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INTRODUCTION

Sound synthesis is a field that bridges the disciplines of music, physics, mathematics and

psychoacoustics.  Researchers from all of these fields study and use sound synthesis for different

reasons.  For example, musicians researching sound synthesis are often trying to find interesting

sounds for compositional or artistic purposes.  They look for sounds with a depth similar to those

of natural instruments and their trained ears are often sensitive to sounds that are too artificial.

Physicists and mathematicians are curious about how instruments work and the laws governing

their behavior.  They use sound synthesis to test their hypotheses and models of instruments.

Researchers of psychoacoustics, on the other hand, are interested in how the ear and mind

interact when we hear a sound.  They use sound synthesis to help them examine human

perception.  This does not mean that musicians are not interested in perception or that

psychoacousticians are not interested in how instruments work.  On the contrary, when one

begins to study a particular aspect of sound synthesis, one finds that questions related to the other

fields of study need to be answered as well.

The goal of this thesis was to synthesize instrument sounds using a new synthesis

technique derived from work in chaotic communications.  My first step towards this goal was to

learn classic synthesis techniques that have been both successful and unsuccessful.  This

information taught me about the problems that arise when trying to synthesize sound.  This also

put me face to face with the relationship between the physical and psychological interpretations

of sound.  I conducted several experiments to determine how I perceived certain sounds when I

knew the physical components involved.  These experiments gave me first hand knowledge

about the intricacies of human perception.  My interest in music was also important to my
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research.  I judged the synthesized instrument tones against my experience with natural

instruments.  While working on this thesis, I found it necessary to research the physics,

mathematics and psychoacoustics involved in sound synthesis and I have included my findings

in the Background Information chapter.  The final step towards my goal was to use the

knowledge and experience I had gained with other synthesis techniques to help me synthesize

sounds using controlled chaos.
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ORGANIZATION OF THE THESIS

The first section of this thesis provides background information about both the physical

and psychological aspects of sound.   I only discuss those aspects of sound that I feel are

essential to sound synthesis.  For instance, I do not discuss intensity and loudness of sound or

sound location because, although they are important aspects of sound, I did not incorporate them

into my synthesis techniques.  I also discuss my experiments with perception of sound and the

sound files I generated are on the included CD.

The second section of the thesis discusses my experiences with the classic synthesis

techniques of additive synthesis, subtractive synthesis, amplitude modulation and frequency

modulation.  I have recorded examples of each type of synthesis on the CD to reinforce my

descriptions of the synthesized sounds.

The third section of the thesis details my work with the synthesis of sound by controlling

a chaotic system.  I discuss each step I took in order to reach my current point in the research.

Some musical examples from the different steps are also on the CD.

In the last section, I discuss the current state of my research and some possible future

directions.  There are still many options to explore using controlled chaos and I explain some

that I am considering.
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CHAPTER 1

BACKGROUND INFORMATION

Early composers and researchers of sound synthesis found that although they could make

the computer play any waveform they specified, none of these waveforms sounded as interesting

as natural instrument sounds.  The sounds lacked depth and variability, so the researchers were

forced to embrace the mathematical and physical sides of sound synthesis in an attempt to learn

the important characteristics of natural sounds.

There were two approaches to researching this problem.  The first was to analyze the

instrument sound to learn which components were important to the overall effect.  This usually

involved using a Fourier Transform to look at the harmonic structure of the sound or looking at

the signal in the time-domain to determine the proper Attack-Decay-Sustain-Release envelope.

With this knowledge, those components could be controlled by different parameters possibly

yielding interesting sounds.

Another approach was to learn how an instrument produced sound and try to model that

process mathematically.  For example, a brass instrument could be modeled by simulating the

buzzing of the mouthpiece with a pulse train and the body with a filter bank.  This method is

more complex than analyzing to sound alone because there is often a strong coupling between

the instrument body and the mouthpiece which is not taken into account in the simple model

above.1  There are also many other factors contributing to the sound of an instrument, including

the player and the instrument itself.  Consequentially, sound analysis usually comes before

                                                  
1.  Wayne Slawson, Sound Color (Los Angeles: University of California Press, 1985), 28.
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instrument analysis when researching instrument sounds; although, both methods have their

advantages and both provide valuable information.

The early pioneers of sound synthesis were also confronted with issues related to

perception.  A sound can be analyzed in two ways: physically and psychologically.  The physical

analysis includes the harmonic structure and the time-domain envelope described above.  These

components are determined to be important to the sound only through psychological analysis.  In

other words, the ear decides which parts of a sound are essentail to its perceptual effect.  When

producing musical tones on a computer, the psychological effect of the sound is usually more

important than the physical parameters describing it and often the relationship between the

physics of a sound and its interpretation is unclear.  In fact, a researcher named Roger Shepard

demonstrated this by creating a sequence of tones that is interpreted differently by different

people.  Some hear an ascending sequence and others hear a descending sequence.2 The field of

psychoacoustics tries to understand how humans perceive and process sounds and this

knowledge is invaluable to sound synthesis.

The following sections describe my research in both the physical and psychological

aspects of sound.

Physical Aspects of Sound

Sound is a vibration transferred through a medium.  In the case of instrument sounds, the

vibration comes from the instrument and the medium is the air.  From a physical point of view,

the vibrations of the instrumentÕs body push the surrounding air molecules, creating patterns of

                                                  
2.  Roger Shepard, ÒPitch Perception and Measurement,Ó in Music, Cognition, and Computerized Sound, ed. Perry

R. Cook (Cambridge: The MIT Press, 1999), 159.
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condensations and rarefactions that directly relate to the vibrations of the body.  The air

molecules near the instrument push other air molecules, passing the pattern of vibrations outward

from the source in the form of a longitudinal wave.  This wave carries the pattern of vibrations

through the air at approximately 343 meters per second.3
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Violin: Displacement Waveform

The displacement of an air molecule due to a waveform can be plotted in time in a graph

like the diagram above.  The diagram shows the displacement pattern of air molecules when a

violin is playing middle C; this sound is Track 1 on the CD.  The y-axis of the diagram

corresponds to the amplitude of the displacement and the x-axis corresponds to time.  The other

physical properties of sound, such as period, frequency and phase, can be described in relation to

these two dimensions.

The period of a waveform is the amount of time it takes for the waveform to complete a

full cycle.  In terms of displacement, this is the amount of time it takes for an air molecule to

                                                  
3.  David Halliday, Robert Resnick, and Jearl Walker, Fundamentals of Physics (New York: John Wiley & Sons,

Inc., 1997), 427.
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move forward and backward to end up in the same location.4  The diagram of the violin middle C

shows three full cycles.  The time is expressed in samples along the x-axis and one period is

about 170 samples.  Since the sample rate of the recording is 44100 samples per second, the

period of this waveform is about .0038 seconds.

