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Abstract

Latent variables models have been widely applied in many problems in machine
learning and related fields such as computer vision and information retrieval.
However, the complexity of the latent space in such models is typically left as
a free design choice. A larger latent space results in a more expressive model,
but such models are prone to overfitting and are slower to perform inference with.
The goal of this paper is to regularize the complexity of the latent space and learn
which hidden states are really relevant for the prediction problem. To this end,
we propose regularization with a group norm such as `1-`2 to estimate parame-
ters of a Latent Structural SVM. Our experiments on digit recognition show that
our approach is indeed able to control the complexity of latent space, resulting in
significantly faster inference at test-time without any loss in accuracy of the learnt
model.

1 Introduction

Fully supervised algorithms are really the spoilt children of computer vision. We almost never have
complete supervision – there are always some variables relevant to the problem that not annotated
in our datasets. Latent variable models provide an ideal abstraction for such situations. They allow
for modelling of interaction between the observed data (e.g. image features) and latent or hidden
variables not observed in the training data (e.g. location of body parts). These hidden variables
may help explain correlations in the features, provide a low-dimensional embedding of the input,
or help with prediction. Training latent variable models, however, is notoriously problematic, since
it typically involves a difficult non-convex optimization problem. Common algorithms for solving
these problems, EM [5] and CCCP [8, 16, 18], are known to be highly sensitive to initialization and
prone to getting stuck in a poor local optimum. Recently, Bengio et al. [2] and Kumar et al. [10]
have presented a curriculum learning scheme that trains latent variable models in an easy-to-difficult
manner, by initially pruning away difficult examples in the dataset.

Our goal is to study the modelling-optimization tradeoff in designing latent variable models for com-
puter vision problems. From a modelling perspective, we would like to design ever more complex
latent variables, e.g. capture location of parts, their scale, orientation, appearance. However, from an
optimization perspective, complex models are more difficult to train than simpler ones, more prone
to getting stuck in a bad local minima, resulting in poor generalization. In most existing models, the
complexity of the latent variable space is typically left as a free design choice that is hand-tuned.
Thus, the question we seek to answer is: Is there a principled way to learn the complexity of the
latent space in a latent variable model?
In this paper, we propose the use of structured sparsity inducing norms like `1-`2 to estimate the
parameters of a latent-variable model, thereby regularizing the complexity of the latent space. Struc-
tured sparsity inducing norms are generalization of the `1 norm and regularize solutions to be sparse
in a structured way. Specifically, group `1-`2 norm behaves like an `1 norm at a group level and
encourages groups of variables to be sparse. We divide the latent variable state space into different
groups, among which the group norm is induced. Since the group norm encourages group-sparsity,
this allows simultaneous parameter estimation as well as state selection. We apply our approach to
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the recently proposed latent structural SVM (LSSVM) [16]. Our results on digit recognition show
that our approach is indeed able to control the complexity of latent space, resulting in significantly
faster inference at test-time without any loss in accuracy of the learnt model.

2 Related Work

Most relevant to our work are algorithms for discovering latent structure in latent variable models
and other applications of structured sparsity inducing norms. These are both broad goals and cover
a vast amount of literature. We mention the works most directly relevant to our approach.

Latent variable models have been used to model observations in both generative and discriminative
settings. In the generative setting, the goal is to explain the data with a low-dimensional latent
structure. Mixture models like Gaussian Mixture Models (GMMs) and Hidden Markov Models
(HMMs) also have a long history in applications such as speech recognition [13].

More recently, a number of discriminative latent models such as Hidden Conditional Random Field
(HCRFs) [15], Latent SVMs [8] and Latent Structural SVMs (LSSVMs) [16] have been proposed.
These models have demonstrated success in a number of applications. They differ from generative
models in the sense that the ultimate goal is prediction not explanation of the data.

In both kinds of models, the parameter learning problem is non-convex and solved with techniques
like EM [5] and Concave-Convex Procedure (CCCP) [8, 16, 18] respectively. Note that for all the
models above, the latent variables and their state space are predefined and fixed for specific appli-
cations. Our approach, on the other hand, aims for parameter estimation as well as discovery of
meaningful latent variable states.

