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Abstract 
A fundamental obstacle in evolutionary simulations is the 
necessity of designing more complex simulations to elicit 
more complex behaviors.  We use a combat-based fitness 
measure to attempt to circumvent this problem.  We have 
designed a simulation that simultaneously evolves the brains 
and bodies of creatures for one-on-one combat in a three-
dimensional environment with realistic physics.  By giving 
the creatures a rich sensorium, we allow them to react 
sensibly to each others' actions.  We discuss the effective, 
elegant and diverse simulated fighters that emerge, and 
examine whether qualitatively greater evolutionary 
complexity arises. 

Introduction 
The purpose of a Sims -style (Sims 1994a) simultaneous 

evolution of creature bodies and brains is to allow the 
greatest possible flexibility in evolution's solution to a 
given fitness problem.  Sims found that a goal as simple as 
rapid locomotion elicited a variety of wildly different 
morphologies, with neural circuitry finely tuned for 
bounding across the virtual Serengeti.   

In (Sims 1994b) the same environment and creature 
representation was used to evolve participants in a kind of 
contact sport.  Creatures had to grab a box in front of them 
and then figure our how to keep it away from their 
opponents.  This simple task elicited an evolutionary arms 
race as each generation's tactics were foiled by the next.   

Subsequent work of this kind has gone in two directions.   
More complex and subtle genetic representations, such as 
L-systems (Hornby & Pollack 2001) and genetic regulatory 
networks (Brongard 2002), have been used to evolve 
articulated robots with realistic physics--but only to 
accomplish simple tasks such as locomotion.  Co-evolution 
and arms races in warring animats has been considered in, 
for instance, (Cliff & Miller 1996) and (Floreano & Nolfi 
1997), which simulate the chase between predator and prey 
with highly simplified models of the world.   

(Nolfi & Floreano 1998) discuss the  circumstances in 
which arms races may occur, concluding that both 
environmental and sensory richness encourage this 
phenomenon.  We therefore embed our creatures in a 
rigorously simulated physical environment and provide 
them with a full suite of kinesthetic and external senses.  
Our creatures are then tested on their ability to engage in 
physical combat.  Pairs of creatures are placed in an arena 
and allowed to fight.  A specific part of each body is 

designated a target; the winner is the first creature to touch 
its opponent's target.   

Sims' competing creatures could see only the box they 
sought, but were blind to their opponents.  Our combat-
based fitness measure benefits from the moving fitness 
landscape of all co-evolving systems and the phenotypic 
complexity of a Sims -style simulation, while also requiring 
our creatures to be non-deterministic and responsive in 
dealing with opponents.  We hope to observe an 
improvement in the resultant complexity of our organisms.   

Creature Morphology 
As in Karl Sims’ work, our creatures are three-
dimensional, articulated creatures whose morphologies are 
determined by directed graphs.  Unlike his creatures, ours  
are composed entirely of spheres, connected by motors that 
spin along the axis of attachment, much like a wheel and 
axle.  All body parts originate from a root node that also 
functions as the target for opponents' attacks.  Each sphere 
has a set of sensors associated with it, along with an 
embedded neural structure that connects sensors to the joint 
motor via a network of computational neurons.   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: Sample directed-graph genotypes and the resulting 
phenotypes.  Limits show how many more links will be followed.   

 
Examples of two directed graph genotypes and the 

morphologies they represent are shown in Figure 1. A 
genotype is translated into a phenotype by starting from the 
graph's root node and following all of the outgoing links; 
each time a link is traversed, a new sphere is attached in 
the phenotype.  Links specify the radius of the first sphere 
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in a limb, a scaling factor for subsequent spheres, and other 
parameters such as the position of attachment.  Nodes can 
be linked recursively back to themselves or in larger 
cycles, and a single node can link multiple times to its 
child.   

The total number of spheres allowed in any creature is 
limited globally, forbidding them from becoming too large 
to simulate.  To prevent the representation of infinite-
length limbs, nodes have recursive limit parameters that set 
how many more downstream links may be traversed by the 
translation algorithm.  A separate set of links flagged as 
extremities can be followed when a recursive limit is 
reached, so that structures like hands may be attached to 
the end of recursively-built arms.   

These features make our directed graph representation 
very expressive.  Small mutations in the genotype can 
result in drastic changes in morphology, facilitating 
evolutionary exploration of the fitness landscape.   