More often, when discussing musical sounds, we talk about the frequency of a waveform.

The frequency of a waveform is how many full cycles of the waveform we will hear in one

second.  Its value is one divided by the period and it has units of cycles per second, or Hertz

(Hz).  Using the calculation above for the period, the frequency of the violin middle C is about

263 Hz.

Phase is a measure of how much of the period has been completed at a certain time.  It

can also be thought of as a value that keeps track of location in the cycle relative to a starting and

ending displacement.  Its value is related to both period and time and it is measured in degrees.

Zero degrees corresponds to a starting displacement.  180 degrees corresponds to the

displacement halfway between the starting displacement and the location where the period

repeats.  At 360 degrees, the period is complete and the displacement is the same as it was at

zero degrees.5

Most sounds we hear are the combination of several frequencies with varying amplitudes

and phases.  These component frequencies can be divided into two groups: harmonic and

nonharmonic partials.  Harmonic partials are all the frequencies that are integer multiples of a

fundamental frequency.  Nonharmonic partials is a general category for all the frequencies

present in a sound that are not integer multiples of the fundamental.  Musical sounds have both

                                                  
4.  Hubert S. Howe, Jr., Electronic Music Synthesis (New York: W. W. Norton & Company Inc., 1975), 4.
5.  Ibid., 5.
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harmonic and nonharmonic partials, although the nonharmonic partials typically occur during the

attack of the note and quickly decrease in amplitude.6

It is often useful to view a sound in terms of its frequency components.  FourierÕs

Theorem tells us that any periodic signal can be represented in terms of sine waves that are

integer multiples of a fundamental frequency.7  For example, the diagram below represents the

middle C on a violin in the frequency domain.  In this picture, the fundamental is the first peak

from the left and it is the strongest in amplitude; although, this is not the case for many

instrument tones.  The diagram also shows that all of the peaks are the same distance apart and

that distance is equal to the frequency of the fundamental.
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Violin: middle C

Psychological Aspects of Sound

The psychological aspects of a sound are the dimensions associated with the perception

of sound waves.  Two such aspects are pitch and timbre.  Pitch is the perceptual measure of

                                                  
6.  Ibid., 7.
7.  Erik Spjut, ÒAn Introduction to Signal Processing with Csound,Ó in The Csound Book, ed. Richard Boulanger

(Cambridge: The MIT Press, 2000), 400.
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frequency and is relatively simple to understand when compared to timbre.  Timbre is often

defined as the quality of a sound that allows it to be distinguished from other sounds of the same

pitch.8

Pitch corresponds closely to the physical measure of frequency.  All frequencies,

however, are not perceived as pitches.  Most people hear frequencies as pitches from around 20

cycles per second to 16,000 cycles per second.  Below this limit, frequencies are heard as

individual pulses and frequencies above this limit are inaudible.  This range of frequencies

depends on the individual and usually gets smaller with age.9

In musical tones, as discussed above, there are often many frequencies present.  Pitch is

perceived when the frequencies in the sound are integer multiples of a fundamental frequency.

For example, compare the frequency spectrum of the violin middle C in the section above, to the

frequency spectrum of the cymbal crash below.  The different frequency components of the

violin note appear to be evenly spaced at integer multiples of the fundamental, whereas, the

frequency components of the cymbal crash are not.  We perceive the multiple frequencies in the

violin note as a single pitch.  The multiple frequencies present in the cymbal crash are not

perceived as a single pitch.  Tracks 1 and 2 on the CD are the violin middle C and the cymbal

crash.

                                                  
8.  Howe, 23.
9.  Ibid., 18.
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Frequency Spectrum of Cymbal Crash

An interesting fact is that the fundamental frequency does not need to be present in the

musical tone for pitch to be perceived.  As long as three sequential harmonics of a fundamental

are present, the fundamental will be perceived as the pitch of a sound.10  This fact surprised me

so I created several sounds that were combinations of sine waves at different frequencies.  These

sounds are Track 3 on the CD.  The first sound and last sounds are sine waves at 110 Hz; these

serve as reference pitches.  The second sound is a combination of sine waves at 330 Hz, 550 Hz

and 880 Hz.  These are all integer multiples of the fundamental 110 Hz.  When I listen to this

combination, it does not have the same pitch as the reference pitch.  I hear the individual

component frequencies separately.  The third sound is a combination of sine waves at 220 Hz,

330 Hz and 440 Hz.  These are sequential integer multiples of 110.  I hear this sound as having

the same pitch as the reference pitch although the reference pitch is not present in the sound.

This is a good demonstration of pitch perception.  A fundamental pitch is perceived if there are at

least three sequential harmonics of that fundamental present in a sound.

                                                  
10.  John Pierce, ÒIntroduction to Pitch Perception,Ó in Music, Cognition, and Computerized Sound , 59.
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One aspect of pitch particularly important to music is the perceived similarity of pitches

in a 2:1 ratio.  This ratio is called an octave and is important to music because pitches an octave

apart are considered to be the same note in a different register.  For example, the note A

corresponds to pitches with fundamentals at 55 Hz, 110 Hz, 220 Hz, 440 Hz, 880 Hz and so on.

The octave is the basis for the equal tempered tuning system, a fundamental part of Western

music.11

Another psychological dimension of a musical sound is its timbre.  This is the quality of a

sound that allows a listener to distinguish it from other sounds of the same pitch.  In other words,

timbre associates a sound to the source that produced the sound.12  The perception of timbre is

more complicated than pitch but two aspects of the sound, related its the spectrum, seem to be

important.  The first is distribution of the harmonics and their relative strengths.13  The second

aspect deals with regions of strong amplitudes called formants.14

The overtone structure of a sound is related to its perceived timbre.  For example, timbre

tends to get brighter and harsher as the higher partials are increased in amplitude.  An overtone

structure with only odd harmonics will sound hollow in comparison to a sound with all the

harmonics.  To demonstrate these basic observations, I created three sounds with different

overtone structures and recorded them to Track 4 on the CD.  The first sound is a fundamental

and nine harmonics with the relative amplitudes decreasing from one harmonic to the next

highest harmonic.  The second sound is the same as the first, only the amplitudes of the

harmonics are increasing. Since the upper harmonics are stronger in the second sound, its timbre

                                                  
11.  Howe, 19.
12.  Ibid., 23.
13.  Ibid.
14.  Max Matthews, ÒIntroduction to Timbre,Ó in Music, Cognition, and Computerized Sound , 82.
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is brighter than that of the first sound.  The third sound has nine harmonics with equal amplitude

and the final sound has only the odd harmonics of the third sound.  Since only the odd harmonics

are present in the last sound, its timbre is more hollow than that of the third sound.  These

general observations can also be applied to the overtone structure of instrument sounds.

