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• A shallow RBM tends to learn hidden units that are strongly connected to  
either modality and few that connect across 
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 Overview 
  

• Most deep learning methods have been to applied to only single modalities (single 
input source).   

• A straightforward approach to multimodal data (multiple input sources) is ineffective.  
• We propose novel deep architectures for learning over multimodal data that effectively 

learn to relate audio and video data. 
 
• Data: Video recordings of subjects saying digits and letters  
• Task: Audio-visual speech classification  
  

• Key Challenges: 

• Cross Modality Learning: If our task is visual-only recognition (lipreading),  
can we learn better video features by using audio to adapt the features? 

• Multimodal Feature Learning: Designing multimodal features is difficult;  
can we learn multimodal features that integrate audio and visual information? 
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 Multimodal Deep Network Architectures 
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 Visual Speech Recognition (Lip-reading) 
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 Multimodal Fusion 
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 Shared Representation Learning                    
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Feature Representation Accuracy 
Baseline “Raw” Video Input 46.2% 

Video-Only Learning 
(Single Modality Learning) 54.2% ± 3.3% 

Our Features 
(Cross Modality Learning) 64.4% ± 2.4% 

   
Multiscale Spatial Analysis [1] 44.6% 

Local Binary Pattern [2] 58.9% 

Feature Representation Accuracy 
Baseline “Raw” Video Input 58.5% 

Video-Only Learning 
(Single Modality Learning) 65.4% ± 0.6% 

Our Features 
(Cross Modality Learning) 68.7% ± 1.8% 

Discrete Cosine Transform [3] 64% 
Active Appearance Model [4] 75.7% 
Active Appearance Model [5]  68.7% 

Fused Holistic + Patch [6] 77.1% 
Visemic AAM [7] 83% 

Feature Representation Accuracy  
(Clean Audio) 

Accuracy 
(Noisy Audio) 

Learned Audio Features (RBM) 95.8 % 79.6 % 
Learned Video Features 68.7 % 68.7 % 

Bimodal Deep Autoencoder 90.0 % 77.6 %  ± 1.4% 
Learned Video Features +  

Audio Features 87.0 % 76.6 % ± 0.8% 

Bimodal Features +  
Audio Features 94.4 % 82.2 % ± 1.2% 

 Simulating the McGurk Effect 
  

 
• The McGurk effect is an audio-visual perception phenomenon where  

a visual /ga/ with an audio /ba/ is perceived as /da/ by most subjects.  
• We collected data from volunteers saying /ga/, /ba/ and /da/ for a three-way classification task. 
• Our model reflects the same perception phenomenon. 
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 Visualizing Learned Features 
  

 
 
 

 
 

• We learn video features (e.g. showing of teeth, capturing mouth motion) that  
can help determine the place of articulation.  

• The deep hidden units also learn to relate video features to audio features. 
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Audio + Visual Setting 
Model Predictions 

/ga/ /ba/ /da/ 
Visual /ga/ + Audio /ga/ 82.6% 2.2% 15.2% 
Visual /ba/ + Audio /ba/ 4.4% 89.1% 6.5% 
Visual /ga/ + Audio /ba/ 28.3% 13.0% 58.7% 
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• Trained with “hidden data” – reconstruct 
both outputs given only one (e.g. video-only) 
input: 1/3 of data requires the model to 
reconstruct both audio and video, given only 
video input; 1/3 with only audio input; 1/3 
with both inputs 

AVLetters Performance (26-way Classification) 

CUAVE Performance (10-way Classification) 
By learning better video features using audio as a cue  
(video-only deep autoencoder), we are able to achieve 
performance superior to best published results on AVLetters. 
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Video Input Audio Input 

“Phonemes” “Visemes” 

Video-only Deep Autoencoder 
(Cross-modality Learning) 

Bimodal Deep Autoencoder 

Train / Test Method Accuracy 

Train Audio,  
Test Video 

Raw Data + CCA 41.9% 
Learned Features + CCA 57.3% 

Train Video,  
Test Audio 

Raw Data + CCA 42.9% 
Learned  Features + CCA 91.7% 

• Use canonical correlation analysis (CCA) to learn a 
linear map that forms a shared representation 
between the audio and video modalities 

• Learned features + CCA does surprisingly well to find a 
shared representation between audio and video 

We also see an improvement when using audio as a cue on 
the CUAVE dataset. 

 
 
• Fusing audio features and bimodal features can 

improve performance over audio-only features, 
especially when the audio is degraded with 
noise. 
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Audio Input 

Hidden Units 

... 
Video Input 

Weight matrix learned by a shallow RBM Feature Learning  Supervised Learning Testing 
Audio + Video Audio + Video Audio + Video 

Feature Learning  Supervised Learning Testing 
Audio + Video Audio Video 
Audio + Video Video Audio 

Feature Learning  Supervised Learning Testing 
Audio + Video Video Video 

Feature Learning  Supervised Learning Testing 
Audio + Video Audio + Video Audio + Video 

• Learns video representations that try to 
reconstruct audio (from audio-video pairs of 
examples) 

• Since audio works well for speech recognition, 
this discovers good video representations for 
visual speech recognition (lip-reading) 
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