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Abstract. When creating a digital composite of two people, it is diffi-
cult to exactly match the lighting conditions under which each individ-
ual was originally photographed. In many situations, the light source in
a scene gives rise to a specular highlight on the eyes. We show how the
direction to a light source can be estimated from this highlight. Incon-
sistencies in lighting across an image are then used to reveal traces of
digital tampering.
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1 Introduction

The photograph in Fig. 1 of the host and judges for the popular television
show American Idol was scheduled for publication when it caught the attention
of a photo-editor. Coming on the heels of several scandals that rocked major
news organizations, the photo-editor was concerned that the image had been
doctored. There was good reason to worry – the image was a composite of several
photographs. Shown in Fig. 1 are magnifications of the host’s and judge’s eyes.
The inconsistencies in the shape of the specular highlight on the eyes suggest
that the people were originally photographed under different lighting conditions.
In this work, we show how the location of a specular highlight can be used to
determine the direction to the light source. Inconsistencies in the estimates from
different eyes, as well as differences in the shape and color of the highlights, can
be used to reveal traces of digital tampering.

In related work, the authors of [5] showed how to estimate the light source
direction in 2-D. While this approach has the benefit of being applicable to
arbitrary objects, it has the drawback that it can only determine the direction to
the light source within one degree of ambiguity. In contrast, we estimate the full
3-D light source direction by leveraging a 3-D model of the human eye. Although
not specifically developed for a forensic setting, the authors of [7] described
a technique for computing an environment map from eyes that embodies the
illumination in the scene. While the environment map provides a rich source



Fig. 1. This photograph of the American Idol host and judges is a digital composite of
multiple photographs. The inconsistencies in the shape of the specular highlight on the
eyes suggest that these people were originally photographed under different lighting
conditions. Photo courtesy of Fox News and the Associated Press.

of information about the lighting, it has the drawback of requiring a relatively
high-resolution image of the eye.

We describe how to estimate the 3-D direction to a light source from specular
highlights on the eyes. We show the efficacy of this approach on synthetic and
real images and visually plausible forgeries.

2 Methods

The position of a specular highlight is determined by the relative positions of
the light source, the reflective surface and the viewer (or camera). In Fig. 2,
for example, is a diagram showing the creation of a specular highlight on an
eye. In this diagram, the three vectors L, N and R correspond to the direction
to the light, the surface normal at the point at which the highlight is formed,
and the direction in which the highlight will be seen. For a perfect reflector,
the highlight is seen only when the view direction V = R. For an imperfect
reflector, a specular highlight can be seen for viewing directions V near R, with
the strongest highlight seen when V = R.

We will first derive an algebraic relationship between the vectors L, N ,
and V . We then show how the 3-D vectors N and V can be estimated from a
single image, from which the direction to the light source L is determined.

The law of reflection states that a light ray reflects off of a surface at an
angle of reflection θr equal to the angle of incidence θi, where these angles are
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Fig. 2. The formation of a specular highlight on an eye (small white dot on the iris).
The position of the highlight is determined by the surface normal N and the relative
directions to the light source L and viewer V .

measured with respect to the surface normal N , Fig. 2. Assuming unit-length
vectors, the direction of the reflected ray R can be described in terms of the
light direction L and the surface normal N :

R = L + 2(cos(θi)N −L)
= 2 cos(θi)N −L. (1)

By assuming a perfect reflector (V = R), the above constraint yields:

L = 2 cos(θi)N − V

= 2
(
V T N

)
N − V . (2)

The light direction L can therefore be estimated from the surface normal N and
view direction V at a specular highlight. In the following sections, we describe
how to estimate these two 3-D vectors from a single image.

Note that the light direction is specified with respect to the eye, and not the
camera. In practice, all of these vectors will be placed in a common coordinate
system, allowing us to compare light directions across the image.

2.1 Camera Calibration

In order to estimate the surface normal N and view direction V in a common
coordinate system, we first need to estimate the projective transform that de-
scribes the transformation from world to image coordinates. With only a single
image, this calibration is generally an under-constrained problem. In our case,
however, the known geometry of the eye can be exploited to estimate this re-
quired transform. Throughout, upper-case symbols will denote world coordinates
and lower-case will denote camera/image coordinates.

