“Playing a musical instrument”, “Reading”, “Riding a bicy-

cle or motorcycle”, “Riding a horse”, “Running”, “Taking

a photograph”, “Using a computer”, and “Walking”. Each

person that we need to classify is indicated by a bounding

box and is annotated with one of the nine actions they are

performing. There are 40∼90 training/validation images

and a similar number of testing images for each class.

As in [5], we obtain a foreground image for each per-

son by extending the bounding box of the person to contain

1.5× the original size of the bounding box, and resizing it

such that the larger dimension is 300 pixels. We also resize

the original image accordingly. Therefore for each person,

we have a “person image” as well as a “background image”.
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Figure 4. Heat maps that show distributions of frequency that an

image patch is selected in our method. The heat maps are obtained

by aggregating image regions of all the tree nodes in the random

forest weighted by the probability of the corresponding class. Red

indicates high frequency and blue indicates low frequency.

We only sample regions from the foreground and concate-

nate the features with a 2-level spatial pyramid of the back-

ground. We use 100 decision trees in our random forest.

We compare our algorithm with the methods on PAS-

CAL challenge [7] that achieve the best average precision.

The results are shown in Tbl.1. Our method outperforms

the others in terms of mean average precision, and achieves

the best result on seven of the nine actions. Note that we

achieved this accuracy based on only grayscale SIFT de-

scriptors, without using any other features or contextual in-

formation like object detectors.

Fig.4 shows the frequency of an image patch being se-
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Method BoW
Grouplet SPM LLC

Ours
[22] [13] [20]

mAP (%) 22.7 36.7 39.1 41.8 47.0
Table 2. Mean Average Precision (% mAP) on the 24-class classifi-

cation problem of the PPMI dataset. The best result is highlighted

with bold fonts. The grouplet uses one SIFT scale, while all the

other methods use multiple SIFT scales described in Sec.4.2.

Instrument BoW
Grouplet SPM LLC

Ours
[22] [13] [20]

Bassoon 73.6 78.5 84.6 85.0 86.2
Erhu 82.2 87.6 88.0 89.5 89.8
Flute 86.3 95.7 95.3 97.3 98.6

FrenchHorn 79.0 84.0 93.2 93.6 97.3
Guitar 85.1 87.7 93.7 92.4 93.0

Saxophone 84.4 87.7 89.5 88.2 92.4
Violin 80.6 93.0 93.4 96.3 95.7

Trumpet 69.3 76.3 82.5 86.7 90.0
Cello 77.3 84.6 85.7 82.3 86.7

Clarinet 70.5 82.3 82.7 84.8 90.4
Harp 75.0 87.1 92.1 93.9 92.8

Recorder 73.0 76.5 78.0 79.1 92.8
Average 78.0 85.1 88.2 89.2 92.1

Table 3. Comparison of mean Average Precision (% mAP) of our

method and the baseline results on the PPMI binary classification

tasks of people playing and holding different musical instruments.

Each column shows the results obtained from one method. The

best results are highlighted with bold fonts.

lected by our method. For each activity, the figure is ob-

tained by considering the features selected in the tree nodes

weighted by the proportion of samples of this activity in this

node. From the results, we can clearly see the difference of

distributions for different activities. For example, the im-

age patches corresponding to human-object interactions are

usually highlighted, such as the patches of bikes and books.

We can also see that the image patches corresponding to

background are not frequently selected. This demonstrates

our algorithm’s ability to deal with background clutter.

5.2. People-Playing-Musical-Instrument (PPMI)

The people-playing-musical-instrument (PPMI) data set

is introduced in [22]. This data set puts emphasis on under-

standing subtle interactions between humans and objects.

There are twelve musical instruments; for each instrument

there are images of people playing the instrument and hold-

ing the instrument but not playing it. We evaluate the per-

formance of our method with 100 decision trees on the 24-

class classification problem. We compare our method with

many baseline results2. Tbl.2 shows that we significantly

2The baseline results are available from the dataset website

http://ai.stanford.edu/∼bangpeng/ppmi.

(a) flute (b) guitar (c) violin

Figure 5. (a) Heat map of the dominant regions of interest selected

by our method for playing flute on images of playing flute (top

row) and holding a flute without playing it (bottom row). (b,c)

shows similar images for guitar and violin, respectively. Refer to

Fig.4 for how the heat maps are obtained.
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Figure 6. Heat map for “playing trumpet” class with the weighted

average area of selected image regions for each tree depth.

outperform the baseline results.

Tbl.3 shows the result of our method on the 12 binary

classification tasks where each task involves distinguishing

the activities of playing and not playing for the same instru-

ment. Despite a high baseline of 89.2% mAP, our method

outperforms by 2.9% to achieve a result of 92.1% overall.

Furthermore, we outperform the baseline methods on nine

of the twelve binary classification tasks. In Fig.5, we vi-

sualize the heat map of the features learned for this task.

We observe that they show semantically meaningful loca-

tions of where we would expect the discriminative regions

of people playing different instruments to occur. For exam-

ple, for flute, the region around the face provides important

information while for guitar, the region to the left of the

torso provides more discriminative information. It is inter-

esting to note that despite the randomization and the algo-

rithm having no prior information, it is able to locate the

region of interest reliably.

