

Overview

- Most deep learning methods have been to applied to only *single* modalities (single input source).
- A straightforward approach to multimodal data (multiple input sources) is ineffective.
- We propose novel deep architectures for learning over multimodal data that effectively learn to relate audio and video data.
- Data: Video recordings of subjects saying digits and letters
- Task: Audio-visual speech classification
- Key Challenges:
 - **Cross Modality Learning**: If our task is visual-only recognition (lipreading), can we learn better video features by using audio to adapt the features?
 - **Multimodal Feature Learning**: Designing multimodal features is difficult; can we learn multimodal features that integrate audio and visual information?

Multimodal Deep Network Architectures

Video-only Deep Autoencoder (Cross-modality Learning)

- Learns video representations that try to reconstruct audio (from audio-video pairs of examples
- Since audio works well for speech recognition, this discovers good video representations for visual speech recognition (lip-reading)

Multimodal Deep Learning

Jiquan Ngiam¹, Aditya Khosla¹, Mingyu Kim¹, Juhan Nam¹, Honglak Lee² & Andrew Ng¹

¹Stanford University, ²University of Michigan, Ann Arbor

	Feature Learning	Supervised Learning	Testin
	Audio + Video	Video	Video
Feature Rep	resentation	Accuracy	
Baseline "Raw	" Video Input	58.5%	
Video-Only (Single Modal	Learning ity Learning)	65.4% ± 0.6%	
Our Fea (Cross Modali	atures ty Learning)	68.7% ± 1.8%	
Discrete Cosine	Transform [3]	64%	
Active Appeara	nce Model [4]	75.7%	
Active Appeara	nce Model [5]	68.7%	
Fused Holistic	c + Patch [6]	77.1%	
Visemic A	AM [7]	83%	
	rformance (10-14/	av Classification)	

We also see an improvement when using audio as a cue on the CUAVE dataset.

	Feature Learning	Supervised Lear	rning Testing	
	Audio + Video	Audio	Video	
	Audio + Video	Video	Audio	
Train / Test	Method		Accuracy	
Train Audio,	Raw Data + CCA		41.9%	
Test Video	Learned Features + CCA		57.3%	
Train Video, Test Audio	Raw Data + CCA		42.9%	
	Learned Features + CCA		91.7%	

- Use canonical correlation analysis (CCA) to learn a linear map that forms a shared representation between the audio and video modalities
- Learned features + CCA does surprisingly well to find a shared representation between audio and video

		Feature Learning	Supervised Learning	Testing			
		Audio + Video	Audio + Video	Audio + Video			
acy udio)							
%							
%	 Fusing 	audio features	and bimodal featu	ures can			
: 1.4%	improv	e performance over audio-only features,					
0.8%	especia noise.	especially when the audio is degraded with noise.					
1.2%							

Simulating th

- The McGurk e a visual /ga/
- We collected
- Our model re

Audio + '

- Visual /ga/ Visual /ba

	reature Lear	ning Supervised Lea	inning resung	
ting the McGurk E	Audio + Vid	eo Audio + Vide	eo Audio + Video	
e McGurk effect is an audio-vis risual /ga/ with an audio /ba/ i e collected data from voluntee or model reflects the same pero	sual perception s perceived as / rs saying /ga/, / ception phenon	phenomenon when <i>da/</i> by most subject <i>/ba/</i> an <i>d /da/</i> for a the non.	re cts. three-way classi	fication task.
Audia - Visual Satting	Model Predictions			
Audio + visual Setting	/ga/	/ba/	/da/	
Visual /ga/ + Audio /ga/	82.6%	2.2%	15.2%	
Visual /ba/ + Audio /ba/	4.4%	89.1%	6.5%	
Visual /ga/ + Audio /ba/	28.3%	13.0%	58.7%	

Visualizing Learned Features

• We learn video features (e.g. showing of teeth, capturing mouth motion) that can help determine the place of articulation.

• The deep hidden units also learn to relate video features to audio features.

http://ai.stanford.edu/~jngiam/