Related to this goal of discovery is the work of Chandrasekaran et al. [3], which attempts to identify
graphical model structure assuming that latent and observed variables are jointly Gaussian. Our
work is different in that we are interested in prediction via a sparse latent model and not identifica-
tion of such a model. Moreover, we make no Gaussian assumptions, which may be infeasible for
applications.

There is a fairly mature body of work on `1 regularization for sparse regression models [4, 7, 14].
Sparse coding with `1 regularization has been successfully used to solve many problems in com-
pressed sensing [6] and signal processing [12]. Yuan and Lin [17] introduced group-norm regu-
larization to allow parameter estimation as well as selection of certain groups of variables. More
recently, Bach [1] proposed general sparsity inducing structured norms. To the best of our knowl-
edge, this is the first work to use structured norms in the context of latent variable selection in
LSSVMs.

Section 3 revisits the LSSVM model and describes our proposed group-norm modification. Section
4 describes how parameter learning can be performed in this new model. Finally, our experiments on
digit recognition in Section 5 demonstrate that our approach is indeed able to control the complexity
of latent space, resulting in significantly faster inference at test-time without any loss in accuracy of
the learnt model.

3 Latent Structural SVM

Notation. For any positive integer n, let [n] be shorthand for the set {1, 2, . . . , n}. We denote
training data as D = {(xi, yi) | i ∈ [n]}, where xi ∈ X is the (input) observed feature-vector
and yi ∈ Y is the (possibly structured) output label for the ith sample. In addition, let hi ∈ H
denote the latent variable for the ith sample. For example, in handwritten digit recognition, xi can
be the original digit image, yi the true digit label and hi the (deformation) rotation angle that must
be corrected for before extracting features.

LSSVMs provide a linear prediction rule of the form fw(x) = argmax(y,h)∈Y×Hw · φ(x, y, h),
where φ(x, y, h) is the joint feature vector that encodes the relationship between the input, hidden
and output variables, and w is the model parameter vector. In digit recognition, this joint feature
vector can be the vector representation of the image x rotated by the angle corresponding to h.

The parameter vector w is learned by minimizing the (regularized) risk on the training dataset
D. A user-specified risk function ∆(yi, ŷi(w), ĥi(w)) measures the loss incurred for predicting
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(ŷi(w), ĥi(w)) for the ith sample. Yu and Joachims [16] minimized an upper-bound on the risk and
formulated the following optimization problem:

min
w,ξi≥0

Ω(w) +
C

n

n∑
i=1

ξi, (1)

s.t. max
hi∈H

w ·
(
φ(xi, yi, hi)− φ(xi, ŷi, ĥi)

)
≥ ∆(yi, ŷi, ĥi)− ξi,

∀(ŷi, ĥi) ∈ Y ×H, i ∈ [n].

where, the regularization term is Ω(w) = Ω`2(w) = 1
2‖w‖

2
2. We refer the reader to [16] for more

details about this formulation.

3.1 Inducing Group Norm for State Learning

LetH = {h1, · · · , hP } be the set of states which the latent variables can take. Such set of states, for
example, can be the set of all possible rotation angles in digit recognition. Our goal is to regularize
the complexity of the latent space and learn which hidden states are really relevant for the prediction
problem. To this end, we consider replacing the `2-norm regularizer (Ω`2(w)) in problem (1) with
an `1-`2-norm to learn meaningful latent variable states.

We start with describing a modification to the linear prediction rule that makes it easier to encode the
group structure of latent variables. Specifically, let the parameter w be partitioned into P groups.
Each group corresponds to the parameters of a latent variable state we want to learn. Let the pa-
rameter vector for the pth group be denoted by wp = [wp1 , · · · , wpnp

] and w = [w1, · · · , wP ] is the
concatenation of such vectors from each group. Thus, the modified linear prediction rule is given
by fw(x) = argmaxy∈Y, p∈[P ] w

p · φ(x, y, hp). Note that with appropriate zero-padding of the
features, this model is equivalent to the original linear model. With this representation, parameters
for each state are represented separately and thus group `1 regularization is possible over the state
space. We apply `1-`2-norm [17] in Ω(w) to perform this regularization.