Sensors  
Each part of a creature’s body has sensors that feed it input 
about its environment so that it can react to changing 
conditions.  One sensor indicates whether the body part is 
touching either the ground or any part of its opponent.  
Three sensors indicate the spherical coordinates of the 
enemy’s root node, and three more indicate the spherical 
coordinates of the nearest enemy sphere.  The last two 
sensors report the position and velocity of the sphere’s 
joint motor.  All values returned by sensors are given in the 
reference frame of the sphere to which the sensor is 
attached.   

In giving our creatures sensors, it would be ideal to 
provide complete information about the posture and 
movement of the opponent--information a human would 
glean from watching a video of a battle.  However, there is 
a tradeoff between having more information available to 
enable more sophisticated tactics, and keeping the neural 
structure simple enough for evolution to find useful control 
structures (Martin 2001).  The sensors we used proved 
more than adequate.   

Neural Structure 
We want to provide our creatures with the most general 
possible way of responding to the information provided by 
their sensors.  Ideally, the creature should be able to mull 
over past events, combine information from throughout its 
body, and maintain an internal state.   

To this end, we use directed graphs to specify our neural 
circuitry.  Our method is comparable to that of (Sims 
1994a), with some elaborations.  Each node of the 
morphologic genotype has an embedded graph directing 
how information will be processed in the phenotype.  
Nodes in the embedded graphs, referred to as "neurons," 
represent a specific operation that takes some number of 
inputs and computes a single output.  Links of the graph 

indicate which outputs are to be fed to which inputs.  Self-
loops and cycles in the graph represent computational 
feedback loops, and make our representation Turing 
complete.   

Sensors are represented as neurons that take no inputs.  
A lone motor neuron in each body sends its input to the 
attached axle motor.  Our motors are velocity controlled, 
interpreting the motor neuron's signal as an intended 
velocity; a positive signal indicates counterclockwise 
motion, while a negative number indicates clockwise 
motion.   

The rest of the neuron types perform computations: 
• standard arithmetic operations +, -, *, / 
• unary operations sin, cos, atan, log, exp, & sigmoid 
• logical operations <, >, & if-greater-than 
• integration, differentiation, smoothing & interpolation 
• min, max, sum-threshold 
• sinewave & sawwave 
• constants (fixed output) 
The sinewave and sawwave neurons are time-dependent, 

varying with simulation time.  Other neurons, such as the 
constant neurons, are dependent on evolved parameters in 
addition to any variable inputs.   

At each time step of the simulation, the neurons 
calculate their outputs in parallel based on their current 
inputs.  It therefore takes more time for the organism to 
make a complex calculation than one that is simple.   

Figure 2 illustrates the neural structure for a simple 
behavior, a proportional controller.  The spherical 
coordinate denoting the angle in the x-y plane of the 
opponent's target (φ) is multiplied by -0.1 and fed to the 
motor neuron.  In simulation, this body part would rotate to 
keep the opponent's target at a constant bearing.   

 
 
 
 
 
 
 
 

Figure 2: A basic neural structure encoding a proportional 
controller. 

Advanced Neural Structure  
The basic neural circuitry provides connections only 
between sensors and motor neurons on the same body part.  
In order to allow a creature to coordinate behavior across 
its body—for instance, to swing a limb in attack or flex 
away in defense—we want a general framework for the 
transmission of information from one body part to another.   

The root node is the ideal location in our creature for 
evolving a seat of cognition.  It has no motors to control, 
but it is the most vulnerable part of the body.  Its sensors 
are situated to recognize danger and communicate states to 
the rest of the body.  We therefore allow every neuron in 
the body to take input from any neuron in the root node.   
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Figure 3: The three modes of communication across the body.  
Any neuron may draw input from neurons in a child node or in 
the root node.  To take data from a parent node in a way that can 
be specified unambiguously, special "spinal neurons", which 
remain unconnected until instantiated in the phenotype, must be 
used.   
 

Two other modes of linking are provided for the 
genotype to unambiguously specify how data flows 
between adjacent body parts.  They are illustrated in  
Figure 3.   

Combat 
We test our creatures' relative fitness by pitting them 
against each other in pairs.  To create the world in which 
our creatures are embodied, we use the open-source 
physics simulation engine Open Dynamics Engine (ODE).  
ODE models the creatures’ bodies, joints, and motors in a 
physically realistic way, as well as the floor and forces 
such as gravity and friction.  Collision detection and 
handling is also done by ODE, using a hash space collision 
detection algorithm for efficiency.   

