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Abstract

The traditional shape-from-shading problem, with a sin-
gle light source and Lambertian reflectance, is challenging
since the constraints implied by the illumination are not
sufficient to specify local orientation. Photometric stereo
algorithms, a variant of shape-from-shading, simplify the
problem by controlling the illumination to obtain additional
constraints. In this paper, we demonstrate that many natu-
ral lighting environments already have sufficient variability
to constrain local shape. We describe a novel optimization
scheme that exploits this variability to estimate surface nor-
mals from a single image of a diffuse object in natural illu-
mination. We demonstrate the effectiveness of our method
on both simulated and real images.

1. Introduction
The problem of estimating shape from shading has a long

history in computer vision. While there are many tech-
niques, most seem to follow one of two basic approaches:
classical shape-from-shading (SFS) or photometric stereo.
Classical SFS, first formalized by Horn [10], typically as-
sumes a single image with known illumination and re-
flectance conditions (often point light sources and Lam-
bertian reflectance). Photometric stereo, first described by
Woodham [22], uses multiple images with controlled illu-
mination. Both approaches have a long lineage of publica-
tions that relax or change the basic assumptions, but a fun-
damental distinction is the number of lighting conditions:
one for SFS and multiple for photometric stereo.

While progress is made every year on SFS, even with
strong assumptions on the imaging conditions, the problem
is notoriously difficult to solve [24]. For example, consider
the shape reconstructions shown in Fig. 1(a). These were
computed by two algorithms from a recent survey paper [6]
using the image of the Mozart bust as input (upper left of
Fig. 1(a)). Shape-from-shading algorithms typically per-
form well on simple inputs but have difficulty on more com-
plex inputs. The root of the difficulty is local ambiguity—
the fact that multiple surface orientations can lead to the

same observed intensity. This ambiguity and its effect on
local shape representation has been studied in both human
and computer vision [4, 11, 14].

Woodham observed that the ambiguity in determining lo-
cal surface orientation from intensity measurements is re-
moved by varying the direction of illumination between
successive images [22]. This technique is called photomet-
ric stereo. With three images, the problem of estimating
orientations from intensities, assuming constant albedo, is
simplified to the point that the mapping can be stored in a
lookup table [23]. As an example, in Fig. 1(b) we show
a simulated three-color photometric stereo rendering of the
Mozart bust along with renderings of the estimated surface,
which is indistinguishable from the ground truth.

The assumptions of classical SFS (i.e., distant point
source and Lambertian reflectance) are imposed in order to
make the problem mathematically tractable. However, we
argue that these assumptions actually complicate the prob-
lem and that the inherent complexity of natural illumination
is beneficial for shape estimation. In effect, the color varia-
tion in natural illumination is a form of photometric stereo.
We exploit this property with a novel optimization scheme
that can estimate surface normals from a single image.

Our technique assumes a known reflectance map, which
implies in practice that we must calibrate against a sphere
with the same BRDF and in the same illumination as the
object of interest. This is restrictive, but it is less restrictive
than the assumptions of many SFS and PS algorithms. In all
three techniques (ours, SFS, and PS), the BRDF is assumed
to be known, either by assumption or by measurement. In
SFS, the lighting is typically assumed to be simple (e.g.,
point source) and from a known direction. In PS, the light-
ing is designed and controlled. Our technique is the only
approach that uses natural illumination that is both com-
plex and uncontrolled. Natural illumination provides a new
constraint for SFS and we demonstrate the benefit of this
constraint on both synthetic and real images.

2. Related work
We briefly review recent and related work on shape-

from-shading and photometric stereo. For a broad overview
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Figure 1. Three approaches to shape reconstruction from shaded images. Along the top row, we show the Mozart bust and a diffuse sphere
in three illumination conditions: (a) a point light source, (b) RGB photometric stereo (three point lights), and (c) natural illumination
(rendered using an environment map). Along the bottom row, we show results of shape reconstruction algorithms: (a) standard shape-
from-shading algorithms by Daniel and Durou [6] (DD) and Tsai and Shah (TS) [21], (b) photometric stereo [22], and (c) our algorithm
that assumes natural illumination.

of problems that have been explored, we refer the reader to
surveys and recent journal papers [2, 6, 17, 24].

Work on shape-from-shading has focused on a variety of
different themes over the last forty years. There have been
many iterative techniques and numerical schemes for solv-
ing partial differential equations [12], theoretical analyses
of ambiguity of solutions under various assumptions [14],
and variations on the imaging and reflectance models, such
as perspective projection, non-Lambertian reflectance, and
local illumination [13, 17].