The limbus, the boundary between the sclera (white part of the eye) and the
iris (colored part of the eye), can be well modeled as a circle [7]. The image of
the limbus, however, will be an ellipse except when the eye is directly facing the



camera. Intuitively, the distortion of the ellipse away from a circle will be related
to the pose and position of the eye relative to the camera. We therefore seek the
transform that aligns the image of the limbus to a circle.

In general, a projective transform that maps 3-D world coordinates to 2-D
image coordinates can be represented, in homogeneous coordinates, as a 3 × 4
matrix. We assume that points on a limbus are coplanar, and define the world
coordinate system such that the limbus lies in the Z = 0 plane. With this
assumption, the projective transformation reduces to a 3 × 3 planar projective
transform [2], where the world points X and image points x are represented by
2-D homogeneous vectors.

Points on the limbus in our world coordinate system satisfy the following
implicit equation of a circle:

f(X;α) = (X1 − C1)2 + (X2 − C2)2 − r2 = 0, (3)

where α = (C1 C2 r )T denotes the circle center and radius.
Consider a collection of points, Xi, i = 1, . . . ,m, each of which satisfy Equa-

tion (3). Under an ideal pinhole camera model, the world point Xi maps to the
image point xi as follows:

xi = HXi, (4)

where H is a 3× 3 projective transform matrix.
The estimation of H can be formulated in an orthogonal distance fitting

framework. Let E(·) be an error function on the parameter vector α and the
unknown projective transform H:

E(α,H) =
m∑

i=1

min
X̂

∥∥∥xi −HX̂
∥∥∥2

, (5)

where X̂ is on the circle parametrized by α. The error embodies the sum of the
squared errors between the data, x, and the closest point on the model, X. This
error function is minimized using non-linear least squares via the Levenberg-
Marquardt iteration [9] (see Appendix A for details).

Once estimated, the projective transform H can be decomposed in terms of
intrinsic and extrinsic camera parameters [2]. The intrinsic parameters consist of
the camera focal length, camera center, skew and aspect ratio. For simplicity, we
will assume that the camera center is the image center, that the skew is 0 and the
aspect ratio is 1, leaving only the focal length f . The extrinsic parameters consist
of a rotation matrix R and translation vector t that define the transformation
between the world and camera coordinate systems. Since the world points lie
on a single plane, the projective transform can be decomposed in terms of the
intrinsic and extrinsic parameters as:

H = λK ( r1 r2 t ) , (6)



where the 3× 3 intrinsic matrix K is:

K =

 f 0 0
0 f 0
0 0 1

 , (7)

λ is a scale factor, the column vectors r1 and r2 are the first two columns of the
rotation matrix R, and t is the translation vector.

With a known focal length f , and hence a known matrix K, the world to
camera coordinate transform Ĥ can be estimated directly:

1
λ

K−1H = ( r1 r2 t )

Ĥ = ( r1 r2 t ) , (8)

where the scale factor λ is chosen so that r1 and r2 are unit vectors. The complete
rotation matrix is given by:

R = ( r1 r2 r1 × r2 ) , (9)

where × denotes cross product.
If the focal length is unknown, it can be directly estimated as described in

Appendix B.

2.2 View Direction

Recall that the minimization of Equation (5) yields both the transform H and
the circle parameters α for the limbus. The unit vector from the center of the
limbus to the origin of the camera coordinate system is the view direction, v. Let
Xc = (C1 C2 1 ) denote the estimated center of a limbus in world coordi-
nates. In the camera coordinate system, this point is given by:

xc = ĤXc. (10)

The view direction, as a unit vector, in the camera coordinate system is then
given by:

v = − xc

‖xc‖
, (11)

where the negative sign reverses the vector so that it points from the eye to the
camera.