The overtone structure, or spectrum, of a sound can be found by taking the Fourier

Transform of the signal.  The Fourier Transforms of the same pitch on two different instruments

are plotted below.  Using the general observations above, the oboe should sound harsher than the

clarinet because it has relatively strong upper harmonics.  The clarinet should sound more hollow

in comparison because its spectrum is missing the first two even harmonics.  Track 5 on the CD

contains the oboe B-flat followed by the clarinet B-flat.
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Oboe: B-flat below middle C
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The plots above show the amplitudes for different frequency components of the sound.

After looking at these plots, several questions arise.  Does this pattern of harmonics remain the

same from note to note?  If this pattern of harmonics happens at a higher frequency, will the

timbre be the same?

The answers to these questions are mixed.  To research the second question, I created

three square waves at frequencies of 110 Hz, 165 Hz and 220 Hz.  The waves all have the same
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pattern of harmonics; the fundamental has an amplitude of 1 and the nth harmonic has a relative

amplitude of 1/n.  These three square waves are Track 6 on the CD.  To my ears, these

waveforms all have the same timbre.  I then tried the same technique using a pattern of

harmonics derived from a bassoon sound.  I made three notes with this pattern of harmonics: the

first at 110 Hz, the second at 165 Hz and the third at 220 Hz.  I then compared these to the actual

sound of a bassoon playing those pitches.  This is Track 7 on the CD.  The first sound is the

synthesized bassoon and the second sound is the real bassoon.  The 110 and 165 Hz notes sound

similar to the actual bassoon but the 220 Hz note sounds pinched in comparison.  The further

away from the frequency of the original note, the less the synthesized note sounds like a bassoon.

The property of a bassoonÕs timbre that identifies it as a bassoon is its formant structure.

A formant is a fixed frequency area in which the loudest partials of a tone occur.15  An

instrument may have several formants so they are collectively called the formant structure of the

instrument.  The formant structure affects different partials of different notes thus changing the

overtone structure from note to note.  We perceive notes from the same formant structure as

belonging to the same instrument so these notes have the same timbre.  Below is a plot of the

spectrums of every note in the bassoonÕs normal range, almost three octaves of notes.  This

shows where the bassoon has strong and weak harmonics. Around the 250th frequency bin, the

bassoon always has a strong harmonic, whereas, harmonics near the 300th frequency bin are

always weak in comparison.  This suggests that the filtering action of the body of the bassoon is

independent of the harmonics produced by the double reed.  Experiments involving the formant

structure of the bassoon are detailed in the section on subtractive synthesis.

                                                  
15.  Howe, 24.
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So far I have discussed overtone and formant structure as being important aspects of

timbre.  If these were the only important elements of an instrument sound then we could

synthesize these sounds by creating waveforms with all the harmonics at the correct amplitudes.

The first two notes of Track 7 suggest that there is something more to an instrument sound than

the amplitudes of its harmonics.  Both notes have the same overtone structure but the synthesized

sound sounds lifeless compared to the real sound.

There are several reasons why synthesizing sounds by copying only the overtone

structure fails to reproduce convincing instrument sounds.  The first is the assumption that

instrument tones are made up of only harmonic partials.  This certainly is not true for the attack

of a sound.  For example, in a trumpet note, many nonharmonic partials are present for a short

duration at the beginning of the note. These are very important to our perception of the whole

note.  To demonstrate the importance of attacks, I took recordings of 5 instruments and a human

voice and removed the attacks from the notes.  This experiment can be found on Track 8 on the

CD.  The sounds in order are piano, oboe, trumpet, clarinet, voice and violin.  Although, I can

distinguish one instrument from another, they are difficult to identify without the attacks.
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The second reason why attempts to synthesize a sound from its spectrum have failed is

that the Fourier Transform of a sound gives the average of the amplitudes of the harmonics over

the length of the signal.  As a result, variations in the amplitudes of the harmonics will not show

up in the spectrum.16  A simple way to regain some of the lost variations is to divide the signal

into pieces and find the spectrum of the individual pieces.  The trade off is frequency resolution.

A question that often arises when trying to synthesize instrument sounds is the

importance of phase.  As an experiment, I created some waveforms made from the first ten

harmonics of a sawtooth wave.  The phases of the harmonics were chosen to be different for each

waveform and the resulting time-domain plots look very different.
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Each waveform was played back at three different frequencies: 110 Hz, 220 Hz and 440

Hz.  On Track 9, you will hear the three waveforms above from left to right at each of the

frequencies.   To my ears, the second waveform sounds a little muffled and the first and third

sound identical.  The second waveform still has the same timbre as the others.  It seems

reasonable to conclude that phase has little effect on the perceived timbre of a sound.17

                                                  
16.  Howe, 23.
17.  John Pierce, ÒSound Waves and Sine Waves,Ó in Music, Cognition, and Computerized Sound , 47.
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CHAPTER 2

CLASSIC SYNTHESIS TECHNIQUES

This chapter discusses my experiences with the classic frequency-domain synthesis

techniques.  Frequency-domain techniques can be divided into two subcategories: linear and

nonlinear.  Linear techniques do not generate any frequencies that were not in the input signals;

whereas, nonlinear techniques can generate new frequencies.  Two important linear techniques

are additive synthesis and subtractive synthesis.  The most common nonlinear techniques are

frequency modulation and amplitude modulation.18  The following sections detail my

experiences with these techniques.

Frequency-domain synthesis is based on FourierÕs Theorem that any periodic signal can

be expressed as a sum of sine waves at different frequencies, each with its own amplitude and

phase.  As discussed above, phase seems to make little difference in the resulting timbre so it is

usually left out of the synthesis techniques.

Two important linear frequency-domain techniques are additive synthesis and subtractive

synthesis.  Additive synthesis starts with simple sine waves and sums them at different

amplitudes to create a spectrum similar to the instrument being modeled.19  Subtractive synthesis

usually starts with noise or waveforms with many harmonics and then shapes the waveforms to

create the necessary spectrum.20  These techniques are often adequate for sounds where the

harmonics do not vary over time.  Unfortunately, the harmonics of most instrument tones vary

considerably, so additive and subtractive synthesis techniques often sound lifeless.