Combat works as follows: two creatures to be compared 
are embodied in the simulated arena, made to face each 
other at a fixed distance, and awakened.  The first creature 
to touch its enemy’s root node is deemed the winner.  
Before the contest begins, the creatures are made to relax 
for a short time without the use of their joint motors, so 
that they are in a settled configuration when the 
competition starts.  We discovered that without this tweak 
our creatures evolve only toward extreme height, fighting 
by falling upon their enemies.  Forcing them to relax 
before combat obligates them to discover a means of 
locomotion.   

We tuned our numerical fitness measure to encourage 
discovery of basic behaviors such as movement and 
tracking in early generations.  The first creature to hit the 
other's root node gets the maximum possible fitness value, 
MAX_FITNESS.  The loser is then assigned a fitness value 
inversely proportional to its distance from the enemy’s root 
node, as a consolation prize for at least having gotten close 
to its opponent.  Without this consolation fitness our 
creatures found it too risky to approach each other, and 
never evolved to meaningful engagement.  If neither 
creature hits the other’s root node within a fixe d amount of 
time, the game is over and both creatures earn a fitness 
value inversely proportional to the distance between the 
two.  The actual fitness value is ½ MAX_FITNESS  
* (initial distance – final distance).  Fitness can never be 
less than zero, however, so if a creature wanders off into 
the distance, its fitness will be zero.  This is to prevent an 
otherwise fit creature from being eliminated because its 
opponent went romping off to the middle of nowhere.   

Evolution 

Selecting Parents 
In order to apply evolutionary pressure to our creatures, we 
require that those that are better at combat reproduce with 
greater likelihood than those that are worse.  However, in 
our combat-based fitness measure, and in fact any fitness 
measure derived from direct competition, it is possible for 
Player A to beat B, B to beat C, and C to beat A.  How do 
we determine who is most deserving?   

Since our fitness measure assigns a numerical fitness 
value to both participants in a fight, an obvious method 
would be to pair off every creature in a round-robin 
tournament, and let those with the greatest accumulated 
fitness reproduce.  However, simulated combat runs very 
slowly, requiring ~1e10 floating point operations per test.  
A round-robin tournament requires N2 tests, which 
becomes untenable with reasonable population sizes.     

Instead, we perform selection via miniature round-robin 
tournaments, a variation on traditional tournament 
selection.  A handful of creatures (we used a tournament 
size of 4) are picked at random.  This subset of the full 
population plays a round-robin tournament with all 
possible pairings, and the winner is the player with the 
greatest accumulated fitness.  That player is handed over to 
the algorithm creating the next generation of players.   

This selection algorithm is a good compromise between 
a desire to rank players fairly and the constraint of 
reasonable runtime.  In essence, any player that can defeat 
at least three of its peers is considered good enough for 
reproduction.   

(Sims 1994b) discusses a variety of other approaches 
such as  competition between species or against the 
previous generation's champion.  Brief experiments 
showed little qualitative difference in our results.   
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Mutation 
Directed graphs lend themselves to elegant mutation 
operators.  A genotype selected for mutation may have 
nodes and links randomly added and removed, or the 
targets of links randomly changed.  Parameters such as 
scaling factor and recursive limit may be randomly 
changed.  The effect of mutation on the phenotype can be 
as small as a slightly larger radius and as large as a 
completely altered morphology.  The embedded neural 
graphs are subject to a similar mutation operation.   

Crossover 
Our general directed graphs do not have as natural a means 
of crossover as would, say, a tree graph.  The presence of 
cycles makes it difficult to choose a particular subset of a 
graph for transplantation.  Instead, an artifact of our 
implementation is used to align parts of two parent graphs 
by similarity.  Each node and link in a genotype is given a 
unique ID upon its creation.  The descendants of a 
particular genotype also inherit the ID numbers of their 
components.  This results in the genotypes of related 
creatures having the same ID's for components of similar 
function.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Crossover.  Parent genotypes are lined up according to 
link and node ID's, and some material from the secondary parent 
is randomly chosen to replace that in the primary.   
 