Ω(w) = ΩG(w) =

P∑
p=1

λp‖wp‖2, (2)

where λp ≥ 0 is the regularization weight for group p. Within each group, `2-norm is used, which
does not promote sparsity. At the group level, this norm behaves like the `1-norm and thus induces
group sparsity, i.e. the parameters of some groups are encouraged to be set completely to zero.
Uninformative states will thus have sparse learned parameters. This gives us a way to select most
useful states for prediction and shrink the state space size. Note that this approach is not feasible
when the latent space is structured (trees, etc) and thus exponentially large.

Putting equation (2) into problem (1), we have the formulation for our state learning problem. The
next section gives a detailed description of our algorithm for solving this problem.

4 Alternating Coordinate and Subgradient Descent

Problem (1) can be rewritten as

min
w

L(w) = min
w

[
Ω(w) +

C

n

n∑
i=1

max {0, fi(w)− gi(w)}

]
, (3)

where fi(w) = max
(ŷi,ĥi)∈Y×H

[
w · φ(xi, ŷi, ĥi) + ∆(yi, ŷi, ĥi)

]
(4)

gi(w) = max
hi∈H

w · φ(xi, yi, hi) (5)

Yu and Joachims [16] used the Concave-convex procedure (CCCP) [18] to minimize L(w), while
Felzenszwalb et al. [8] used Stochastic Subgradient Descent (SSD). Our approach is similar to that
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Algorithm 1 Alternating coordinate and subgradient descent algorithm for parameter estimation
Input: D = {(x1, y1), · · · , (xn, yn)}, initialize w0, learning rate α0, ε

1: t← 0
2: repeat
3: for i = 1 to n do
4: g∗i ← maxhi∈Hwt · φ(xi, yi, hi), and obtain maximizer h∗i
5: fi ← max(ŷi,ĥi)∈Y×Hwt · φ(xi, ŷi, ĥi) + ∆(yi, ŷi, ĥi), and obtain maximizer (ŷ∗i , ĥ

∗
i )

6: if fi − g∗i ≤ 0 then
7: mi ← 0
8: else
9: mi ← φ(xi, ŷ

∗
i , ĥ
∗
i )− φ(xi, yi, h

∗
i )

10: end if
11: end for
12: ∇L∗ ← ∇Ω(wt) + C

n

∑n
i=1mi

13: wt+1 ← wt − αt∇L∗
14: t← t+ 1
15: until |(L(wt)− L(wt−1))/L(wt)| < ε

of Felzenszwalb et al. [8] – we minimize the following upper bound on L(w):

min
w,{hi}

L∗(w, {hi}) = min
w,{hi}

[
Ω(w) +

C

n

n∑
i=1

max {0, fi(w)− gi(w, hi)}

]
, (6)

where gi(w, hi) = w · φ(xi, yi, hi) (7)

Here L∗(w, {hi}) is the objective function with latent variables specified for the training data. Fix-
ing the latent variables makes L∗(w, {hi}) convex in w. Moreover, L(w) ≤ L∗(w, {hi}). In a
manner similar to Felzenszwalb et al. [8], we follow an alternating coordinate descent and subgradi-
ent descent scheme. At iteration t, we first fix wt and optimize L∗(w, {hi}) w.r.t. {hi}, i.e. compute
h∗i = argminhi

L∗(w, {hi}) = argmaxhi∈Hwt · φ(xi, yi, hi). Next, we fix {h∗i } and update wt

by taking a negative subgradient step −∇L∗(w, {h∗i }):

∇L∗(w, {h∗i }) = ∇ΩG(w) +
C

n

n∑
i=1

mi(w, h
∗
i ), (8)

where

∇ΩG(w) =

[
w1

1

‖w1‖2
, · · · ,

w1
n1

‖w1‖2
, · · · , wP1

‖wP ‖2
, · · · ,

wPnP

‖wP ‖2

]
, (9)

and

mi(w, h
∗
i ) =

{
0 if fi(w)− gi(w, h∗i ) ≤ 0

φ(xi, ŷ
∗
i , ĥ
∗
i )− φ(xi, yi, h

∗
i ) otherwise

(10)

where (ŷ∗i , ĥ
∗
i ) = argmax(ŷi,ĥi)∈Y×H fi(w) = argmax(ŷi,ĥi)∈Y×H

[
w · φ(xi, ŷi, ĥi) + ∆(yi, ŷi, ĥi)

]
.

