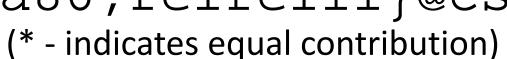


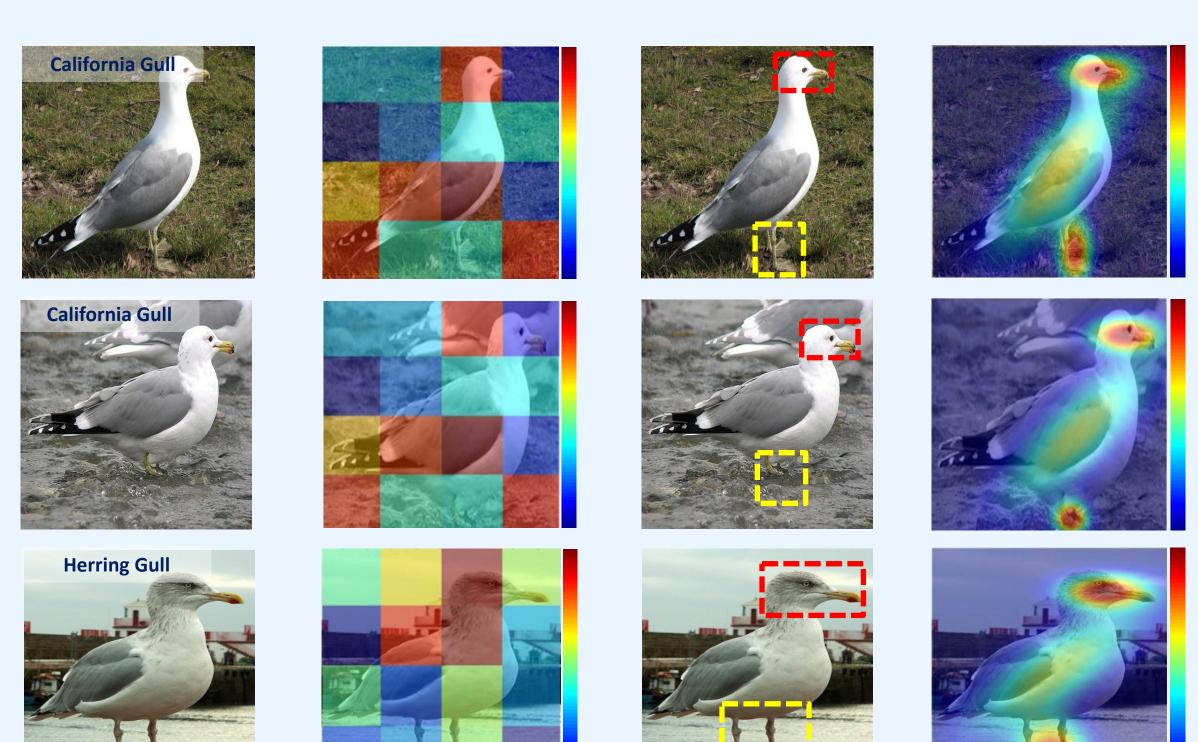
Computer Science Dept.

Combining Randomization and Discrimination for Fine-Grained Image Categorization

Bangpeng Yao*, Aditya Khosla* and Li Fei-Fei

{bangpeng,aditya86,feifeili}@cs.stanford.edu





Our Work

original

image

 Objective: Finding image regions that contain discriminative **information** for fine-grained image categorization.