Of the works that consider the question of uniqueness
and ambiguity, most have considered restricted versions of
the problem, such as illumination from the camera direc-
tion [14], or images of simple shapes [11]. In general,
uniqueness is rare in shape-from-shading and if both light-
ing and albedo are unknown, a family of surfaces exist that
can generate the same image [4]. Although uniqueness is
rare, we demonstrate empirically that the reduction in am-
biguity due to natural illumination is sufficient to find con-
vincing estimates of shape from a single image.

Our approach to shape-from-shading exploits lighting
variability to reduce ambiguity in surface orientation, an
idea closely related to photometric stereo [22]. Our method
is not meant to compete with photometric stereo, however,
since PS methods are active. They typically use controlled
illumination, while our method assumes uncontrolled natu-
ral illumination.

Although most photometric stereo techniques assume
controlled lighting, Basri et al. explored photometric stereo
of Lambertian surfaces in arbitrary lighting and were able
to reconstruct surfaces using 32 to 64 images with unknown

lighting [2]. We employ a similar mathematical framework
and show that we can estimate shape in an uncontrolled, but
calibrated, lighting environment from a single image.

3. Methods
We model the relationship between the observed im-

age intensity and surface orientation through the brightness
equation, first proposed by Horn [10]:

I(x) = s(n(x)) . (1)

The observed intensity at pixel x is the result of a shad-
ing function s (or reflectance map) applied to the surface
normal n at pixel x. There are several assumptions in this
model: distant lighting, spatially invariant reflectance, con-
stant albedo, no local illumination effects such as cast shad-
ows or interreflections, and a fixed viewpoint.

While lighting can be arbitrarily complex, the appear-
ance of a diffuse object can be described by a low-
dimensional model [3, 19]. Informally, the Lambertian re-
flectance function acts as a low-pass filter on the lighting
environment, thus only low-frequency lighting components
contribute to appearance. Under these assumptions, the
shading function s for Lambertian reflectance can be mod-
eled as a quadratic function of the surface normal [18]:

s(n) = nTAn + bTn + c . (2)

Note that the quadratic term helps the model account for
attached shadows. An example of an object rendered ac-
cording to this model is shown in the inset of Fig. 2(a).
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Figure 2. Local ambiguity in estimating a surface normal from shading information. (a) Under a single point light source, the intensity at
a point on a surface can be determined by a family of surface normals. The error plot shows the error of estimating the intensity from all
normals on the sphere—the normals along dark band all have the same minimal error. (b) With three light sources, as in photometric stereo,
there is a single location of minimal error and no ambiguity. (c) Under natural illumination, the ambiguous region is more localized than
with the point light source. The problem of estimating shape in natural illumination should be simpler than in classical shape-from-shading.

3.1. Local ambiguity

Given an intensity measurement I(x) at position x, a
SFS algorithm needs to recover the surface normal (or
height) at position x. With only local information, the prob-
lem can be modeled as the minimization of an error func-
tion:

E(n) = ‖f(n)‖2 = ‖s(n)− I(x)‖2 . (3)

As a visualization, we measure the error according to Eqn. 3
at all surface normals1 (points on a sphere) using the re-
flectance map for the object in Fig. 2(a). For the chosen
point x (dot on the surface of the object), the error function
shows a large (dark) region of ambiguity; such ambiguities
are well-known in SFS [10].

In general, photometric stereo techniques use L light-
ing conditions rather than one. Mathematically, the shading
function s can be represented as a vector-valued function of
the surface normal:

s(n) =

 s1(n)
...

sL(n)

 =

 nTA1n + bT1 n + c1
...

nTALn + bTLn + cL

 . (4)

Continuing with our example, we render the same object
using simulated three-color photometric stereo, Fig. 2(b).
We also show the error function, Eqn. 3, across all surface
normals for matching the color vector I(x) at position x.
Note that there is now a single global minimum, removing
the ambiguity seen in Fig. 2(a). This is, of course, the mo-
tivation for photometric stereo [22].

In natural lighting environments, the shading function is
the same as Eqn. 4 with L = 3 since we assume three color
channels. In Fig. 2(c), we show a Lambertian object ren-
dered in the Grace Cathedral lighting environment. We also
show the error function from the same position x as the pre-
vious plots. The reduction in size of the ambiguous region

1In practice, the space of surface normals could be restricted by con-
sidering visibility from the camera.

in Fig. 2(c) as compared to Fig. 2(a) demonstrates that the
variability in this natural lighting environment provides ad-
ditional constraints for shape estimation.