2.3 Surface Normal

The 3-D surface normal N at a specular highlight is estimated from a 3-D model
of the human eye [6]. The model consists of a pair of spheres as illustrated in
Fig. 3(a). The larger sphere, with radius r1 = 11.5 mm, represents the sclera
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Fig. 3. (a) A side view of a 3-D model of the human eye. The larger sphere represents
the sclera and the smaller sphere represents the cornea. The limbus is defined by the
intersection of the two spheres. (b) The surface normal at a point S in the plane of the
limbus depends on the view direction V .

and the smaller sphere, with radius r2 = 7.8 mm, represents the cornea. The
centers of the spheres are displaced by a distance d = 4.7 mm. The limbus, a
circle with radius p = 5.8 mm, is defined by the intersection of the two spheres.
The distance between the center of the smaller sphere and the plane containing
the limbus is q = 5.25 mm. These measurements vary slightly among adults, and
the radii of the spheres are approximately 0.1 mm smaller for female eyes [3, 6].

Consider a specular highlight in world coordinates at location S = (Sx Sy ),
measured with respect to the center of the limbus. The surface normal at S
depends on the view direction V . In Fig. 3(b) is a schematic showing this re-
lationship for two different positions of the camera. The surface normal N is
determined by intersecting the ray leaving S, along the direction V , with the
edge of the sphere. This intersection can be computed by solving a quadratic
system for k, the distance between S and the edge of the sphere,

(Sx + kVx)2 + (Sy + kVy)2 + (q + kVz)2 = r2
2

k2 + 2(SxVx + SyVy + qVz)k + (S2
x + S2

y + q2 − r2
2) = 0, (12)

where q and r2 are specified by the 3-D model of the eye. The view direction
V = (Vx Vy Vz ) in the world coordinate system is given by:

V = R−1v, (13)

where v is the view direction in camera coordinates, Section 2.2, and R is the es-
timated rotation between the world and camera coordinate systems, Section 2.1.
The surface normal N in the world coordinate system is then given by:

N =

 Sx + kVx

Sy + kVy

q + kVz

 , (14)

and in camera coordinates: n = RN .



2.4 Light Direction

Consider a specular highlight xs specified in image coordinates and the esti-
mated projective transform H from world to image coordinates. The inverse
transform H−1 maps the coordinates of the specular highlight into world coor-
dinates:

Xs = H−1xs (15)

The center C and radius r of the limbus in the world coordinate system deter-
mine the coordinates of the specular highlight, S, with respect to the model:

S =
p

r
(Xs −C) , (16)

where p is specified by the 3-D model of the eye. The position of the specular
highlight S is then used to determine the surface normal N , as described in
the previous section. Combined with the estimate of the view direction V , Sec-
tion 2.2, the light source direction L can be estimated from Equation (2). In
order to compare light source estimates in the image, the light source estimate
is converted to camera coordinates: l = RL

3 Results

We tested our technique for estimating the 3-D light source direction on both
synthetically generated and real images. In all of these results the direction to the
light source was estimated from specular highlights in both eyes. This required
a slight modification to the minimization in Equation (5) which is described in
Appendix A. The view direction, surface normal and light direction were then
estimated separately for each eye.

3.1 Synthetic Images

Synthetic images of eyes were rendered using the pbrt environment [8]. The
shape of the eyes conformed to the 3-D model described in Section 2.3 and the
eyes were placed in one of 12 different locations. For each location, the eyes were
rotated by a unique amount relative to the camera. The eyes were illuminated
with two light sources: a fixed light directly in line with the camera, and a second
light placed in one of four different positions. The twelve locations and four light
directions gave rise to 48 images, Fig. 4. Each image was rendered at a resolution
of 1200 × 1600 pixels, with the cornea occupying less than 0.1% of the entire
image. Shown in Fig. 4 are several examples of the rendered eyes, along with a
schematic of the imaging geometry.

The limbus and position of the specular highlight(s) were automatically ex-
tracted from the rendered image. For each highlight, the projective transform
H, the view direction v and surface normal n were estimated, from which the



Fig. 4. Synthetically generated eyes. Each of the upper panels corresponds to different
positions and orientations of the eyes and locations of the light sources. The ellipse fit
to each limbus is shown in dashed green, and the red dots denote the positions of the
specular highlights. Shown below is a schematic of the imaging geometry: the position
of the lights, camera and a subset of the eye positions.