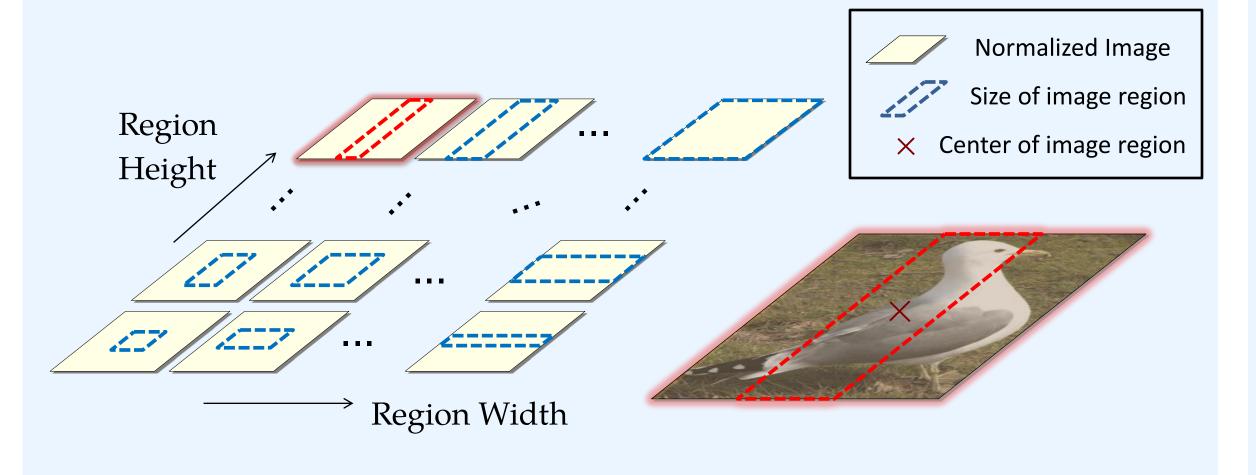
traditional

method (SPM)

- Approach: A model combining randomization and discrimination
- Dense feature representation;
- Random forest with discriminative decision trees classifier

Dense Feature Representation

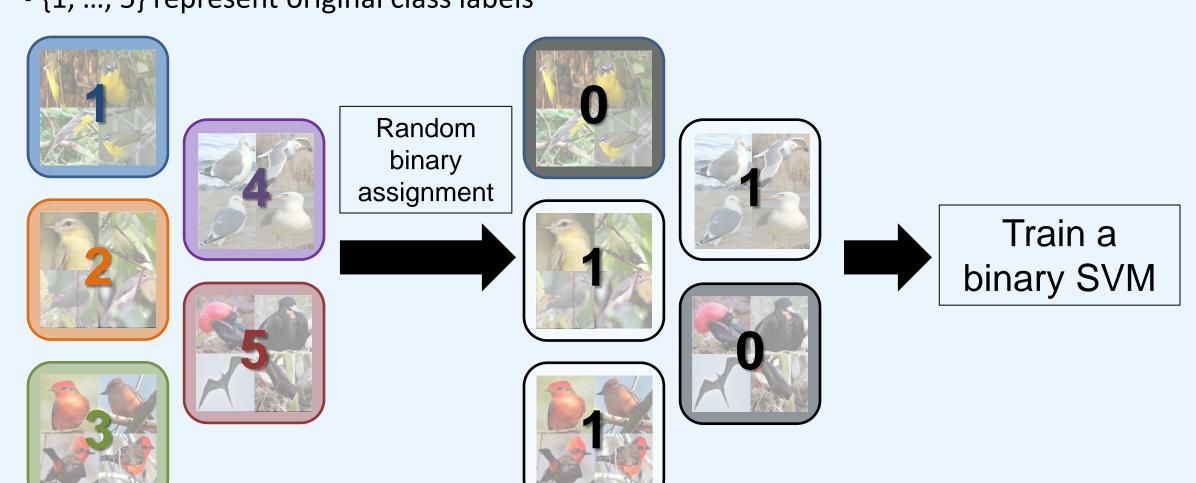
 Our representation consists of (pairs of) image regions of arbitrary sizes and at arbitrary locations:



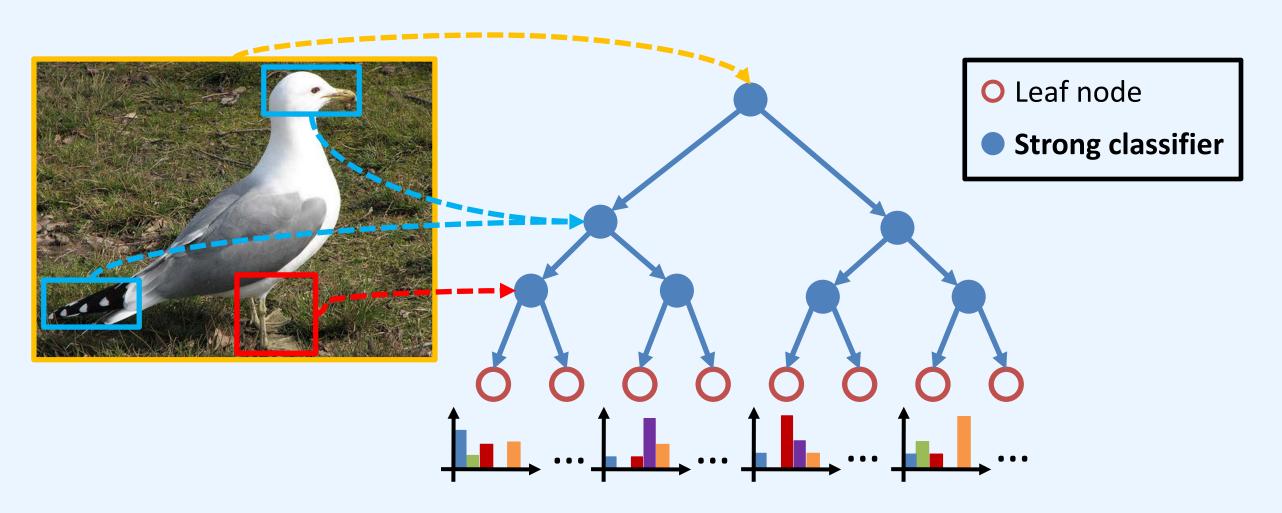
Training a Strong Classifier

• {1, ..., 5} represent original class labels

Our Method



Random forest with Discriminative Decision Trees



- Learning our random forest classifier:
- foreach tree t do
- Obtain a random set of training examples \mathcal{D} ;
- -SplitNode (\mathcal{D});
- if needs to split then
- i. Randomly sample the candidate (pairs of) image regions; ii. Select the best region to split \mathcal{D} into two sets \mathcal{D}_1 and \mathcal{D}_2 ;
- iii. SplitNode (\mathcal{D}_1) and SplitNode (\mathcal{D}_2).
- Return $P_t(c)$ for the current leaf node.

 Select best sample using information gain criterion:

$$\Delta E = -\sum_{i} \frac{|\mathcal{D}_{i}|}{|\mathcal{D}|} E(\mathcal{D}_{i})$$

- $\mathcal{D} = \{ \cup_i \mathcal{D}_i \}$: set of all training examples
- $E(\mathcal{D}_i)$: entropy of training examples \mathcal{D}_i

Generalization Error of RF

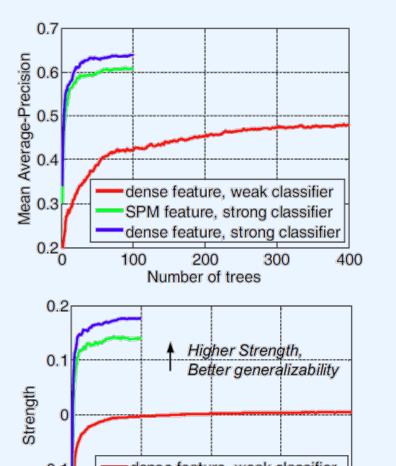
- Generalization error of a random forest:
 - ρ : correlation between decision trees
- Dense feature space $\longrightarrow \rho$ decreases

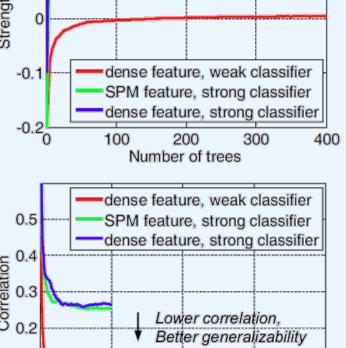
S: strength of the decision trees

Strong classifiers

Better generalization

Control Experiments





Experiment

PASCAL Action Dataset

9-class classification of human actions (%mAP)

People-Playing-Musical-Instruments (PPMI)

BoW

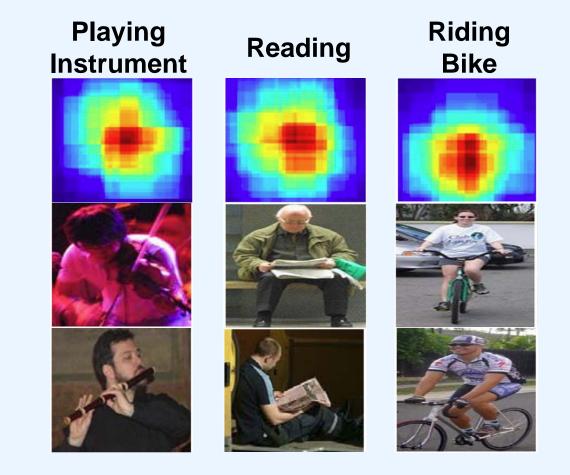
Method	Phoning	Playing	Reading	Riding	Riding	Running	Taking	Using	Walking	Overall
		instrument		bike	horse		photo	computer		
CVC-BASE	56.2	56.5	34.7	75.1	83.6	86.5	25.4	60.0	69.2	60.8
CVC-SEL	49.8	52.8	34.3	74.2	85.5	85.1	24.9	64.1	72.5	60.4
SURREY-KDA	52.6	53.5	35.9	81.0	89.3	86.5	32.8	59.2	68.6	62.2
UCLEAR-DOSP	47.0	57.8	26.9	78.8	89.7	87.3	32.5	60.0	70.1	61.1
UMCO-KSVM	53.5	43.0	32.0	67.9	68.8	83.0	34.1	45.9	60.4	54.3
Our Method	45.0	57.4	41.5	81.8	90.5	89.5	37.9	65.0	72.7	64.6