                                                  
18.  Rajmil Fischman, ÒA Survey of Classic Synthesis Techniques in Csound,Ó in The Csound Book , 223.
19.  Ibid., 224.
20.  Ibid., 230-1.
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Nonlinear techniques can easily produce dynamic spectra and sound more realistic than

linear techniques.  Two classic nonlinear techniques are amplitude modulation and frequency

modulation.  Both techniques use a signal, called the modulator, to change another signal, called

the carrier, over time.  In amplitude modulation, the modulator changes the amplitude of the

carrier over time.21  In frequency modulation, the modulator changes the frequency of the carrier

over time.22  Both techniques are fairly simple to implement and can produce decent results from

a small amount of information.

Additive Synthesis

Additive synthesis combines sine waves of different frequencies and amplitudes to create

a sound.  This is the most basic type of synthesis, but is useful for demonstrating many issues

relating to timbre.

                                                  
21.  Ibid., 237.
22.  Ibid., 249-50.
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My first experiment with additive synthesis was to look at the FFT of instrument sounds

and try to recreate the sounds by summing sine waves at the appropriate amplitudes.  Above are

the FFTs of the same note on two different instruments.  I created waveforms that were sums of

sine waves with the amplitudes set to values from the FFT.  I then multiplied each signal in the

time domain by an envelope function to simulate the attack, sustain, decay and release of the

note.  The clarinet sounds are Track 10 on the CD and the trumpet sounds are Track 11.  In both

tracks, the real instrument sound is first and the synthesized instrument is second.  For the

clarinet, the resulting sound is close to the original.  The differences I notice are that the upper

harmonics are more noticeable in the synthesized sound and it is too steady.  For the trumpet, on

the other hand, the synthesized sound is less convincing.  It is close for the sustained portion of

the note but lacks the sharpness of the attack.  The real sound also has a wavering quality that the

synthesized tone cannot have without adding more parameters.

More realistic sounds can be obtained by analyzing how the amplitudes of the frequency

components of the real instrument sounds vary over time.  To do this, I looked at windows of

2048 samples, took the FFT and recorded the amplitudes at 30 harmonics.  I then used these

values to control the amplitude envelopes of the sine waves that were producing the harmonics.
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The results of this method can be found in Track 12 on the CD.  The sound is closer to the real

instrument but the amount of data required for the note makes the method unappealing.

Subtractive Synthesis

Subtractive synthesis is the opposite of additive synthesis.  While additive synthesis

constructs complex tones by combining frequencies, subtractive synthesis starts with all

frequencies, or all harmonics of a fundamental, at equal amplitudes and uses filters to shape the

spectrum.  Filtering a noisy source is similar to the way many instruments produce sounds.  As

explained in the discussion on timbre, the double reed of the bassoon produces a buzzing sound,

almost like a pulse train.  The body of the bassoon filters this buzzing to create the characteristic

sound.

To simulate the filtering mechanism of the body, I looked at the spectrum of the note I

was trying to simulate, shown in the diagram below to the left.  Looking at the spectrum, I saw

three regions with locally high amplitudes: near frequency bins 130, 220 and 560.   I decided to

use three bandpass filters centered in those regions.  A bandpass filter lets frequencies pass

within a bandwidth above or below a center frequency; other frequencies are attenuated.  More

precisely, the bandpass filter shapes the amplitudes of frequencies around the center so that one

bandwidth away, the amplitudes have been reduced to half power.23

For the first of the three filters, I placed the center half way between the fourth and fifth

peaks, at 330 Hz.  For a bandwidth, I chose 120 Hz because this would let the sixth harmonic

pass but not the seventh or higher.  The center of the second filter was placed half way between

peaks 9 and 10, 620 Hz, with a bandwidth of 65 Hz.  This would capture the ninth and tenth
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harmonics.   The third filter was used for the upper harmonics.  It was placed at 1448 Hz and it

had a bandwidth of 260 Hz.

                                                                                                                                                                   
23.  Howe, 221.
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To simulate the reed, I created a pulse train of 337 sine waves at equal amplitude.  The

sine waves were all harmonics of C6, 65.41 Hz.  The pulse train was run through the three filters

connected in parallel and the three outputs were scaled and summed.  This produced the

waveform with the set of harmonics in the diagram above to the right.  The harmonics are not

exactly the same as the original but they are similar.  The original and synthesized bassoon

sounds are Track 13 on the CD.  Listening to the synthesized sound, it sounds somewhat like a

bassoon but not as close as an additive synthesis version.

The advantage of subtractive synthesis shows when the synthesized instruments are used

to play a scale.  For the scale using additive synthesis, I created a waveform with the amplitudes

of the harmonics taken from the note C6 on the bassoon.  I then resampled this note so that I

could get one octave of the C major scale.  For the subtractive synthesis instrument, I created
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pulse trains at each note of the scale and passed these through the same filter bank.  These scales

are on the CD on Track 14 for the additive scale and Track 15 for the subtractive scale.  A scale

of recorded bassoon notes is on Track 16.  The timbre of the additive instrument becomes

pinched as it ascends the scale; whereas, the timbre of the subtractive instrument seems to stay

fairly constant.  This is probably due to the fact that the subtractive instrument simulates the way

the bassoon works, while the additive instrument only simulates the way the instrument sounds

on one note.  If I created a filter bank with more than three filters, I could potentially get an

instrument that sounded even more like a bassoon.

Amplitude Modulation

Amplitude modulation is a technique that uses one signal, the modulator, to control the

amplitude of another signal, the carrier.  A simple case of amplitude modulation involves sine

waves as both the carrier and modulator.  The modulator wave changes the amplitude of the

carrier wave by multiplication.  Mathematically, this is represented by the equation below where

s is the output signal, fc is the frequency of the carrier and fm is the frequency of the modulator.24

s t f t f tc m( ) sin( )sin( )= 2 2π π

Since the equation above is a product of two sines, it can be transformed into the

following equation:

s t f f t f f tc m c m( ) [cos( [ ] ) cos( [ ] )]= + − −1
2

2 2π π

                                                  
24.  Fischman, 237.
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In other words, the resulting waveform will have frequency components above and below

the carrier by a distance equal to the frequency of the modulator.  This process is clearly

nonlinear because the frequencies fc + fm and fc — fm are not present in either the carrier or the

modulator.  These new frequencies are called sidebands because they are distributed evenly on

both sides of the carrier.25  The diagrams below show what amplitude modulation with simple

sine waves does to an output signal.  In this example, the carrier has a frequency of 440 Hz and

the modulator has a frequency of 110 Hz.  The resulting sidebands are at 330 Hz and 550 Hz.