Fig. 5. A subject at different locations and orientations relative to the camera and two
light sources. Shown to the right are magnified views of the eyes. The ellipse fit to each
limbus is shown in dashed green and the red dots denote the positions of the specular
highlights. See also Table 1.

direction to the light source l was determined. The angular error between the
estimated l and actual l0 light directions is computed as:

φ = cos−1
(
lT l0

)
. (17)

where the vectors are normalized to be unit length.
With a known focal length, the average angular error in estimating the light

source direction was 2.8◦ with a standard deviation of 1.3◦ and a maximum
error of 6.8◦. With an unknown focal length, the average error was 2.8◦ with a
standard deviation of 1.3◦ and a maximum error of 6.3◦.

3.2 Real Images

To further test the efficacy of our technique, we photographed a subject under
controlled lighting. A camera and two lights were arranged along a wall, and the
subject was positioned 250 cm in front of the camera and at the same elevation.
The first light L1 was positioned 130 cm to the left of and 60 cm above the
camera. The second light L2 was positioned 260 cm to the right and 80 cm above
the camera. The subject was placed in five different locations and orientations
relative to the camera and lights, Fig. 5. A six mega-pixel Nikon D100 camera
with a 35 mm lens was set to capture in the highest quality JPEG format.

For each image, an ellipse was manually fit to the limbus of each eye. In
these images, the limbus did not form a sharp boundary – the boundary spanned



left eye right eye left eye right eye
image L1 L2 L1 L2 L1 L2 L1 L2

1 5.8 7.6 3.8 1.6 5.8 7.7 3.9 1.7
2 – 8.7 – 0.8 – 10.4 – 18.1
3 9.3 – 11.0 – 17.6 – 10.1 –
4 12.5 16.4 7.5 7.3 10.4 13.6 7.4 5.6
5 14.0 – 13.8 – 17.4 – 16.5 –

Table 1. Angular errors (degrees) in estimating the light direction for the images
shown in Fig. 5. On the left are the errors for a known focal length, and on the right
are the errors for an unknown focal length. A ’–’ indicates that the specular highlight
for that light was not visible on the cornea.

roughly 3 pixels. As such, we fit the ellipses to the better defined inner outline [4],
Fig. 5. The radius of each limbus was approximately 9 pixels, and the cornea
occupied 0.004% of the entire image.

Each specular highlight was localized by specifying a bounding rectangular
area around each highlight and computing the centroid of the selection. The
weighting function for the centroid computation was chosen to be the squared
(normalized) pixel intensity.

The location to the light source(s) was estimated for each pair of eyes as-
suming a known and unknown focal length. The angular errors, Equation (17),
for each image are given in Table 1. Note that in some cases an estimate for one
of the light sources was not possible when the highlight was not visible on the
cornea. With a known focal length, the average angular error was 8.6◦, and with
an unknown focal length, the average angular error was 10.5◦.

There are several reasons for the increase in error over the synthetic images.
First, the average size of the cornea in our real images is much smaller than the
size of the cornea in the synthetic images, 256 pixels2 versus over 1000 pixels2.
Second, the limbus in an adult human eye is slightly elliptical, being 1 mm wider
than it is tall [3], while our model assumes a circular limbus.

Shown in Fig. 1 is a photograph of the host and judges of the television show
American Idol, and shown in Fig. 6 are the results of estimating the direction
to the light source for each person. These estimates are rendered as Gaussian
blobs (σ = 15◦) on a hemisphere. The final estimate is depicted as a sum of
Gaussians, one for each specular highlight. Note that the estimates in the two
right-most plots are visually consistent with one another, but are significantly
different from the two left-most estimates.

Shown in Fig. 7 is a composite where the father’s face has been replaced
with a different face. Two specular highlights are visible on each of the children’s
eyes. The light direction was estimated from each specularity and for each eye.
Across the children’s eyes, the average pair-wise difference in orientation for
the first specularity was 8.5◦ with a maximum difference of 11.6◦. The average
difference for the second specularity was 9.4◦ with a maximum difference of
13.9◦. By comparison, the average difference in orientation between the father’s
specularities to those of the children was 40.3◦. We did not estimate the light



Fig. 6. The estimated light source direction for each person in Fig. 1 is depicted as
Gaussian blobs on a hemisphere, each centered about the estimated 3-D direction. Su-
perimposed on each hemisphere is an image of one of the eyes from which the estimates
were made. Note that the inconsistencies in the light source direction suggest that the
photograph is a composite of at least three photographs.

direction for the woman because we have found that glasses distort the shape
and location of the specularity on the eye.