Grouplet

our intuition: what

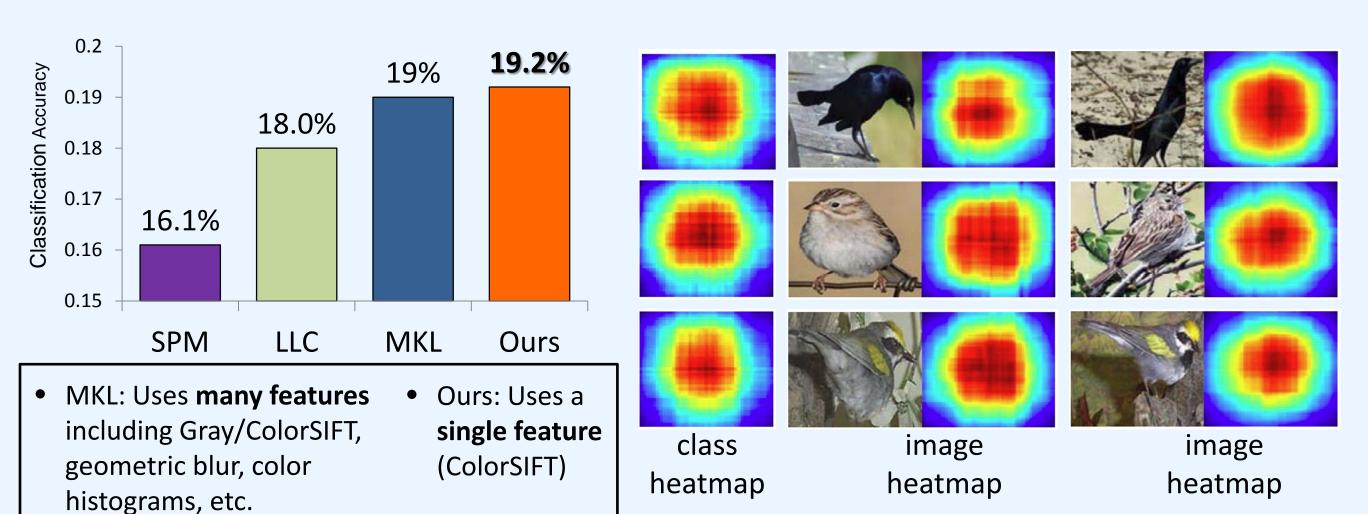
humans do

our goal



Caltech-UCSD Birds 200

200-class classification of 200 bird species from North America



Coarse-to-fine Learning

Features for image regions:

Grayscale SIFT descriptors for

Dense SIFT sampling at multiple

PPMI and PASCAL Action

ColorSIFT descriptors for

Caltech-UCSD Birds-200

scales (8, 12, 16, 24, 30)

Coding (LLC) Features

Classification of test example:

 c^* : class label of test example

 $P_{t.l_{\star}}(c)$: probability of test example

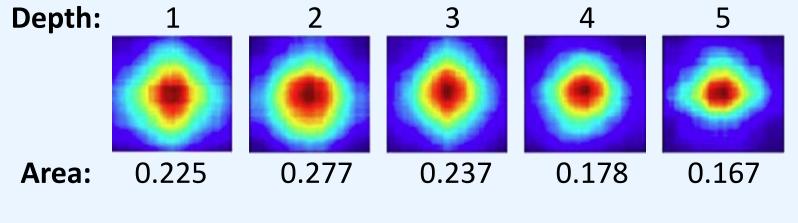
T: number of trees

 $c^* = \arg \max_{c} \frac{1}{T} \sum_{t=1}^{T} P_{t,l_t}(c)$

belonging to class c for tree t

Locality-constrained Linear

- Our method automatically learns a coarse-to-fine region of interest (e.g. shown below for 'playing trumpet' class)
- This is similar to the **human visual system** which is believed to analyze raw input from low to high spatial frequencies or from large global shapes to smaller local ones