The three waveforms are on Track 17 on the CD.  The first is the carrier, then the modulator and

finally the result.  The result waveform is heard as two separate pitches because there are only

two frequencies present.  To be perceived as a single pitch, three harmonics of a fundamental

need to be present.
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The process described above can also be applied to signals with multiple frequency

components.  In my next experiment I used the same carrier and a modulator with two frequency

components.  Below are the diagrams of the frequency content of the carrier, modulator and

resulting signal.  In this case, the modulator has frequency components of 110 Hz and 165 Hz

and the carrier is a 440 Hz sine wave.  The resulting sidebands are at 275 Hz, 330 Hz, 550 Hz

and 605 Hz.  The sounds of the carrier, modulator and result can be found on Track 18.

                                                  
25.  Ibid.
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Although all four sidebands are integer multiples of 55 Hz, it is difficult to perceive a pitch in the

result because it does not have three sequential harmonics.

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

carrier
100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

6

7

8

9

modulator
100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

6

7

8

9

result

In order to produce harmonic sounds with amplitude modulation, the component

frequencies of the resulting signal need to be evenly displaced by a constant frequency width and

there need to be at least three sequential harmonics of a fundamental.  This conforms to the

research done concerning pitch in the chapter on background information.  For sine waves, if the

carrier to modulator ratio is an integer or one over an integer, there is a good change the resulting

signal will be harmonic.26  For my final experiment with amplitude modulation, I used a 440 Hz

carrier and a modulator with frequencies of 110 Hz, 220 Hz and 330 Hz.  The resulting signal

had frequencies of 110 Hz, 220 Hz, 330 Hz, 550 Hz, 660 Hz and 770 Hz.  Since all of the sine

waves are integer multiples of 110 Hz and there are at least three sequential harmonics present,

the perceived pitch is 110 Hz.  These sounds can be found on Track 19.

Frequency Modulation

Synthesis by frequency modulation can achieve dynamic changes to the spectrum of a

sound without a large amount of control data.  Similar to amplitude modulation, a simple form of

frequency modulation can be achieved with sine waves using the equation below.  Instead of

                                                  
26.  Ibid., 240.
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multiplying the modulator and carrier, the modulator is added to the phase argument of the

carrier.  In the equation below, the output signal is s, α is the carrier frequency times 2π, β is the

modulator frequency times 2π and I is the amplitude of the modulation.27

s t t I t( ) sin( sin )= +α β

To rewrite the equation above in a simple form is not as easy as it was for amplitude

modulation.  John Chowning, the father of FM synthesis, showed that it could be reduced to the

equation below where n is an integer and Jn are Bessel functions.  Basically, this formula shows

that frequency modulation will produce many sidebands with amplitudes given by Jn(I).
28

s t J I n t n tn

n

( ) ( )[sin([ ] ) sin([ ] )]= − + +
=
∑

0

α β α β

When the index and modulating frequencies are small, FM synthesis can be thought of as

a vibrato.  The first example is a 220 Hz carrier modulated by a 4 Hz modulator with the index

set to 4.  This produces a vibrato on the carrier because the frequency of the carrier will change

between 216 Hz and 224 Hz four times per second.  For the second example, I changed the

modulator to 6 Hz with and index of 6.  This produces a wider, faster vibrato.  These sounds can

be found on Track 20 on the CD.

Interesting sounds occur when the modulating frequency is much higher and when the

index varies over time.  Varying the index over time is accomplished by putting an envelope

around the modulating signal.  For the next sets of tones, I varied the carrier and modulator

frequencies and put an exponential envelope around the modulating signal.  By changing only

                                                  
27.  Ibid., 249-50.
28.  Ibid., 250.
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these parameters it is possible to produce sounds that resemble multiple instruments.  Track 21

has FM versions of a trumpet, bassoon, clarinet and bell.29

The advantage of FM synthesis over additive or subtractive synthesis is that fact that

dynamic spectra are now possible using only a few parameters.  The attacks and decays are also

more realistic.  The disadvantage is that it is difficult to obtain the correct pattern of harmonics

for sustained part of the note.

                                                  
29.  Russell Pinkston, ÒFM Synthesis in Csound,Ó in The Csound Book , 264.
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CHAPTER 3

SYNTHESIS USING CONTROLLED CHAOS

The field of electronic music is constantly borrowing ideas from other fields and applying

them to music.  FM synthesis is a good example of this; it had been used in radio transmission

for years before Chowning used the equations for musical purposes.30  The synthesis technique

described in this chapter continues this tradition of borrowing from other fields.  It was originally

developed for chaotic communications but it has proven useful for sound synthesis as well.

Work on this project began in the spring of 1999 as an independent study project

proposed to Dan Hussey and me by Professor Kevin Short.  He wanted us to use a technique he

and a graduate student, Andy Parker, had developed for chaotic communications to produce

musical sounds.  At this point, there was no talk of synthesizing instrument sounds; the initial

goal was to create any kind of musical sound.  We were both involved with electronic and

computer music so naturally the project interested us.

We spent the first few weeks of that semester learning about the technique of controlling

a chaotic attractor to produce periodic waveforms.  The technique starts with a chaotic system

called the double-scroll attractor, pictured to the left.

An attractor is a fixed region in space where all

trajectories end up after a certain amount of time.

Once a trajectory reaches the attractor, it traces

around it and never leaves.  The picture to the left was

                                                  
30.  John M. Chowning, ÒThe Synthesis of Complex Audio Spectra by Means of Frequency Modulation,Ó in

Foundations of Computer Music, ed. Curtis Roads and John Strawn (Cambridge: The MIT Press, 1985), 6-7.
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created by letting a single trajectory evolve over time and it shows the double-lobed shape of the

attractor.  These two lobes are the basis for the controlling technique that is applied to this

chaotic system.

Before I describe the controlling technique, I should briefly discuss chaotic systems in

general.  A chaotic system is a deterministic mathematical object that displays sensitive

dependence on initial conditions.31  In other words, nearby trajectories will separate at an

exponential rate and this separation is not due to random input.  The behavior of such a system is

predictable over a short period of time but unpredictable in terms of long-term behavior.  This

property is particularly useful for encryption schemes because someone trying to crack the

scheme using the same chaotic system and initial conditions would end up with a different

trajectory in the long run.  Of course, the receiver of the encrypted message would also end up

with a different trajectory making the encrypted message indecipherable.  This is where the

controlling technique becomes important.