3.2. Nonlinear optimization

Given an observed color vector, we minimize the error
function, Eqn. 3, with respect to the surface normal n. Since
our shading function is quadratic in n, this is a nonlinear
least-squares problem that can be minimized with an itera-
tive technique, such as the Gauss-Newton method. Suppose
at the i-th iteration, the estimate of the surface normal that
minimizes Eqn. 3 is ni. The Gauss-Newton method com-
putes an update vector h that satisfies the following equa-
tion:

J(ni)
TJ(ni)h = −J(ni)

T f(ni) , (5)

where J(ni) is the Jacobian matrix (i.e., the matrix of par-
tial derivatives) of the function f at the current estimate ni:

J(ni) =
∂f

∂ni
=

 2nTi A1 + bT1
...

2nTi AL + bTL

 . (6)

The update vector h satisfying Eqn. 5 is added to the current
estimate: ni+1 = ni + h.

However, there are two problems with using a standard
Gauss-Newton iteration to minimize Eqn. 3. While the sur-
face normals n are being represented in R3, they are actu-
ally unit vectors that are constrained to the surface of the
sphere. The update vector h may move the current estimate
away from the surface of the sphere and this deviation will
need to be corrected before the next iteration. This process
increases the number of iterations until convergence.

We solve this problem by defining a local frame around
the initial surface normal estimate n0. The frame is param-
eterized by coordinates u and v, such that surface normals
near n0 are defined by the following function:

n(u, v) = R0

[
u v r

]T
, (7)
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where r =
√

1− u2 − v2 and R0 is a rotation matrix such
that R−1

0 maps the initial estimate n0 to
[

0 0 1
]T

.
Within the local frame, the shading function in Eqn. 2

can be expressed in terms of coordinates u and v through
Eqn. 7. The Jacobian with respect to coordinates u and v is
obtained by the chain rule:[

∂J

∂u

∂J

∂v

]
=
∂f

∂n
R0

 1 0
0 1
−u/r −v/r

 . (8)

Note that the particular coordinate frame is only defined
for the hemisphere about the original surface normal esti-
mate n0 and that the Jacobian will be undefined if u2+v2 >
1. Therefore, we reset the frame according to the current
surface normal estimate once u2 + v2 ≥ 1/2.

Additionally, the Jacobian matrix J becomes ill-
conditioned as the lighting variation between the color
channels decreases. As a result, the Gauss-Newton iteration
converges slowly or may even fail to converge. To address
this problem, we use a variant of the Gauss-Newton scheme
known as Powell’s dog-leg [16]. This method is less sensi-
tive to the conditioning of the Jacobian matrix J .

3.3. Local refinement

Due to image noise and local ambiguity, a surface nor-
mal cannot be reliably estimated from a single pixel. In
this section, we describe a novel optimization scheme that
combines local refinement via nonlinear least-squares with
a multi-scale propagation technique.

The local refinement stage is a modification of the iter-
ative technique described in the previous section. Rather
than optimize a single surface normal, we optimize a patch
of k adjacent surface normals, n1 to nk. The modified error
function is:

E(n1, . . . ,nk) = ‖g(n1, . . . ,nk)‖2, (9)

where:

g(n1, . . . ,nk) =


f(n1)

...
f(nk)

λ1c1(n1, . . . ,nk)
λ2c2(n1, . . . ,nk)

 . (10)

The functions c1 and c2 are two different constraints on the
surface normals: integrability and smoothness.

The integrability constraint reflects the fact that the sur-
face normals are not an arbitrary vector field—they are local
orientations of an unknown surface. We enforce integrabil-
ity through a penalty on the curl within the patch. In the
local frame, at patch coordinate (i, j), the curl can be ap-
proximated as cy − cx with:

cy = r11 (ui+1,j − ui,j) + r12 (vi+1,j − vi,j) ,
cx = r21 (ui,j+1 − ui,j) + r22 (vi,j+1 − vi,j) (11)

where rij is the entry of the rotation matrix, R0 at row i and
column j. The full integrability constraint c1 is a vector-
valued function with the curl for each surface normal, n1

to nk, in separate rows.
The smoothness constraint is derived from a generic

viewpoint principle [8]: when no change is observed across
a region in the image, we assume the underlying sur-
face does not change. In other words, we consider it un-
likely for the surface and illumination to change in opposite
ways such that no intensity variation is visible. Therefore,
our smoothness constraint penalizes surface variation along
contours of minimal image change (i.e., along isophotes).
Constraints implied by isophotes, and how they influence
human perception of shape, have been explored by other
authors [7]. Here we show how isophotes can be used as
constraints within our optimization.