Algorithm 1 describes the entire algorithm. Following [9], we choose learning rate at iteration t to
be αt = 1

ηt+1 , where ηt is the number of times the objective value L∗(w, {h∗i }) has increased from
one iteration to the next. This learning rate is effective in our experiment.

5 Experiment

We now demonstrate the efficacy of our approach in the context of handwritten digit recognition.
We follow closely the experimental setup of Kumar et al. [10], who proposed a LSSVM approach
for this problem. Each digit is represented as a vector x of grayscale values at pixels. The goal is
to predict the label of the digit, y ∈ Y = {0, 1, · · · , 9}. It is well-known that the accuracy can be
greatly improved by explicitly modeling the deformations present in each image. Kumar et al. [10]
model rotations as a hidden variable taking values in a set of 11 angles uniformly distributed from
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Figure 1: `2 norm of the parameter vectors for different angles over the 4 digit pairs.

Figure 2: Comparison of prediction accuracy vs. angle budget and running time vs. angle budget of
our approach and random selection. Curves for random selection are shown with standard deviation
over 10 trials. The standard deviation for runtime plots is very small. We can see that our approach
outperforms random selection of angles and is able to quickly achieve comparable accuracy as a
complete model (using all angles).

−60° to 60°. We show that using our approach, only a few rotations are needed to achieve the
recognition accuracy of using the full set of angles.

The joint feature vector φ(x, y, h) = [0y(m+1) ; θh(x) 1 ; 0(9−y)(m+1)], where θh(x) is the image
rotated by the angle specified by h, and then strung into a vector. To adapt our approach to this
framework, we let the angle h ∈ H = {h0, h1, · · · , h10}, where H is the set of 11 angles the digit
can rotate, and induce a group-norm over the parameters corresponding to each angle.

We choose MNIST dataset [11] and compute exactly the same features as in Kumar et al. [10]. We
use PCA to project each image to a 10 dimensional feature vector. We perform binary classification
on four difficult digit pairs (1-7, 2-7, 3-8, 8-9). We vary the number of angles chosen for each digit
from 1 to 11. For each angle budget, we select angles for a digit based on the magnitude of the
`2-norm of the parameter vector corresponding to that angle. Angles with higher magnitude will be
chosen first. As a baseline, we compare our approach to random angle selection. Given an angle
budget, we randomly select a subset of angles. Only this subset of angles is used with the LSSVM
trained model of Kumar et al. [10]. We perform 10 trials and take the average prediction accuracy
to report results. We use λp = 1 for each group in our approach. We tried different values of C, and
the prediction accuracies were fairly similar. We set C = 1.

Figure 1 shows the `2-norms of the parameter vectors for different angles in the 4 digit-pair exper-
iments. Figure 2 shows how the prediction accuracy and feature computation time varies as angle
budget increases. The feature computation time, which is proportional to the final prediction time,
includes rotation time and PCA projection time.

We note a few key observations. First, in our approach, the `2-norms of the weight vector for
many angles completely zero out, and only a subset of angles actually remain to contribute to final
prediction. In the end, the trained model essentially selects 5, 8, 7, and 9 angles in total for digit
pairs 1-7, 2-7, 3-8, and 8-9 respectively. This is a significant reduction from the hidden space of 22
angles per digit pair using the original model in Kumar et al. [10]. Second, our approach gives very
similar prediction accuracy compared to the original approach with a full set of angles. Third, due
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to the sparse solution of our model, using a maximum of 3, 4, 3, and 4 angles respectively for digit
pair 1-7, 2-7, 3-8, and 8-9, we can achieve prediction accuracy similar to that using the full set of
angles. However, using random selection, we need much higher number of angles per digit. Fourth,
The running time increases roughly linearly in both approaches as angle budget increases. This is
because the time to rotate an image and perform PCA for each angle is about the same. Overall,
this shows that our method results in significantly faster inference at test-time without any loss in
accuracy of the learnt model.

6 Conclusion

We address the problem estimating the parameters of an LSSVM model as well as discovering
meaningful states for the latent variables. This allows us to control the model complexity and speed
up inference time. We used `1-`2-norm regularization to approach this problem. Our experiments on
handwritten digit recognition show that our approach is able to effectively reduce the size of latent
variable state space and thus reduce the inference time with no loss of accuracy compared to using
the full latent state space. In the future, we plan to investigate latent state learning with structured
latent variables, where the state space may be exponentially large.
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