The double-scroll attractor can be controlled in such a way that the trajectories around it

become periodic.  The controlling technique exploits the fact that a chaotic system is predictable

over a short period of time.  In other words, if we know where a point is at a certain time, we can

predict with reasonable accuracy the evolution of that point for a short period of time.  On the

double-scroll attractor, this amounts to knowing around which lobes a trajectory will loop when

the current location of a point is known.

In the picture of the double-scroll attractor, the two lines are the regions where the

controls are applied.  These lines are divided into many small regions called bins.  If the point at

                                                  
31.  Steven H. Strogatz, Nonlinear Dynamics and Chaos (New York: Addison-Wesley Publishing Company, 1994),

323-4.
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the center of bin is evolved in the system over a short period of time, it is an accurate predictor of

where points in its bin will end up after the same amount of time.  This information is reduced to

knowing on which lobe a trajectory will end after a fixed amount of time when the starting bin is

known.  If the lobes of the attractor are coded with a 1 for one of the lobes and a 0 for the other,

we can predict a precise pattern of ones and zeros that will occur when the center point of each

bin is evolved.  This is essentially the information that is used when controlling the attractor.

The technique of controlling the attractor to produce certain patterns of bits is actually

unimportant to the way in which it is used for producing sounds.  In fact, the sound production

technique is sort of a byproduct of the communications technique.  When a specific pattern of

controls, ones and zeros, is applied repetitively to an evolving system, period orbits form around

the attractor.  The periodic orbits were the inspiration for the musical use of this technique.  The

initial goal of our project was to see exactly what types of periodic waveforms could be produced

with different repeating patterns of controls.  Dan and I were to use our musical creativity along

with our backgrounds in mathematics and physics, to figure out what could be done musically

with these waveforms.

We started by using code in Matlab that would calculate the trajectory from an initial

condition and a repeating pattern of controls.  The resulting trajectory existed in three

dimensions and we extracted one dimension and saved it as a sound file.  These sound files were

usually shorter than one second and sounded like a beep or a rumble but we were inspired to

continue the search and discover different possibilities from different codes.

One of the early problems we ran into was sampling and sample rate.  The Matlab code

was using the Runge-Kutta fourth order technique to calculate the trajectory and the step size

was set very small so that the calculation could be as accurate as possible.  As a result, many of
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our waveforms were oversampled and sounded like rumbles when we played them back.  To

solve this problem, we defined a cut variable that would only save every nth point.  This way we

could keep the accuracy of a small step size while producing waveforms with audible

frequencies.  After experimentation, we found that a cut value of 10 produced the best results.

After we could successfully produce different pitches using different codes, we began to

use several codes in the same input file to create a melody.  At this point in the project, we were

viewing the codes as separate notes of the same instrument.  By sending different codes to the

attractor we were hoping to create small musical melodies.  This worked but it was very difficult

to get the attractor to respond in the expected way.  As musicians, we were used to thinking in

terms of pitch and duration.  When we first made melodies with the attractor, we had to convert

our ideas of pitch and duration into patterns of bits and numbers of repetitions.  This was a little

bit awkward and our input files became very large because we were sending many repetitions of

the same code.  Some examples of our early melodies can be found on Tracks 22 through 25.

They are called Bass, Solo, Longfile and Pop.

Soon we were pushing the limits of the original Matlab code.  Some of our creations were

taking ten to fifteen minutes to generate which was far too long to wait when we were putting the

finishing touches on a piece.  The interface was also less than ideal for our purposes.  It was

cumbersome to have to convert durations in seconds to number of repetitions.  We needed a

faster version of the code that was specific to our needs.  We decided to write a program in C

that would fit our needs.
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Original Synth.c Program

Dan and I had both taken introductory courses in programming so we did not think it

would be too difficult to write a program in C to make our sound files.  We soon realized that

this project was much larger than the weekly assignments in our introductory courses.  We

decided to divide up the project into two different tasks.  I worked on the input mechanism:

parsing the input file and creating a structural representation in memory.  Dan worked on reading

the structure and creating the output file.

Before we started working on our separate parts, we had to decide how all of our musical

events would be arranged in the program.  Our goals for this were conservation of memory and

speed.  The representation we designed uses thirty-two bits per event.  The first sixteen bits are

called the code part of the event.  This stores the sequence of ones and zeros used to control the

attractor.  The next eight bits are the info part of the event.  The info bits tell our synthesizer if

the current event is a note or a rest.  If the event is a note, the info byte holds a number that tells

the synthesizer how many bits of the code part should be used.  The final byte in our structure

holds the duration of either the note or the rest.  This structure is quite efficient yet flexible

enough so that additions to the program fit within our events.  For example, in later versions of

the program we added tempo changes and dynamics.  These we represented in our structure by a

rest event with no duration and data in the code portion of the event.

Once we had decided on the internal structure of the program, I began to work on parsing

the input file to create a list of our thirty-two bit events and Dan worked on creating an audio file

from the event list.  My portion of the code read an ASCII text file one line at a time and

tokenized it.  If the first token was a sequence of bits, these bits were copied into the code section

of the event and a special bit was set in the info part that designated this event as a note.  If the
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first token was the word Òrest,Ó then the special bit in the info part was set to zero.  In both cases,

the second token was the duration and this value was stored in the final byte of the structure.

After many weeks of programming and debugging, we had a working version of our

controlled chaos synthesizer written in C.  This software was much faster than the original

Matlab version so we could create larger and more complicated songs.  We used this code for the

pieces on Tracks 26 through 30.  These pieces are called, in order, old_comp, comp5, metal2,

metal3 and melodic.

Experience with longer pieces of music gave us more ideas about additions and

modifications to the program.  One of the first problems we came across was that it was very

difficult to find a code that would produce a specific pitch we wanted in our melody.  Up until

this point in the project we had created our melodies from pitches we knew were available.  This

inspired us to change our approach and treat the codes as different instruments instead of

different notes of the same instrument.  The waveforms were stored in a buffer and we could

resample the buffer to get different frequencies.  This modification to the design made many

more frequencies possible.

Once we had decided that the codes could be different instruments we naturally wanted to

use more than one instrument at a time in our compositions.  We started to write a version of the

synth program that would allow four instruments to play at the same time.  These modifications

became DanÕs project in the summer of 1999 and before long he had made the changes and

composed pieces with multiple voices.