In Sec. 3.5 we describe a simple method for computing
isophotes on shaded images of objects with constant albedo.
Assume that method gives θ as the local orientation of shad-
ing for this patch. We constrain the surface variation by ap-
plying a second-derivative of Gaussian filter, G2

θ, oriented
in direction θ. This filter is defined by a linear combination
of three base filters, G2a, G2b and G2c. Due to space con-
siderations, we omit the formulas, which can be found in
Table III of [9].

The second-derivative of Gaussian filter responds more
strongly to variation along the direction θ than along the
orthogonal direction. We use this property as a constraint
across the patch:

c2 =

[ ∑
i,j G

2
θ(i, j)u(i, j)∑

i,j G
2
θ(i, j) v(i, j)

]
. (12)

The constraints c1 and c2 are weighted by scalars λ1 and
λ2 in Eqn. 10. We find that convergence is robust across the
range 0.01 to 0.5 for both parameters.

The local refinement stage is run for a small number of
iterations, typically 5 to 10, for each patch. In the next sec-
tion, we describe how the local estimates from each patch
are propagated to adjacent patches and then across scales.

3.4. Multi-scale propagation

The propagation stage uses surface normal estimates
from neighboring patches to provide initial estimates for
the current patch. Our approach borrows ideas from patch-
based image processing (e.g., [1]) and applies them within
a continuous optimization framework.

We build a pyramid from the input image and begin pro-
cessing at the lowest scale, from the upper left pixel to the
lower right. For each pixel, we consider the surrounding
patch of surface normals and perform local refinement on
the patch, as described in Sec. 3.3. Next, we consider the
patch centered one pixel to the left and use it as an initial
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condition for the refinement at the current location. We re-
peat the refinement a third time starting with the patch cen-
tered one pixel above the current location. At this point
we have three refined patches that explain the image data.
To choose the best patch, we consider a region around the
patch, which we call the local context.

The local context P is a larger region that encloses the
current patch. We define the context error as:

T (P ) = E(P ) + ω1E1(P ) + ω2E2(P ) , (13)

where E is the shading error, Eqn. 9, and E1 and E2 are
the integrability and curl constraints evaluated over the local
context. The scalars ω1 and ω2 weigh the contributions of
the constraints to the error function.

Discretized surface normals often have small but non-
zero curl and imposing a penalty on these values can pre-
vent the normals from attaining the correct shape. Instead,
we put the curl constraint within a smooth step function, a
sigmoid, that only penalizes large values. Thus, the integra-
bility term E1 of the context error is:

E1(P ) =
∑
p,q∈P

1

1 + exp (−α(|py − qx| − τ))
, (14)

where the parameter α controls the rise of the sigmoid and
τ controls the location where the sigmoid crosses 0.5. The
variables p and q are the estimates of surface gradient in the
region, p = nx/nz and q = ny/nz , and py and qx denote
the partial derivatives of these values. We approximate the
partial derivatives with forward differences.

The smoothness constraint uses a second-derivative of
Gaussian filter that is sized to cover the local context. We
choose the L1 norm to be more robust to large values, since
the context error does not need to be differentiable:

E2(P ) =
∑
k

∣∣∣∣∣∣
∑
i,j

G2
θ(i, j)nk(i, j)

∣∣∣∣∣∣ , (15)

where nk is an individual component of the surface normal.
The patch that minimizes the context error, Eqn. 13 is

selected as the local estimate and then the next patch is pro-
cessed. On odd iterations, we traverse the image backwards,
similar to [1].

At the end of a fixed number of iterations, we upsample
the current estimate and process the next scale. The algo-
rithm continues until the finest level of the pyramid has been
processed. Since we are processing within an image pyra-
mid, we can also take advantage of multigrid techniques to
speed up convergence [5]. We find that the w-cycle, i.e.,
coarse-to-fine passes beginning at every scale, is particu-
larly effective.