The crossover operation is illustrated in Figure 4.  To 
perform this operation, a primary parent and secondary 
parent are selected from the population.  Up to half of the 
nodes and links of the secondary parent are selected at 

random to be transferred.  If a selected node has the same 
ID number as a node already present in the primary parent, 
that node is overwritten, along with its underlying neural 
graph.  If the ID is not already present, the node is simply 
added to the genotype.  Links with already present ID's are 
likewise overwritten, possibly resulting in changes to the 
graph's topology.  Links with distinct ID's are added in the 
same manner as with nodes.   
 If the sexually reproducing parents share a common 
ancestor, as is likely in our small populations, this form of 
crossover is less brittle than a completely random exchange 
of genetic material would be.  This allows innovations 
discovered by two different creatures to be shared; in 
particular, improvements to the neural circuitry are easily 
shared.   

Genotype  Validation and Garbage Collection 
Before a genotype resulting from crossover or mutation is 
introduced to the general population, it is checked for 
physical validity.  A genotype could specify a phenotype 
that self-overlaps, which is forbidden by our physics 
model.  Invalid offspring are destroyed and the 
reproduction operators are applied again until a valid 
offspring is discovered.   

After mutation or crossover is performed, genotypes are 
often left with nodes that can no longer be reached from 
the root node, and therefore are not expressed, as well as 
links that no longer point to valid nodes.  Changes to the 
directed graph topology will also make many neural 
connections invalid, such as when one node’s neuron tries 
to draw input from another node that is no longer its child.   

The garbage collector works in two stages.  First it 
identifies all unreachable nodes and hanging links, and 
removes them from the genotype.  Then it checks all the 
remaining neurons to verify that their inputs remain valid.  
Invalid inputs are reassigned, drawing randomly from the 
set of all currently valid inputs.   

Putting It All Together 
We can now describe a complete evolutionary experiment.  
An initial population is created by randomly generating 
small directed graphs, checked for physical validity.  We 
use a typical population size of 40.  To form subsequent 
generations, we select 40 parents using the tournament 
selection rule described above.  Duplicate selections are 
allowed; indeed, the best fighters are usually selected many 
times.  Half of the parents reproduce by mutation, and the 
other half are paired off to reproduce by crossover, trading 
off the roles of primary and secondary parent.   

The process of selection and reproduction is iterated as 
many times as desired; our longest runs have about 400 
generations.   

Results 
Our evolutionary runs resulted in a wide variety of 
successful combat strategies and methods of locomotion.  
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Most of the creatures we discuss emerged between 20 and 
100 generations.  While many runs resulted in fairly 
homogeneous populations by the time they were stopped, 
each run produced completely different final creatures.  A 
selection of the most successful creatures is shown in 
Figure 5.   

Our creatures typically discovered a successful method 
of locomotion early on, since spherical structures and the 
absence of motor joint limits made it easy to roll.  The first 
motion discovered in most evolutionary runs was spinning 
rapidly in place—an easy way to protect the root node, but 
not useful for attack.   

Usually by the 10th generation a consistent method of 
locomotion was discovered that remained a theme 
throughout the rest of the experiment.  Panel 1 shows a pair 
of worms that arch their backs and roll toward their 
opponents.  Panel 2 shows a pair of  “breakdancers” that 
hopped back and forth rapidly from one end to the other; in 
the frame shown, one is completely in the air while the 
other has one end on the ground.  The breakdancers were 
rare in that they learned to track their opponents despite 
being hopping creatures.  Behaviors could usually be 
grouped into wild, defensive behaviors that reacted little to 
opponents, and more deliberate behaviors tuned to move 
towards the opponent wherever it went.   

Panel 4 shows a creature making a successful adaptation 
to trump its peers.  In a population of creatures that use 
large defensive arms to shield and attack, the “Spanker” 
evolved a long extremity that sits inactive until its 
opponent touches one of its body parts.  The creature then 
swings its long arm around to smack its opponent's 
protected target.  This improvement led the “spanker” to 
immediate domination in the next generation.   

Panels 3 and 5 show more advanced (~60 generations) 
creatures combining solid attack and defense.  The 
“Proboscis” creatures use a long thin probe both for a  
cautious rolling attack and as a pivot to sweep at its 
opponent with its whole body.   The “Buggy” rolls toward 
its opponent, has a front bumper-shield to protect its root 
node from being casually hit, and uses a mace-like arm to  
hit an opponent’s protected root node.  