In the fall of 1999, the original program had become quite large and I had lost track of all

the modifications that were made over the summer.  I decided that it would be a good time to

rewrite the program from scratch with design goals that we had learned from making the original
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version.  One important goal was a simple interface for the input file.  I wanted to be able to

specify the notes by their octave and pitch class name.  For example, 8.00 is middle C and 9.00 is

the C above that.  This would make composition easier because previous versions of the code

used frequency in Hertz to specify the note.  Another goal was flexibility.  I wanted the program

to support dynamics, tempo changes, different tuning systems and an unlimited number of

instruments.  I also wanted the program to be able to write .wav files directly.

Another important task was to learn everything that this system of sound synthesis had to

offer.  With our original program we had picked codes at random and loosely classified them as

noisy or clean.  Now we wanted to know how many codes would produce periodic behavior and

what each code sounded like.  In other words, we needed a library of sounds with every periodic

code.  This, along with the desire to produce a new version of the synth program, prompted me

to write the code in C++.  Since both programs would need code to calculate the trajectory and

apply controls, I could write objects that handled this and use them in both programs.

The Library

I decided to work on the library before I worked on the new synth program because I

wanted to know every sound this technique had to offer.  First I worked on the code to search for

control codes that would produce periodic orbits.  This code was divided into two C++ classes: a

trajectory class and a control code class.  The trajectory class advanced a point to the next point

and controlled it if necessary.  The control code class took care of the control codes.  It would

take a string of ones and zeros and convert it to an integer or convert the current control code

integer to a string.  It would also check each bit sequentially when called by the trajectory object.
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After all the bits had been checked, it would loop back to the first bit.  These two objects

together efficiently calculated the trajectory of the double-scroll attractor.

The code object was also able to increment the current code in integer format to the next

code.  This was useful when checking all the codes with a certain number of bits.  For example,

if I were checking all the four bit codes, I would tell the code object that the bit count is four and

I would set the first code to 0.  The code object would then increment this number after each

code was checked until it reached the binary code 1111.  The process would then stop and I

would have checked all the four bit codes.

It quickly became clear that checking every code in this fashion would take a very long

time for codes with high bit counts.  For instance, there are 1024 codes with ten bits.  It was

useless to check them all because many codes would produce the same orbits.  In fact, if one

code produced periodic behavior then any other code that was a rotation of the original would

produce periodic behavior.  By rotation, I mean that 101001 is the same as 010011, 100110,

001101, 011010 and 110100.  To reduce the number of codes to check, I defined the following

equivalence relation on the set of codes: codes are considered equal if they can be rotated so that

they match bit by bit.

This greatly reduced the number of codes to check.  For example, after passing to

equivalence classes for 10 bit codes there were only 108 unique codes instead of 1024.  For each

code that remained, I tested to see if it produced a periodic orbit.  This amounted to setting the

initial condition in the center of each bin and evolving the system.  Every time the trajectory

crossed a control line, I checked which bin it was in and which bit we were on in the code.  If the

trajectory ever returned to the same bin at the same bit, the process was stopped and started in

the center of the next bin.  If a periodic orbit was found from every bin, then the code was
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written to a file of periodic codes.  Out of the 108 unique ten bit codes, there were 61 that

produced periodic orbits.

After I finished the library of codes, I used the same objects to build a new version of the

synth program.  This version supported multiple instruments, dynamics, time signatures, tempo

markings and different tunings systems.  In December of 1999, I used this new version of the

program to synthesize the first thirty measures of BachÕs Toccata and Fugue.  This piece can be

found on Track 31 on the CD.

Instrument Modeling

In the spring of 2000, I began to research synthesis of instrument tones so that the

technique of controlled chaos could be used for this as well.  One of first steps I took was to look

at the spectrums of notes over the entire range of a particular instrument.  When I compared the

spectrums of instrument tones to those of our waveforms, I was surprised to find that many of

our waveforms had similar structure.  For example, compare the spectrum of the bassoon note

below with the spectrum of the waveform generated by code 0001.  The patterns of amplitudes

of the first six harmonics are very similar in both spectrums.
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Since our waveforms seemed to have structure similar to instrument tones, the natural

direction to take was to write a program that would find the best match waveform in our library

for any natural instrument tone.  The program essentially consisted of two parts: a way of coding

our waveforms and a way of matching instrument sounds to them.

Since we were matching the waveforms based on the amplitudes of the harmonics, the

most sensible way to represent the waveforms would be by a vector of these amplitudes.  In the

current version of the library, all of the codes were periodic over 1024 points.  This made the

FFTs very clean and all of the peaks were in the center of the frequency bins.  I took the first

sixty-four harmonics and that became my vector of amplitudes.  If any of the amplitudes in my

vector were less than 0.5% of the maximum, I set the value of that harmonic in the vector to

zero.

I then made each sixty-four dimensional vector have unit length.  This was so they could

be compared to vectors from instrument tones using the formula below.

a b a b• =| || | cosθ

Since the vectors were scaled to have unit length, the dot product on the left is equal to

the cosine of the angle between the vectors.  If the angle between the vectors is zero, then the dot

product is equal to one.  This is the maximum value that the dot product can have, and it means

that the vectors a and b are identical.  If the angle between the vectors is close to zero, then the

dot product is close to one.  The best match was chosen to be the vector that produced the

greatest dot product with the instrument vector.

As mentioned above, the waveforms were all periodic over 1024 points.  This meant that

they all had a fundamental frequency of 44100/1024 Hz, approximately 43 Hz, when the sample

rate was 44100 samples per second.  To find the values for each position in the vector, I looked
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for the amplitudes of each harmonics.  For example, the first harmonic is around 43 Hz so I

defined a small window from about 41 to 45 Hz and picked the largest amplitude in that window.

The second harmonic is around 43*2 Hz, so I looked in a window around that frequency and

picked the largest amplitude.  I repeated this process for the first 64 harmonics and stored them

as the vector.

Now I had to create vectors that represented an instrument sound.  Since instrument

sounds vary over the duration of the note, I decided to divide each note up into sections and find

the vector for each section.  At this point, it was important to know the fundamental frequency of

the note I was analyzing because the FFTs of the instrument sounds were not as clean as those of

the library waveforms.  There were often frequencies in the instrument recordings that I did not

want to end up in my vector of peaks.  For example, in the recordings of the piano notes, the

sound of the hammer striking the string shows up as strong low frequencies.  Although that

sound is important to the attack, it does not affect the amplitudes of the sustained harmonics.  To

facilitate the process, I encoded the fundamental frequency in the audio file name.  With

knowledge of the fundamental of the note being analyzed, I was able to only look at frequencies

within a window around each of the harmonics.  All of the other frequencies were ignored.  The

amplitudes of the first sixty-four harmonics were stored as a vector.