4 Discussion

When creating a composite of two or more people it is often difficult to match
the lighting conditions under which each person was originally photographed.
Specular highlights that appear on the eye are a powerful cue as to the shape,
color and location of the light source(s). Inconsistencies in these properties of the
light can be used as evidence of tampering. We have described how to measure
the 3-D direction to a light source from the position of the highlight on the eye.
While we have not specifically focused on it, the shape and color of a highlight
are relatively easy to quantify and measure and should also prove helpful in
exposing digital forgeries.

Since specular highlights tend to be relatively small on the eye, it is possible
to manipulate them to conceal traces of tampering. To do so, the shape, color
and location of the highlight would have to be constructed so as to be globally
consistent with the lighting in other parts of the image. Inconsistencies in this
lighting may be detectable using the technique described in [5]. Also working in
our favor is that even small artifacts on the eyes are visually salient. Nevertheless,
as with all forensic tools, it is still possible to circumvent this technique.

We expect this technique, in conjunction with a growing body of forensic
tools, to be effective in exposing digital forgeries.
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Fig. 7. A composite where rock star Gene Simmons’ face has been inserted into a
family portrait.
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9. Andrzej Ruszczyński. Nonlinear Optimization. Princeton University Press, 2006.



Appendix A

In this appendix we describe the minimization of the error function:

E(α,H) =
m∑

i=1

min
X̂

∥∥∥xi −HX̂
∥∥∥2

, (18)

which yields the perspective transform H and circle parameters α. For notational
convenience, we express this error function as E(u) where u = (α h ), and
where the vector h contains the nine elements of the 3× 3 matrix H.

This error function is minimized in nested iterations as described in [1]. The
inner iteration computes the closest point X̂ on the model for each image point
xi, where the model is specified by the current state of u. The outer iteration
then updates the parameter vector u according to the results of the inner model
fitting. This process is repeated and terminates when the norm of the update to
u is below a specified threshold.

Closest point: For a given point xi in image coordinates, we seek the closest
point X̂ on the model. The point X̂ that satisfies this condition must, of course,
be on the model, f(X̂;α) = 0. Recall that f(·) is the equation of a circle, Equa-
tion (3). In order to contend with the scale ambiguity inherent to homogeneous
coordinates, this model takes on a slightly different form:

f(X;α) = (X1/X3 − C1)2 + (X2/X3 − C2)2 − r2 (19)

For X̂ to be the closest point, it must satisfy two additional criteria. First, the
vector between the image point xi and the model point HX̂ (expressed in image
coordinates) must be parallel to the gradient of the model in image coordinates,
H−T∇f , yielding the following constraint:

zT ((xi −HX̂)×H−T∇f) = 0, (20)

where zT = ( 0 0 1 ) restricts this constraint to the image plane. Second, the
model point HX̂ must lie in the image plane (recall that the homogeneous points
xi lie in the plane z = 1):

zT (xi −HX̂) = 0. (21)

These three constraints form a system of non-linear equations that can be solved
using the Gauss-Newton method, where the vector-valued function to be mini-
mized is:

g(u,xi,X) =

 f(X,α)
zT ((xi −HX)×H−T∇f)

zT (xi −HX)

 . (22)



In practice, the image point xi is expressed in terms of world coordinates
xi = HXi. This error function is given by:

g(u,Xi,X) =

 f(X,α)
zT (H(Xi −X)×H−T∇f)

zT H(Xi −X)

 . (23)

This inner iteration is initialized with H equal to the identity matrix, and α,
the circle parameters, equal to a bounding circle fit to the image data.