Our most successful creature is shown in Panel 6.  We 
named it “The Hedgehog” because of its prickly structure 
and whole-body rolling attack.  The Hedgehog has four 
interchangeable limbs.  Two of them touch the ground at 
any given time, rolling in the direction of the opponent, 
while the remaining two twirl in the air.  The Hedgehog is 
good at tracking an opponent and its limbs provide some 
passive defense.  What's most impressive, though, is that 
the limbs constantly move to keep the vulnerable root node 
as far from the enemy as possible.  In response to a sudden 
attack the Hedgehog's entire body flexes to flip its root 
node away from harm and land its upper limbs on the 
attacker's body.   

The Hedgehog is als o remarkable for the simplicity of 
its representation.  Its genotype is specified with just two 
nodes, linked recursively; and its neural circuitry consists 
of just one link between an enemy positional sensor and a 

motor neuron.  (No other neurons are used to any effect.)  
The Hedgehog's sophisticated behavior is entirely emergent 
from the geometry of its body and the local interaction of 
sensors and motors.   

Some of our more ambitious intentions did not pan out.  
With experiments requiring days to simulate a population 
of just 40 individuals to 400 generations, it remains unclear 
whether our combat-based fitness measure allows ever-
escalating evolutionary complexity or if the plateau has just 
not been reached.  Population diversity tended to bottom 
out after an initial period of morphological variation lasting 
around 100 generations.   

(Nolfi & Marocco 2002) suggest one possible 
explanation.  They argue that neural structure beyond 
simple sensory-motor coordination is difficult for evolution 
to discover because two necessary components--useful 
internal variables, and connections from them to sensory-
motor flow--must arise simultaneously and spontaneously, 
since no advantage to the creature comes from either alone.  
Our neural mutation operators were not designed with 
facilitating this sort of discovery in mind.  Evolution of 
complex neural structure might have consequently required 
many more generations than a comparably complex 
morphology.  This agrees with our observation that the use 
of advanced neural structure was surprisingly rare, given 
the ease of its discovery by our mutation operators.   
 Also, the fact that fitness depended explicitly on the 
other members of the population had the unanticipated 
effect of often encouraging our creatures to be 
opportunistic.  Rather than evolving to outsmart the best of 
their peers, they instead developed strategies to take 
advantage of weaklings.  A significant fraction of each 
generation was crippled by mutation or crossover gone 
awry, and the most successful creatures were those that 
dealt rapidly and savagely with the defenseless.   
 These problems are not insurmountable.  The first might 
be handled by designing a new neural representation or 
reproduction operator, or by evolving one as in (Teller 
1996).  (Nolfi & Floreano 1998) discuss methods of 
tournament selection that may better promote arms races.  
What is most needed, however, is longer experiments on 
larger populations.  (Cliff & Miller 1995) distinguish open-
ended from cyclic evolution by testing whether the latest 
generation of individuals can reliably defeat prior 
generations.  Though cyclic behavior was not observed in 
our short-lived experiments, neither can open-ended 
evolution yet be confirmed.   
   

Videos and source code for our experiments can be 
found online at  
www.simons-rock.edu/~towk/alife/bubblegene.html . 

Conclusion 
We successfully evolved creatures for combat exhibiting 
diverse morphologies and behaviors.  Our creatures 
engaged in an evolutionary arms race, discovering feints, 
attacks, and dodges once the simpler skills of spinning in 



place or moving straight forward no longer sufficed.  We 
conclude that our reasons for choosing a combat-based 
fitness measure—it allows the creatures themselves to 
determine their fitness landscape, and it forces them to 
react sensibly to opponents' actions—were validated.   
 Another facet of our evolutionary framework is the 
complex behaviors and strategies that can emerge from 
very simple structures.  The best example of such emergent 
behavior was seen in the Hedgehog, a creature that was 
able to track its opponent, actively defend its target node 
by rotating it out of reach of its opponent, and continually 
attack its opponent with flailing arms.  An observer would 
expect that the Hedgehog must possess a complex internal 
structure to demonstrate such a sophisticated strategy, 
whereas in reality all of the above behaviors emerged from 
a staggeringly simple design.  
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Figure 5: A selection of evolved creatures 
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Panel 4: Spanker (left)        Panel 5: Buggy with Mace (right)  Panel 6. Hedgehog (left) 
 
 
 

 