Furthermore, we also demonstrate that the method learns

a coarse-to-fine region of interest for identification. This is

similar to the human visual system which is believed to ana-

lyze raw input in order from low to high spatial frequencies

or from large global shapes to smaller local ones [4]. Fig.6

shows the heat map of the area selected by our classifier

as we consider different depths of the decision tree. We ob-
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Figure 7. Each row represents visualizations for a

single class of birds (from top to bottom): boat tailed

grackle, brewer sparrow, and golden winged war-

bler. For each class, we visualize: (a) Heat map

for the given class as described in Fig.4; (b,c) Two

example images of the corresponding class and the

distribution of image patches selected for the spe-

cific image. The heat maps are obtained by descend-

ing each tree for the corresponding image and only

considering the image regions of the nodes that this

image falls in.

Method MKL [2] LLC [20] Ours

Accuracy 19.0% 18.0% 19.2%
Table 4. Comparison of the mean classification accuracy of our

method and the baseline results on the Caltech-UCSD Birds 200

dataset. The best performance is indicated with bold fonts.

serve that our random forest follows a similar coarse-to-fine

structure. The average area of the patches selected reduces

as the tree depth increases. This shows that the classifier

first starts with more global features or high frequency fea-

tures to discriminate between multiple classes, and finally

zeros in on the specific discriminative regions for some par-

ticular classes.

5.3. Caltech-UCSD Birds 200 (CUB-200)

The Caltech-UCSD Birds (CUB-200) dataset contains

6,033 annotated images of 200 different bird species [21].

This dataset has been designed for subordinate image cat-

egorization. It is a very challenging dataset as the dif-

ferent species are very closely related and have similar

shape/color. There are around 30 images per class with 15

for training and the remaining for testing. The test-train

splits are fixed (provided on the website).

The images are cropped to the provided bounding box

annotations. These regions are resized such that the smaller

image dimension is 150 pixels. As color provides impor-

tant discriminative information, we extract C-SIFT descrip-

tors [19] in the same way described in Sec.4.2. We use

300 decision trees in our random forest. Tbl.4 compares

the performance of our algorithm against the LLC base-

line and the state-of-the-art result (multiple kernel learning

(MKL) [2]) on this dataset. Our method outperforms LLC

and achieves comparable performance with the MKL ap-

proach. We note that [2] uses multiple features e.g. ge-

ometric blur, gray/color SIFT, full image color histograms

etc. It is expected that including these features can further

improve the performance of our method. Furthermore, we

show in Fig.7 that our method is able to capture the intra-

class pose variations by focusing on different image regions

for different images.

5.4. Strength and Correlation of Decision Trees

We compare our method against two control settings of

random forests on the PASCAL action dataset [7].

∙ Dense feature, weak classifier: For each image region

or pairs of regions sampled from our dense sampling

space, replace the SVM classifier in our method with

a weak classifier as in the conventional decision tree

learning approach [1], i.e. randomly generating 100

sets of feature weights and select the best one.

∙ SPM feature, strong classifier: Use SVM classifiers to

split the tree nodes as in our method, but the image re-

gions are limited to that from a 4-level spatial pyramid.

Note that all other settings of the above two approaches

remain unchanged as compared to our method (as described

in Sec.4). Fig.8 shows that on this dataset, a set of strong

classifiers with relatively high correlation can lead to better

performance than a set of weak classifiers with low correla-

tion. We can see that the performance of random forests

can be significantly improved by using strong classifiers

in the nodes of decision trees. Compared to the random

forests that only sample spatial pyramid regions, using the

dense sampling space obtains stronger trees without signif-

icantly increasing the correlation between different trees,

thereby improving the classification performance. Further-

more, the performance of the random forests using discrim-

inative node classifiers converges with a small number of

decision trees, indicating that our method is more efficient

than the conventional random forest approach. In our ex-

periment, the two settings and our method need a similar

amount of time to train a single decision tree.

Additionally, we show the effectiveness of random bi-

nary assignment of class labels (Sec.4.3) when we train

classifiers for each tree node. Here we ignore this step and
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(a) Mean average precision (mAP).
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(b) Strength of the decision trees.
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(c) Correlation between the decision trees.

Figure 8. (a) We compare the classification performance (mAP) obtained by our method “dense feature, strong classifier” with two control

settings. Please refer to Sec.5.4 for details of these settings. (b,c) We also compare the strength of the decision trees learned by these

approaches and correlation between these trees (Sec. 4.4), which are highly related to the generalization error of random forests.

train a one-vs-all multi-class SVM for each sampled image

region or pairs of regions. In this case 𝐶 sets of weights are

obtained when there are 𝐶 classes of images at the current

node. The best set of weights is selected using information

gain as before. This setting leads to deeper and significantly

unbalanced trees, and the performance decreases to 58.1%

with 100 trees. Furthermore, it is highly inefficient as it

does not scale well with increasing number of classes.

6. Conclusion
In this work, we propose a random forest with discrimi-

native decision trees algorithm to explore a dense sampling

space for fine-grained image categorization. Experimental

results on subordinate classification and activity classifica-

tion show that our method achieves state-of-the-art perfor-

mance and discovers much semantically meaningful infor-

mation. The future work is to jointly train all the informa-

tion that is obtained from the decision trees.
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