
Evolving Simulated Mutually Perceptive Creatures for Combat

Michael J.T. O'Kelly1, Kaijen Hsiao2

1 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2 Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology

Contact: mokelly@mit.edu

Abstract
A fundamental obstacle in evolutionary simulations is the
necessity of designing more complex simulations to elicit
more complex behaviors. We use a combat-based fitness
measure to attempt to circumvent this problem. We have
designed a simulation that simultaneously evolves the brains
and bodies of creatures for one-on-one combat in a three-
dimensional environment with realistic physics. By giving
the creatures a rich sensorium, we allow them to react
sensibly to each others' actions. We discuss the effective,
elegant and diverse simulated fighters that emerge, and
examine whether qualitatively greater evolutionary
complexity arises.

Introduction
The purpose of a Sims -style (Sims 1994a) simultaneous

evolution of creature bodies and brains is to allow the
greatest possible flexibility in evolution's solution to a
given fitness problem. Sims found that a goal as simple as
rapid locomotion elicited a variety of wildly different
morphologies, with neural circuitry finely tuned for
bounding across the virtual Serengeti.

In (Sims 1994b) the same environment and creature
representation was used to evolve participants in a kind of
contact sport. Creatures had to grab a box in front of them
and then figure our how to keep it away from their
opponents. This simple task elicited an evolutionary arms
race as each generation's tactics were foiled by the next.

Subsequent work of this kind has gone in two directions.
More complex and subtle genetic representations, such as
L-systems (Hornby & Pollack 2001) and genetic regulatory
networks (Brongard 2002), have been used to evolve
articulated robots with realistic physics--but only to
accomplish simple tasks such as locomotion. Co-evolution
and arms races in warring animats has been considered in,
for instance, (Cliff & Miller 1996) and (Floreano & Nolfi
1997), which simulate the chase between predator and prey
with highly simplified models of the world.

(Nolfi & Floreano 1998) discuss the circumstances in
which arms races may occur, concluding that both
environmental and sensory richness encourage this
phenomenon. We therefore embed our creatures in a
rigorously simulated physical environment and provide
them with a full suite of kinesthetic and external senses.
Our creatures are then tested on their ability to engage in
physical combat. Pairs of creatures are placed in an arena
and allowed to fight. A specific part of each body is

designated a target; the winner is the first creature to touch
its opponent's target.

Sims' competing creatures could see only the box they
sought, but were blind to their opponents. Our combat-
based fitness measure benefits from the moving fitness
landscape of all co-evolving systems and the phenotypic
complexity of a Sims -style simulation, while also requiring
our creatures to be non-deterministic and responsive in
dealing with opponents. We hope to observe an
improvement in the resultant complexity of our organisms.

Creature Morphology
As in Karl Sims’ work, our creatures are three-
dimensional, articulated creatures whose morphologies are
determined by directed graphs. Unlike his creatures, ours
are composed entirely of spheres, connected by motors that
spin along the axis of attachment, much like a wheel and
axle. All body parts originate from a root node that also
functions as the target for opponents' attacks. Each sphere
has a set of sensors associated with it, along with an
embedded neural structure that connects sensors to the joint
motor via a network of computational neurons.

Figure 1: Sample directed-graph genotypes and the resulting
phenotypes. Limits show how many more links will be followed.

Examples of two directed graph genotypes and the

morphologies they represent are shown in Figure 1. A
genotype is translated into a phenotype by starting from the
graph's root node and following all of the outgoing links;
each time a link is traversed, a new sphere is attached in
the phenotype. Links specify the radius of the first sphere

root

1

root

1 2

Limit
1

Genotype Phenotype
Limit
3

Limit
3

in a limb, a scaling factor for subsequent spheres, and other
parameters such as the position of attachment. Nodes can
be linked recursively back to themselves or in larger
cycles, and a single node can link multiple times to its
child.