Our initial condition for the iteration is a random array of
unit-length vectors, with the z-component fixed to be pos-
itive. This initial condition will have very large values for
the two constraints E1 and E2 and the optimization can get
quickly stuck in a local minimum if the parameters ω1 and
ω2 are too large. But in cases of high image noise, we want
the parameters to be large to prevent unwanted surface vari-
ation. We have found that increasing ω1 and ω2 each itera-
tion, from 0 to their specified values effectively solves both
problems.

3.5. Local orientation

We measure the local orientation of intensity variation
using the structure tensor. The structure tensor can be com-
puted from three component images:

Gx=gσ ? I
2
x , Gxy=gσ ? (IxIy) , Gy=gσ ? I

2
y (16)

where Ix and Iy are the x and y gradients of the image I ,
gσ is a Gaussian kernel with standard deviation σ and the
symbol ‘?’ denotes convolution.

Let Ĉ = (Gx−Gy)/(Gx+Gy) and Ŝ = (2Gxy)(Gx+

Gy). The local orientation is θ = 1
2 tan−1(Ŝ/Ĉ).

Image gradients at the finest scale are sensitive to noise
and therefore the local orientation can be difficult to esti-
mate, especially in flat regions. To improve the estimate,
we blend the component images, Eqn. 16, with upsampled
components from the previous scale, G′i = Gi +Gi−1. By
this process, the finest scale obtains pooled estimates from
all the previous scales.

4. Results
We evaluate our algorithm on both synthetic and real im-

ages. The parameters of the algorithm were kept constant
across all experiments. We used 3 × 3 patches in a 5 × 5
context, 3 pyramid levels, 5 iterations per level, local re-
finement weights λ1 = 1.0 and λ2 = 0.01, context error
weights ω1 = 1.0 and ω2 = 0.1.

Our optimization algorithm assumes that a model of the
lighting environment is known. For both the real and syn-
thetic images, we fit the model using a diffuse calibration
sphere. Since the shading function, Eqn. 2, is linear in the
lighting environment coefficients, we use the known sur-
face normals of the sphere to solve for the coefficients using
least-squares.

4.1. Synthetic images

To help us develop and test our algorithm, we found it
useful to work with a set of synthetic images. Our test
set consists of 100 images that are generated by render-
ing 10 shapes in 10 different lighting environments using
a physically-based renderer, pbrt [15]. The 10 shapes are
shown across the top row of Fig. 3. Our shapes have varying
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Shapes:

Lighting environments:

Figure 3. Our test set consists of 100 images, 10 shapes rendered in each of 10 lighting environments. Top: The 10 random shapes rendered
in the same lighting environment. Bottom: One shape rendered in each of the 10 lighting environments.

levels of complexity, including large smooth regions, con-
cave regions, self-occlusions, large depth discontinuities,
creases and protrusions. To encourage future work on this
problem, we have made our dataset available online.2

The 10 lighting environments are represented in the bot-
tom of Fig. 3, by rendering one of the shapes in each light-
ing environment. We used the following lighting environ-
ments: Grace Cathedral, Eucalyptus Grove, Uffizi Gallery,
Galileo’s Tomb, Ennis-Brown Dining Room, Pisa Court-
yard, Doge’s Palace, Inside Tunnel Machine, At the Win-
dow, and Distant Evening Sun. The light probes used for
rendering are available online.3

To ensure that the rendering model conformed exactly to
our assumptions (i.e., no cast shadows or interreflections),
we rendered calibration spheres and fit the lighting envi-
ronment model to the spheres. Before optimization we add
Gaussian random noise with standard deviation 0.001 to
avoid the existence of an exact numerical solution. This
amount of noise for our synthetic images (at 256 pixels
across) is comparable to 2% noise in our real images, be-
fore downsampling.

For each of the 100 rendered images, we have image
masks and ground-truth surface normals (rotated into the
camera coordinate system). The image masks identify the
background pixels, which are not considered in the opti-
mization or evaluation. To evaluate performance, we com-
pute the angular error between the ground-truth surface nor-
mal and the estimated surface normal. Across all surface
normals from all 100 images, 90% have an angular error
lower than 10 degrees.

To enable comparisons with previous work, we tested
our algorithm on two standard surfaces: the Mozart bust
and the analytic “vase” [24]. We rendered these surfaces in
all 10 lighting environments at an image size of 256 × 256
pixels. Across all 10 Mozart images, 86% of the surface

2http://people.csail.mit.edu/kimo/blobs
3http://ict.debevec.org/˜debevec/Probes and http:

//dativ.at/lightprobes

normals have an angular error lower than 10 degrees. For
the vase images, 94% of the normals are within 10 degrees
from ground truth.

