
Motivation 
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Randomization and Discrimination for Fine-
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Our Work 

• Approach: A model combining randomization and discrimination 
 Dense feature representation; 
 Random forest with discriminative decision trees classifier 
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Dense Feature Representation 
• Our representation consists of (pairs of) image regions of 
arbitrary sizes and at arbitrary locations: 

Experiment 

People-Playing-Musical-Instruments (PPMI) 

PASCAL Action Dataset 

Future Work: 
•Improve speed by exploiting the inherent 
parallel nature of random forests using GPUs 
•Strong classifiers with analytical solution  
(e.g. LDA) 
• Incorporate multiple features 
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• Objective: Finding image regions that contain discriminative 
information for fine-grained image categorization. 

Caltech-UCSD Birds 200 
• 200-class classification of 200 bird species from North America 

(* - indicates equal contribution) 
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• MKL: Uses many features 
including Gray/ColorSIFT, 
geometric blur, color 
histograms, etc. 
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Random forest with Discriminative Decision Trees 

Leaf node 

Strong classifier 

Coarse-to-fine Learning 

• 9-class classification of human actions (%mAP) 
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PPMI Binary Classification 

Generalization Error of RF 

Training a Strong Classifier 
• {1, …, 5} represent original class labels 
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… … … … Control Experiments 

22.7% 

36.7% 39.1% 
41.8% 

47.0% 

0.2

0.25

0.3

0.35

0.4

0.45

0.5

BoW Grouplet SPM LLC Ours

m
A

P
 

PPMI 24 –Class Classification 
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Overall mAP 

• Ours: Uses a 
single feature 
(ColorSIFT) 

85.7% 

0.0% 

66.7% 

45.5% 

31.8% 

20.0% 

correctly 
classified 

wrongly 
classified 

Class Accuracy 

• Learning our random forest classifier: 

• Select best sample using information  
    gain criterion: 

Features for image regions: 
• Grayscale SIFT descriptors for 

PPMI and PASCAL Action 
• ColorSIFT descriptors for  

Caltech-UCSD Birds-200 
• Dense SIFT sampling at multiple 

scales (8, 12, 16, 24, 30) 
• Locality-constrained Linear 

Coding (LLC) Features  

: set of all training examples 

: entropy of training examples  

• Classification of test example: 

: number of trees 

: class label of test example 

: probability of test example  
  belonging to class c for tree t 

• Generalization error of a random forest: 

: correlation between decision trees 

: strength of the decision trees 

• Dense feature space                decreases 
• Strong classifiers                       increases 

Better generalization 

Depth: 

Area: 

• Our method automatically learns a coarse-to-fine 
region of interest (e.g. shown below for ‘playing 
trumpet’ class) 

• This is similar to the human visual system which is 
believed to analyze raw input from low to high spatial 
frequencies or from large global shapes to smaller local 
ones 
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