The total number of spheres allowed in any creature is
limited globally, forbidding them from becoming too large
to simulate. To prevent the representation of infinite-
length limbs, nodes have recursive limit parameters that set
how many more downstream links may be traversed by the
translation algorithm. A separate set of links flagged as
extremities can be followed when a recursive limit is
reached, so that structures like hands may be attached to
the end of recursively-built arms.

These features make our directed graph representation
very expressive. Small mutations in the genotype can
result in drastic changes in morphology, facilitating
evolutionary exploration of the fitness landscape.

Sensors
Each part of a creature’s body has sensors that feed it input
about its environment so that it can react to changing
conditions. One sensor indicates whether the body part is
touching either the ground or any part of its opponent.
Three sensors indicate the spherical coordinates of the
enemy’s root node, and three more indicate the spherical
coordinates of the nearest enemy sphere. The last two
sensors report the position and velocity of the sphere’s
joint motor. All values returned by sensors are given in the
reference frame of the sphere to which the sensor is
attached.

In giving our creatures sensors, it would be ideal to
provide complete information about the posture and
movement of the opponent--information a human would
glean from watching a video of a battle. However, there is
a tradeoff between having more information available to
enable more sophisticated tactics, and keeping the neural
structure simple enough for evolution to find useful control
structures (Martin 2001). The sensors we used proved
more than adequate.

Neural Structure
We want to provide our creatures with the most general
possible way of responding to the information provided by
their sensors. Ideally, the creature should be able to mull
over past events, combine information from throughout its
body, and maintain an internal state.

To this end, we use directed graphs to specify our neural
circuitry. Our method is comparable to that of (Sims
1994a), with some elaborations. Each node of the
morphologic genotype has an embedded graph directing
how information will be processed in the phenotype.
Nodes in the embedded graphs, referred to as "neurons,"
represent a specific operation that takes some number of
inputs and computes a single output. Links of the graph

indicate which outputs are to be fed to which inputs. Self-
loops and cycles in the graph represent computational
feedback loops, and make our representation Turing
complete.

Sensors are represented as neurons that take no inputs.
A lone motor neuron in each body sends its input to the
attached axle motor. Our motors are velocity controlled,
interpreting the motor neuron's signal as an intended
velocity; a positive signal indicates counterclockwise
motion, while a negative number indicates clockwise
motion.

The rest of the neuron types perform computations:
• standard arithmetic operations +, -, *, /
• unary operations sin, cos, atan, log, exp, & sigmoid
• logical operations <, >, & if-greater-than
• integration, differentiation, smoothing & interpolation
• min, max, sum-threshold
• sinewave & sawwave
• constants (fixed output)
The sinewave and sawwave neurons are time-dependent,

varying with simulation time. Other neurons, such as the
constant neurons, are dependent on evolved parameters in
addition to any variable inputs.

At each time step of the simulation, the neurons
calculate their outputs in parallel based on their current
inputs. It therefore takes more time for the organism to
make a complex calculation than one that is simple.

Figure 2 illustrates the neural structure for a simple
behavior, a proportional controller. The spherical
coordinate denoting the angle in the x-y plane of the
opponent's target (φ) is multiplied by -0.1 and fed to the
motor neuron. In simulation, this body part would rotate to
keep the opponent's target at a constant bearing.

Figure 2: A basic neural structure encoding a proportional
controller.

Advanced Neural Structure
The basic neural circuitry provides connections only
between sensors and motor neurons on the same body part.
In order to allow a creature to coordinate behavior across
its body—for instance, to swing a limb in attack or flex
away in defense—we want a general framework for the
transmission of information from one body part to another.

The root node is the ideal location in our creature for
evolving a seat of cognition. It has no motors to control,
but it is the most vulnerable part of the body. Its sensors
are situated to recognize danger and communicate states to
the rest of the body. We therefore allow every neuron in
the body to take input from any neuron in the root node.