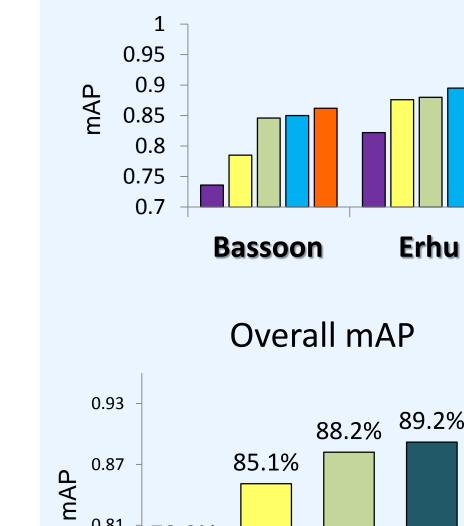


Future Work:

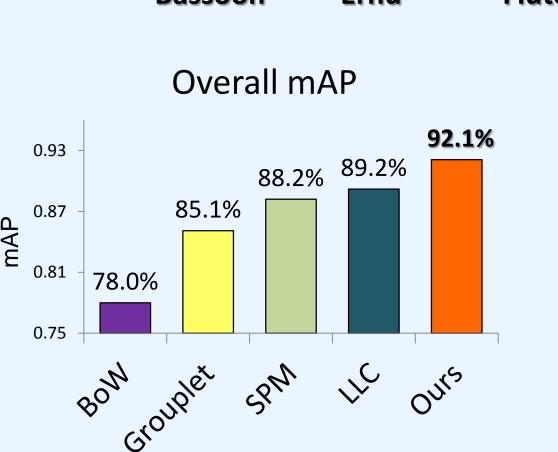
- Improve speed by exploiting the inherent parallel nature of random forests using GPUs Strong classifiers with analytical solution (e.g. LDA)
- Incorporate multiple features

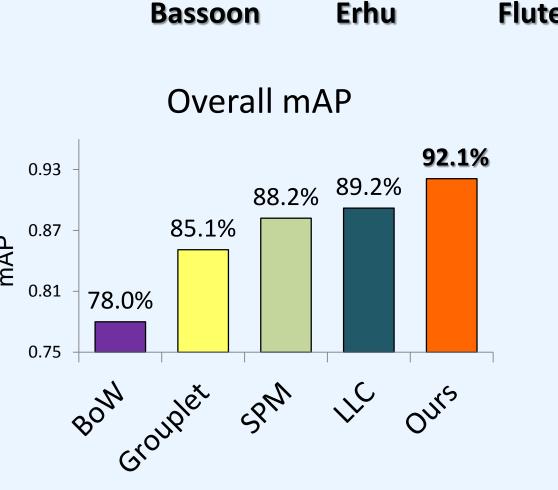
Reference

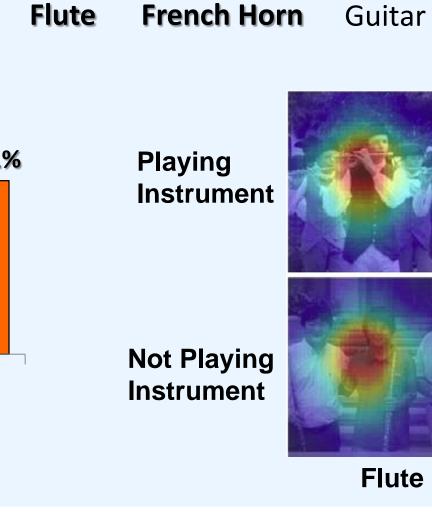
B. Yao*, A. Khosla* and L. Fei-Fei. "Combining Randomization and Discrimination for Fine-**Grained Image Categorization.**" *IEEE* Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

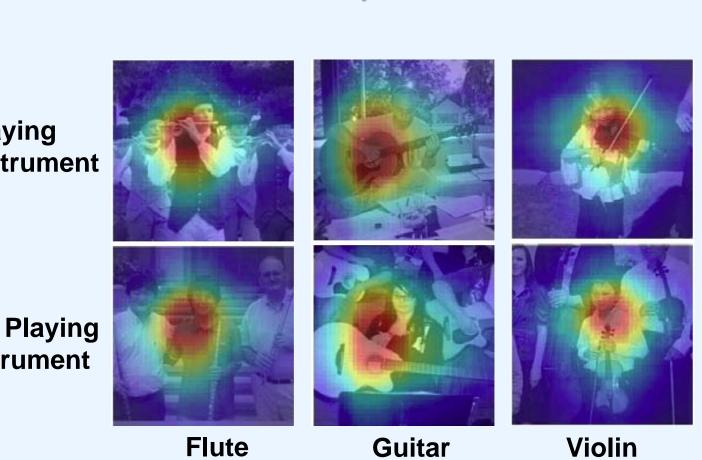


PPMI Binary Classification









SPM