Parameter update: Once the inner iteration completes and the closest points
X̂ have been computed for each image point xi, the parameter vector u can be
updated. The outer iteration uses a Levenberg-Marquardt minimization, which
requires the derivative of xi − HX with respect to u, evaluated at the closest
point X̂:

∂

∂u
(xi −HX)

∣∣∣∣
X=X̂

= −
(

∂H

∂u

)
[X]

∣∣∣∣
X=X̂

− H
∂X

∂u

∣∣∣∣
X=X̂

, (24)

where [X] is a block-diagonal matrix with X on the diagonal. The derivative
∂H/∂u is computed by simply differentiating the matrix H with respect to
each of its components hi. The derivative ∂X/∂u is computed by implicitly
differentiating g(·) with respect to u:

∂g

∂u
+

∂g

∂X

∂X

∂u
+

∂g

∂Xi

∂Xi

∂u
= 0, (25)

and solving for ∂X/∂u:

∂X

∂u
= −

(
∂g

∂X

)−1 (
∂g

∂u
+

∂g

∂Xi

∂Xi

∂u

)
. (26)

The individual derivatives in this expression are determined by straight-forward
differentiation of each function with respect to its unknowns. The derivatives for
all m image points, x1 to xm, are then stacked into a 3m× 12 Jacobian matrix,
where 12 corresponds to the total number of unknowns (9 elements of H and 3
circle parameters α). This Jacobian matrix is used by the Levenberg-Marquardt
minimization to compute the update to the parameter vector u.

Constraints: The minimization described above can be extended to handle two
circles by creating a block-diagonal Jacobian matrix from the Jacobian matrices
of the individual eyes. In addition, constraint equations can be added to the
error function E(u), Equation (18), to ensure that the transform H for both
eyes is the same and that the radii of the circles are equal to 5.8 mm. The error
function for both eyes with constraints is then given by:

Ê(u1,u2) = E(u1) + E(u2)
+ w

(
‖h1 − h2‖2 + (det(H1)− 1)2 + (det(H2)− 1)2

+ (r1 − 5.8)2 + (r2 − 5.8)2
)
, (27)



where w is a scalar weighting factor. The Jacobian of this system is:

J(u1,u2) =

 J1(u1)
J2(u2)

Ĵ1(u1) Ĵ2(u2)

 , (28)

where J1 and J2 are the Jacobian matrices from the individual eyes, and Ĵ1

and Ĵ2 are the Jacobians of the constraint equations with respect to u1 and u2.
The transforms H1 and H2 are initially set to the identity matrix, and the circle
parameters were chosen to enclose the limbus of each eye.

Appendix B

In this appendix we describe how to decompose the projective transform H in
Equation (6) in the case when the focal length f is unknown.

The transform H has eight unknowns: the focal length f , the scale factor λ,
the three rotation angles θx, θy and θz for the rotation matrix R, and the three
coordinates of the translation vector t. By multiplying the matrices on the right-
hand side of Equation (6), H can be expressed in terms of these unknowns:

H = λ

 fcycz fcysz ftx
f(sxsycz − cxsz) f(sxsysz + cxcz) fty

cxsycz + sxsz cxsysz − sxcz tz

 , (29)

where cx = cos(θx), sx = sin(θx), etc, and where the rotation matrix follows the
“x-y-z” convention.

Consider the upper-left 2× 2 sub-matrix of H rewritten in terms of the four
unknowns θx, θy, θz, and f̂ = λf . These unknowns are estimated by minimizing
the following error function using non-linear least-squares:

E(θx, θy, θz, f̂) = (f̂ cycz − h1)2 + (f̂ cysz − h2)2 + (f̂(sxsycz − cxsz)− h4)2

+ (f̂(sxsysz + cxcz)− h5)2, (30)

where hi corresponds to the ith entry of H. A Gauss-Newton iterative approach is
employed to minimize E(·). In practice, we have found that θz = tan−1(h2/h1),
f = 1 and random values for θx and θy provide good starting conditions for this
minimization. These estimated parameters then yield two possible estimates of
the focal length:

f1 =
f̂(cxsycz + sxsz)

h7
and f2 =

f̂(cxsysz − sxcz)
h8

. (31)

These two estimates are combined using the following weighted average:

f =
h2

7f1 + h2
8f2

h2
7 + h2

8

. (32)

Note that the focal length f is undefined for h7 = h8 = 0. In addition, this
estimation is vulnerable to numeric instabilities for values of h7 and h8 near
zero. As such, the weighting was chosen to favor larger values of h7 and h8.