Product

Constant
(has evolved
parameter P = -0.1)

φ of
target

Neural operations Motor outputsSensor inputs

Joint motor

Figure 3: The three modes of communication across the body.
Any neuron may draw input from neurons in a child node or in
the root node. To take data from a parent node in a way that can
be specified unambiguously, special "spinal neurons", which
remain unconnected until instantiated in the phenotype, must be
used.

Two other modes of linking are provided for the
genotype to unambiguously specify how data flows
between adjacent body parts. They are illustrated in
Figure 3.

Combat
We test our creatures' relative fitness by pitting them
against each other in pairs. To create the world in which
our creatures are embodied, we use the open-source
physics simulation engine Open Dynamics Engine (ODE).
ODE models the creatures’ bodies, joints, and motors in a
physically realistic way, as well as the floor and forces
such as gravity and friction. Collision detection and
handling is also done by ODE, using a hash space collision
detection algorithm for efficiency.

Combat works as follows: two creatures to be compared
are embodied in the simulated arena, made to face each
other at a fixed distance, and awakened. The first creature
to touch its enemy’s root node is deemed the winner.
Before the contest begins, the creatures are made to relax
for a short time without the use of their joint motors, so
that they are in a settled configuration when the
competition starts. We discovered that without this tweak
our creatures evolve only toward extreme height, fighting
by falling upon their enemies. Forcing them to relax
before combat obligates them to discover a means of
locomotion.

We tuned our numerical fitness measure to encourage
discovery of basic behaviors such as movement and
tracking in early generations. The first creature to hit the
other's root node gets the maximum possible fitness value,
MAX_FITNESS. The loser is then assigned a fitness value
inversely proportional to its distance from the enemy’s root
node, as a consolation prize for at least having gotten close
to its opponent. Without this consolation fitness our
creatures found it too risky to approach each other, and
never evolved to meaningful engagement. If neither
creature hits the other’s root node within a fixe d amount of
time, the game is over and both creatures earn a fitness
value inversely proportional to the distance between the
two. The actual fitness value is ½ MAX_FITNESS
* (initial distance – final distance). Fitness can never be
less than zero, however, so if a creature wanders off into
the distance, its fitness will be zero. This is to prevent an
otherwise fit creature from being eliminated because its
opponent went romping off to the middle of nowhere.

Evolution

Selecting Parents
In order to apply evolutionary pressure to our creatures, we
require that those that are better at combat reproduce with
greater likelihood than those that are worse. However, in
our combat-based fitness measure, and in fact any fitness
measure derived from direct competition, it is possible for
Player A to beat B, B to beat C, and C to beat A. How do
we determine who is most deserving?

Since our fitness measure assigns a numerical fitness
value to both participants in a fight, an obvious method
would be to pair off every creature in a round-robin
tournament, and let those with the greatest accumulated
fitness reproduce. However, simulated combat runs very
slowly, requiring ~1e10 floating point operations per test.
A round-robin tournament requires N2 tests, which
becomes untenable with reasonable population sizes.

Instead, we perform selection via miniature round-robin
tournaments, a variation on traditional tournament
selection. A handful of creatures (we used a tournament
size of 4) are picked at random. This subset of the full
population plays a round-robin tournament with all
possible pairings, and the winner is the player with the
greatest accumulated fitness. That player is handed over to
the algorithm creating the next generation of players.

This selection algorithm is a good compromise between
a desire to rank players fairly and the constraint of
reasonable runtime. In essence, any player that can defeat
at least three of its peers is considered good enough for
reproduction.