We also reconstructed depth by integrating the surface
normals. We used the L1 Poisson approach, via itera-
tively reweighted least squares to minimize the influence
of noisy estimates [20]. Since we use Neumann boundary
constraints (i.e., we do not specify any known depth values),
the reconstructed surface will have an overall depth ambi-
guity. We resolve the ambiguity by computing an offset δ
that best aligns the depth estimate to the ground-truth:

A(δ) =
∑
x∈Ω

∣∣z(x) + δ − ẑ(x)
∣∣ , (17)

where Ω is a mask identifying foreground pixels, z(x) is
the estimated depth and ẑ(x) is the ground-truth depth at
position x.

In Fig. 4 and Fig. 5, we show reconstructions of both
objects under two different illumination conditions, Distant
Evening Sun and Inside Tunnel Machine. For the vase im-
ages, the RMS errors are 0.55 and 0.62 pixels for upper and
lower results. For the Mozart images, the RMS errors are
2.7 and 1.1 pixels for the upper and lower results.

4.2. Real images

To evaluate the performance of our algorithm in a more
realistic setting, we captured images of objects in natural
lighting environments. Since our algorithm does not ac-
count for reflectance variation, the objects and calibration
target were painted with a diffuse paint. We used an 18-
megapixel Canon EOS 550D camera equipped with a 100-
mm lens. The camera was mounted on a tripod and set
to capture in RAW mode. The illumination of the scene
was not modified in any way (i.e., no additional lights).
The RAW images were converted to a 16-bit format using
Adobe Photoshop. For each image, we also created binary
image masks by tracing the boundary of the objects in the
image.
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Figure 4. (a) Two renderings of the analytic vase, [24]. (b) Ren-
derings of the reconstructed surface. The RMS error on the depth
estimate is 0.55 pixels for the upper result and 0.62 pixels for the
lower result. (c) 1D profiles of the center scanline of each esti-
mated depth map, compared to the ground truth.
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Figure 5. (a) Two renderings of the Mozart bust. (b) Renderings
of the estimated surface. The RMS error is 2.7 pixels for the up-
per result and 1.1 pixels for the lower result. (c) 1D profiles of
the center scanline of each estimated depth map, compared to the
ground truth.

In Fig. 7, we show the result of our optimization on three
objects in the same scene. The objects were photographed
in an office with natural light from a window and fluorescent
lighting overhead. The inset plots for the real images show
the calibration target and the inset plots in the normal maps
show a visualization of surface normals on the sphere. In
Fig. 6, we show a close-up view of the y-component of the
surface normal for each object in Fig. 7. Our optimization
achieves a high level of detail from a single image.

Fig. 8 shows the images of the calibration target and a toy
frog. The objects were photographed in a hallway with re-
cessed lighting overhead and painted walls. We fit a model
of the lighting environment to the calibration target then ran
our algorithm to estimate the normal map. We integrated
the normals using our L1 Poisson solver to obtain a depth
estimate. To improve the visualization we clipped depth
values below the 1st and above 99th percentiles. We render
the estimated surface from two different viewpoints.

We find that our optimization algorithm performs well

Figure 6. Surface normal detail. Close-up views of the y-
component of the estimated surface normal for the objects in Fig 7.
Our algorithm is able to reconstruct a high level of detail from a
single image.

when the lighting environment is sufficiently rich to con-
strain the solution space, but can fail under modest amounts
of image noise if the lighting is similar to a single light
source. Under this lighting condition, the Jacobian of the
error function, Eqn. 6, will be rank deficient. The optimiza-
tion will still produce a surface, but it is generally flat along
the isophote directions.

5. Conclusion
Shape estimation is difficult when the illumination con-

sists of a single light direction. The difficulty stems from the
local ambiguity between the intensity value and the range
of surface orientations that could have produced that value.
But under natural illumination, this ambiguity is often re-
duced. Based on this observation, we have described an
algorithm that can estimate the surface normals of a diffuse
object, with constant albedo, from a single image under un-
controlled but known illumination.
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objects were painted to have the same reflectance. Using the calibration target to model the lighting environment, we ran our optimization
to solve for the surface normals from each image. The inset plots in the real images show the calibration sphere. The inset plots for the
normal maps show a visualization of surface normals on the sphere. Close-up views of the normals for each image are shown in Fig. 6.
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