The instrument vectors were also normalized to have unit length and I took separate dot

products with all of vectors in the library.  The dot product with the value closest to one was the

best match.  This method found reasonable matches but there was still one improvement that I

wanted to make.

The spectrums of natural instrument almost never have sixty-four strong harmonics;

sometimes there are only five to ten.  This observation led me to make a change to the program
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that found the best match.  I had noticed, when looking at the spectrums of the controlled-chaos

waveforms, that often a desirable pattern of harmonics would occur starting at the second or third

harmonic.  My program would not pick this up as a good match because I always matched the

instrument peaks starting at first.  The new version is now able to find matches within the vectors

of controlled-chaos waveforms.  For example, if my instrument vector had five prominent peaks,

I would try to match this against peaks one through five, two through six, three through seven,

and so on for all of the controlled-chaos vectors.  The best match out of any of these is recorded

along with the starting peak.

This method of synthesis offers several advantages over other frequency domain

techniques.  The first advantage is that this method can achieve dynamic frequency spectrums

with minimal information.  It captures the changes in the amplitudes of the harmonics by finding

multiple best matches for the attack, sustain and release portions of the note.  Although similar

results could be achieved with of additive synthesis, the amount of information required for this

would be immense.  Additive synthesis would need to store multiple sixty-four bit floating-point

values for every harmonic to capture the changing amplitudes.  This new technique can store all

of the necessary information for a decent match in only a few bits: up to sixteen for the control

code and some extras that keep track of the best match.

The second advantage of this synthesis technique is that it uses the actual instrument data

in the synthesis process.  The nonlinear techniques, such as FM synthesis, could easily

synthesize dynamic spectrums but could not easily match the pattern of harmonics from natural

instrument sounds.  This is because the sidebands were symmetric on either side of the carrier

frequency; a phenomena that does not occur in natural sounds.  Creating instrument-like sounds
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with these methods required trial and error, a time consuming process.  By using the instrument

waveforms to pick the best match, we have an efficient method that produces decent results.
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CHAPTER 4

CONCLUSIONS AND FUTURE DIRECTIONS

There are still many options to explore concerning sound synthesis by controlled chaos.

For example, several of the waveforms from the library could be used together at once to match

instrument sounds more closely.  One method could be to match the lower harmonics with one

code and the upper harmonics with another.  This way, we could get good matches in both

regions, which would probably, produce even better results.  I am also looking into using the

waveforms with many harmonics in combination with filter banks to try subtractive synthesis

techniques.  Some of the codes in the library produce up to 128 harmonics and these rich

waveforms might create realistic results when properly filtered.

I also plan to research other techniques for analyzing instrument sounds.  Currently, I am

relying on large and small Fourier Transforms to give me information about the frequency

components of the notes.  One of the limitations of the Fourier Transform is that in order to

obtain good frequency resolution you have to give up time resolution.  Unfortunately, both

resolutions are important to instrument sounds.  A good demonstration of this fact is the analysis

of a piano note.  For notes in the middle of the piano, there are three strings per note.  These

strings are tuned to the same frequency but are never exactly the same.  Consequentially, the

small differences in frequency between the three strings cause beats that add warmth and depth

to the sound.  In order to separate these frequencies into different bins, a very large number of

data points would be needed.  But in piano notes, the upper harmonics decay faster than the

lower harmonics and this decay would be lost because the Fourier Transform of a large number

of points gives the average strength of each harmonic in that window.  Therefore, it is difficult to
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capture high frequency resolution and time resolution with the Fourier transform.  Several

methods, called time-frequency methods, have been created to deal with this problem.  One such

method is wavelet analysis and it has been applied to music signals with success.  I plan to look

into this method further to learn how it can help the synthesis technique.

Although many promising directions have yet to be explored, the synthesis technique

described in Chapter 3 is already producing remarkable results.  The library of periodic

waveforms is quite diverse and decent matches have been found for many common instruments.

But as I learned from researching the classic synthesis techniques, there is more to an

instrumentÕs sound than the relative strength of its harmonics.  There are attacks, decays and

microvariations in the waveform that seem unimportant in the physical analysis of the sound, but

are essential to its perceptual effect.  This is where synthesis by controlled chaos has a built-in

advantage.  Chaotic systems have a natural attack when the trajectory approaches the attractor

and the microvariations in the chaotic system itself cause the long-term unpredictability.

Controls to the trajectory are only applied in two spots along the attractor leaving most of the

waveform untouched.  A look at any of these waveforms in the time-domain confirms that they

are inherently more complex than the sum of a few sine waves.  This is something our ears had

told us from the beginning; the sound of these waveforms seemed to have depth.  Now that we

have cataloged all of the possible waveforms from this system we need a way of combining them

into even more complicated waveforms.  Using many waveforms together to create a single

sound is an exciting and promising direction for further work.
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APPENDIX I: CD TRACK LIST

Track 1: Violin middle C
Track 2: Cymbal crash
Track 3: Sine wave A 110, 3rd 5th 8th, 2nd 3rd 4th, sine wave A 110
Track 4: Decreasing amplitudes, Increasing Amplitudes, All harmonics, Odd harmonics
Track 5: Oboe Bb7 and Clarinet Bb7
Track 6: Square waves A 110, E 165 and A 220
Track 7: Synthesized and Real Bassoon at 3 pitches
Track 8: Concert D by different instruments without attacks
Track 9: Three sawtooth waves with different phase components at 3 pitches

Additive Synthesis
Track 10: Clarinet real, clarinet synthesized
Track 11: Trumpet real, trumpet synthesized
Track 12: Trumpet with many small FFT windows

Subtractive Synthesis
Track 13: Original and Subtractive synthesis bassoon
Track 14: Scale using additive synthesis
Track 15: Scale using subtractive synthesis
Track 16: Scale made from recordings

Amplitude Modulation:
Track 17: Simple AM
Track 18: Modulator with two poles
Track 19: Harmonic AM

Frequency Modulation:
Track 20: Simple FM: vibrato
Track 21: Trumpet, bassoon, clarinet, bell

Chaos
Track 22: Bass
Track 23: Solo
Track 24: Longfile
Track 25: Pop
Track 26: old_comp
Track 27: comp5
Track 28: metal2
Track 29: metal3
Track 30: melodic
Track 31: bach
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