(Sims 1994b) discusses a variety of other approaches
such as competition between species or against the
previous generation's champion. Brief experiments
showed little qualitative difference in our results.

root

3

2 1

3

root 1

2

3

Flow up the hierarchy

root 1

2

3

Broadcast from root node

Flow down the
hierarchy (phenotype only)

Mutation
Directed graphs lend themselves to elegant mutation
operators. A genotype selected for mutation may have
nodes and links randomly added and removed, or the
targets of links randomly changed. Parameters such as
scaling factor and recursive limit may be randomly
changed. The effect of mutation on the phenotype can be
as small as a slightly larger radius and as large as a
completely altered morphology. The embedded neural
graphs are subject to a similar mutation operation.

Crossover
Our general directed graphs do not have as natural a means
of crossover as would, say, a tree graph. The presence of
cycles makes it difficult to choose a particular subset of a
graph for transplantation. Instead, an artifact of our
implementation is used to align parts of two parent graphs
by similarity. Each node and link in a genotype is given a
unique ID upon its creation. The descendants of a
particular genotype also inherit the ID numbers of their
components. This results in the genotypes of related
creatures having the same ID's for components of similar
function.

Figure 4: Crossover. Parent genotypes are lined up according to
link and node ID's, and some material from the secondary parent
is randomly chosen to replace that in the primary.

The crossover operation is illustrated in Figure 4. To
perform this operation, a primary parent and secondary
parent are selected from the population. Up to half of the
nodes and links of the secondary parent are selected at

random to be transferred. If a selected node has the same
ID number as a node already present in the primary parent,
that node is overwritten, along with its underlying neural
graph. If the ID is not already present, the node is simply
added to the genotype. Links with already present ID's are
likewise overwritten, possibly resulting in changes to the
graph's topology. Links with distinct ID's are added in the
same manner as with nodes.
 If the sexually reproducing parents share a common
ancestor, as is likely in our small populations, this form of
crossover is less brittle than a completely random exchange
of genetic material would be. This allows innovations
discovered by two different creatures to be shared; in
particular, improvements to the neural circuitry are easily
shared.

Genotype Validation and Garbage Collection
Before a genotype resulting from crossover or mutation is
introduced to the general population, it is checked for
physical validity. A genotype could specify a phenotype
that self-overlaps, which is forbidden by our physics
model. Invalid offspring are destroyed and the
reproduction operators are applied again until a valid
offspring is discovered.

After mutation or crossover is performed, genotypes are
often left with nodes that can no longer be reached from
the root node, and therefore are not expressed, as well as
links that no longer point to valid nodes. Changes to the
directed graph topology will also make many neural
connections invalid, such as when one node’s neuron tries
to draw input from another node that is no longer its child.

The garbage collector works in two stages. First it
identifies all unreachable nodes and hanging links, and
removes them from the genotype. Then it checks all the
remaining neurons to verify that their inputs remain valid.
Invalid inputs are reassigned, drawing randomly from the
set of all currently valid inputs.

Putting It All Together
We can now describe a complete evolutionary experiment.
An initial population is created by randomly generating
small directed graphs, checked for physical validity. We
use a typical population size of 40. To form subsequent
generations, we select 40 parents using the tournament
selection rule described above. Duplicate selections are
allowed; indeed, the best fighters are usually selected many
times. Half of the parents reproduce by mutation, and the
other half are paired off to reproduce by crossover, trading
off the roles of primary and secondary parent.

The process of selection and reproduction is iterated as
many times as desired; our longest runs have about 400
generations.

Results
Our evolutionary runs resulted in a wide variety of
successful combat strategies and methods of locomotion.

0

2 3

4

1 2

4

3

0 1

2 3

4
1

2

3

4

0 1

2 3
3

1

2
Primary
parent

Secondary
parent

Child

Most of the creatures we discuss emerged between 20 and
100 generations. While many runs resulted in fairly
homogeneous populations by the time they were stopped,
each run produced completely different final creatures. A
selection of the most successful creatures is shown in
Figure 5.

Our creatures typically discovered a successful method
of locomotion early on, since spherical structures and the
absence of motor joint limits made it easy to roll. The first
motion discovered in most evolutionary runs was spinning
rapidly in place—an easy way to protect the root node, but
not useful for attack.

Usually by the 10th generation a consistent method of
locomotion was discovered that remained a theme
throughout the rest of the experiment. Panel 1 shows a pair
of worms that arch their backs and roll toward their
opponents. Panel 2 shows a pair of “breakdancers” that
hopped back and forth rapidly from one end to the other; in
the frame shown, one is completely in the air while the
other has one end on the ground. The breakdancers were
rare in that they learned to track their opponents despite
being hopping creatures. Behaviors could usually be
grouped into wild, defensive behaviors that reacted little to
opponents, and more deliberate behaviors tuned to move
towards the opponent wherever it went.

Panel 4 shows a creature making a successful adaptation
to trump its peers. In a population of creatures that use
large defensive arms to shield and attack, the “Spanker”
evolved a long extremity that sits inactive until its
opponent touches one of its body parts. The creature then
swings its long arm around to smack its opponent's
protected target. This improvement led the “spanker” to
immediate domination in the next generation.

Panels 3 and 5 show more advanced (~60 generations)
creatures combining solid attack and defense. The
“Proboscis” creatures use a long thin probe both for a
cautious rolling attack and as a pivot to sweep at its
opponent with its whole body. The “Buggy” rolls toward
its opponent, has a front bumper-shield to protect its root
node from being casually hit, and uses a mace-like arm to
hit an opponent’s protected root node.

Our most successful creature is shown in Panel 6. We
named it “The Hedgehog” because of its prickly structure
and whole-body rolling attack. The Hedgehog has four
interchangeable limbs. Two of them touch the ground at
any given time, rolling in the direction of the opponent,
while the remaining two twirl in the air. The Hedgehog is
good at tracking an opponent and its limbs provide some
passive defense. What's most impressive, though, is that
the limbs constantly move to keep the vulnerable root node
as far from the enemy as possible. In response to a sudden
attack the Hedgehog's entire body flexes to flip its root
node away from harm and land its upper limbs on the
attacker's body.

The Hedgehog is als o remarkable for the simplicity of
its representation. Its genotype is specified with just two
nodes, linked recursively; and its neural circuitry consists
of just one link between an enemy positional sensor and a

motor neuron. (No other neurons are used to any effect.)
The Hedgehog's sophisticated behavior is entirely emergent
from the geometry of its body and the local interaction of
sensors and motors.

Some of our more ambitious intentions did not pan out.
With experiments requiring days to simulate a population
of just 40 individuals to 400 generations, it remains unclear
whether our combat-based fitness measure allows ever-
escalating evolutionary complexity or if the plateau has just
not been reached. Population diversity tended to bottom
out after an initial period of morphological variation lasting
around 100 generations.

(Nolfi & Marocco 2002) suggest one possible
explanation. They argue that neural structure beyond
simple sensory-motor coordination is difficult for evolution
to discover because two necessary components--useful
internal variables, and connections from them to sensory-
motor flow--must arise simultaneously and spontaneously,
since no advantage to the creature comes from either alone.
Our neural mutation operators were not designed with
facilitating this sort of discovery in mind. Evolution of
complex neural structure might have consequently required
many more generations than a comparably complex
morphology. This agrees with our observation that the use
of advanced neural structure was surprisingly rare, given
the ease of its discovery by our mutation operators.
 Also, the fact that fitness depended explicitly on the
other members of the population had the unanticipated
effect of often encouraging our creatures to be
opportunistic. Rather than evolving to outsmart the best of
their peers, they instead developed strategies to take
advantage of weaklings. A significant fraction of each
generation was crippled by mutation or crossover gone
awry, and the most successful creatures were those that
dealt rapidly and savagely with the defenseless.
 These problems are not insurmountable. The first might
be handled by designing a new neural representation or
reproduction operator, or by evolving one as in (Teller
1996). (Nolfi & Floreano 1998) discuss methods of
tournament selection that may better promote arms races.
What is most needed, however, is longer experiments on
larger populations. (Cliff & Miller 1995) distinguish open-
ended from cyclic evolution by testing whether the latest
generation of individuals can reliably defeat prior
generations. Though cyclic behavior was not observed in
our short-lived experiments, neither can open-ended
evolution yet be confirmed.

Videos and source code for our experiments can be
found online at
www.simons-rock.edu/~towk/alife/bubblegene.html .

Conclusion
We successfully evolved creatures for combat exhibiting
diverse morphologies and behaviors. Our creatures
engaged in an evolutionary arms race, discovering feints,
attacks, and dodges once the simpler skills of spinning in

place or moving straight forward no longer sufficed. We
conclude that our reasons for choosing a combat-based
fitness measure—it allows the creatures themselves to
determine their fitness landscape, and it forces them to
react sensibly to opponents' actions—were validated.
 Another facet of our evolutionary framework is the
complex behaviors and strategies that can emerge from
very simple structures. The best example of such emergent
behavior was seen in the Hedgehog, a creature that was
able to track its opponent, actively defend its target node
by rotating it out of reach of its opponent, and continually
attack its opponent with flailing arms. An observer would
expect that the Hedgehog must possess a complex internal
structure to demonstrate such a sophisticated strategy,
whereas in reality all of the above behaviors emerged from
a staggeringly simple design.

Acknowledgements
This research was supported by the Fannie & John Hertz
Foundation and by the National Science Foundation.

References
Bongard, J. C. 2002. Evolving Modular Genetic

Regulatory Networks. In Proceedings of the IEEE 2002
Congress on Evolutionary Computation (CEC2002),
vol. 2, pp. 1872-1877.

Cliff, D., & Miller, G. F. 1995. Tracking the Red Queen:
Measurements of Adaptive Progress in Co-evolutionary
Simulations. In Advances in Artificial Life: Proceedings

of the Third European Conference on Artificial Life ,
Berlin.

Cliff, D., & Miller, G. F. 1996. Co-evolution of Pursuit and
Evasion II: Simulation Methods and Results. In
Animals to Animats IV: Proceedings of the Fourth
International Conference on Simulation of Adaptive
Behavior.

Floreano, D. & Nolfi, S. 1997. God Save the Red Queen!
Competition in Co-Evolutionary Robotics. In 2nd
Conference on Genetic Programming, San Mateo, CA.

Hornby, G. S. & Pollack, J. B. 2001. Evolving L-Systems
to Generate Virtual Creatures. Computers and Graphics.
25:6, p. 1041-1048.

Martin, M. C. 2001. The Simulated Evolution of Robot
Perception. Ph.D. thesis, School of Computer Science,
Carnegie Mellon University.

Nolfi S., & Floreano D. 1998. Co-evolving Predator and
Prey Robots: Do 'Arm Races' Arise in Artificial
Evolution? In Proceedings of Artificial Life IV, 311-335.

Nolfi, S., & Marocco, D. 2002. Evolving Robots Able To
Integrate Sensory-Motor Information Over Time, In
Biologically Inspired Robot Behavior Engineering,
Berlino, Springer-Verlag.

Sims, K. 1994a. Evolving Virtual Creatures. Computer
Graphics. SIGGRAPH Proceedings, 24-29.

Sims, K. 1994b. Evolving 3D Morphology and Behavior
by Competition. In Proceedings of Artificial Life IV, p.
28-39.

Teller, Astro. 1996. Evolving Programmers: The Co-
evolution of Intelligent Recombination Operators. In
Advances in Genetic Programming 2. Cambridge, MA:
The MIT Press.

Figure 5: A selection of evolved creatures

Panel 1: Worms Panel 2: Breakdancers Panel 3: Proboscis

Panel 4: Spanker (left) Panel 5: Buggy with Mace (right) Panel 6. Hedgehog (left)

