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Abstract: We describe a simple approach for executing manipulation programs in
the presence of significant, but bounded, uncertainty. The key idea is to maintain a
belief-state (a probability distribution over world states) and to execute fixed trajec-
tories relative to the most-likely state of the world. These world-relative trajectories,
as well as the transition and observation models needed for belief update, are all
constructed off-line, so the approach does not require any on-line motion planning.

1 Introduction

We would like robots to be able to manipulate objects robustly and reliably,
in relatively unstructured environments. We concentrate on situations where
there is an initial estimate of an object’s state, made by a passive sensing
modality such as vision or range scanning, that has some residual uncertainty.
This uncertainty may be too great to guarantee that an open-loop grasping
strategy will succeed. So, we develop strategies that use local sensing (such
as force or tactile sensing, or hand-mounted cameras or range sensors) in
combination with attempts to grasp the object to refine the state estimate
and eventually achieve the desired grasp.

The foundation of our approach is “belief-based” programming, in which
strategies for robot behavior are described relative to a probability distri-
bution over the uncertain aspects of the world state, which summarizes in-
formation received by the system up until the moment a decision is being
made. Belief-based programming suggests dividing our robot programs into
two modules: a state estimator and a policy. It is relatively easy to construct
a state estimator that recursively computes a belief state, as a function of the
previous belief state, action and observation. The problem of finding a good
policy is much more difficult. In some cases, human programmers can write
policies directly; but as domains become more complex, we would like to be
able to generate policies automatically, given a model of sensing and action
dynamics.
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The partially observed Markov decision process (POMDP) framework [13]
allows optimal policies to be derived for domains with finite state, action,
and observation spaces, but even in such simple cases, finding the optimal
policy for a POMDP can be highly computationally intractable. There are
new approximation methods that can solve discrete POMDPs with several
thousand states effectively [24, 14]. However, the problem of grasping under
uncertainty has continuous state, action, and observation spaces, making it
particularly difficult to address in this framework.

An efficient and effective, though suboptimal, strategy for POMDPs is
to explicitly switch between goal-achievement and information-gain modes
during execution, depending on properties of the current belief state. In goal-
achievement mode, actions are selected based on assuming that the world state
that is believed to be most likely is, in fact, the true world state, and using
traditional planning methods. In information-gain mode, actions are selected
based on their short-term ability to reduce entropy in the belief state (opti-
mal planning for long-term reduction of entropy in the belief state is as hard
as the whole POMDP planning problem.) This mode-switching strategy was
applied by Cassandra et al. [6] to mobile robot navigation in relatively small
discretized domains. The details of those methods, both in goal-achievement
and information-gain modes, depend crucially on the enumerability (and, ul-
timately, relatively small size) of the state, action, and observation spaces.

In this paper, we describe how to construct such a mode-switching con-
troller for robot manipulation problems, with the significant added difficulty of
working in high-dimensional continuous state, action and observation spaces.
We use a uniform discretization of the uncertain state space, which is the pose
of the object to be grasped. Crucially, we will not attempt to cover the entire
space of actions and observations via uniform discretization. We instead use
a robot motion planner, in an off-line phase, to generate a relatively small set
of motion trajectories that will be executed on-line. These trajectories will be
useful in a wide variety of belief situations, because they are expressed relative
to an estimate of the configuration of the underlying world. These trajectories
will be accompanied by a characterization of their expected observations as
a function of the target object’s state. Based on this observation model, we
can evaluate the trajectories’ goal-achievement and information-gain proper-
ties and thus allow an on-line controller to select among them efficiently and
dynamically, based on the current belief state.

2 Related work

This paper addresses the problem of constructing a robust control strategy
for a partially observable domain. There is a rich literature that addresses
mobile robot planning under uncertainty within the POMDP framework, for
the fully discrete case (e.g., [6, 23]). There were some early attempts to ad-
dress problems of this kind in robot manipulation within a non-probabilistic
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uncertainty framework (e.g., [18, 15]) as well as a probabilistic framework
(e.g, [16, 4]). More recently there have been some direct applications of the
POMDP framework to robot manipulation tasks (e.g., [12]), made tractable
by very aggressive aggregation of world states.

An intermediate position is to assume that there is uncertainty in the
outcomes of actions, but that the uncertainty will immediately be resolved
through observations. Alterovitz et al.[l] construct and solve such an MDP
model for guiding non-holonomic needles. There has been a great deal of recent
work on generalizations of the motion planning problem that take positional
uncertainty and the potential for reducing it via observations into account
and plan trajectories through the space that will maximize the probability of
success or related other objectives (e.g., [22, 11, 7, 19]). Burns et al. [5] have a
different model, in which the system selectively makes observations to reduce
uncertainty during planning, but the resulting plan is executed open-loop.

Belief-state estimation is a central part of most probabilistic approaches
to control and has become standard in mobile-robot control [25]. Although
it is much less common in the manipulation literature, several examples ex-
ist (e.g., [21, 10, 12]). Ideas of using entropy as a measure of the utility of
information-seeking actions are quite old. They have been applied to the prob-
lem of deciding where to drive a mobile robot during a SLAM process [3].

Our work is related to the idea of “active localization” of Erickson et al. [9].
Their goal is a plan to localize a robot in a known map from the expected
contacts that result from “move-until-contact” commands. They also maintain
a belief state and use entropy as a heuristic for picking among actions. One
key difference is that we employ world-relative trajectories and on-line belief
updates to adjust to on-line outcomes, rather than planning off-line for a fixed
action sequence.

The work in this paper can also be viewed as a methodology for robot
programming in the presence of uncertainty, in which the programmer (or off-
line planner) specifies a set of trajectories, a transition model and observation
model and the execution environment (on-line system) chooses the actions
to be performed at each time. The Bayesian Programming approach [17] has
similar goals; it builds on the framework of Bayesian networks to relate ob-
servations to actions, but lacks an explicit model of utility.

3 Technical Approach

We know how to plan robot motions that carry out complex tasks when the
state of the world is known almost exactly; this is the basis of most industrial
automation. In less well-known or well-structured environments, our choices
are to: (a) find motion strategies that achieve the goals in spite of the world
uncertainty, (b) improve the sensing so that the world uncertainty is reduced
sufficiently that a fixed motion can be used, or (¢) combine motion and sensing
in a sequential strategy that will ultimately achieve the goal. We will follow the
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last of these approaches, taking advantage of the information gained during
the course of execution.

One classic approach to combining motion and sensing to carry out tasks
in the presence of uncertainty is the “most-likely state” approach. The idea
is to maintain a belief (a probability distribution over world states), then to
choose the most likely world state, plan a motion to achieve the goal in that
state, execute the motion, use any sensory information obtained during execu-
tion to update the belief and repeat. There are a number of drawbacks to this
approach: It will not plan actions to gain information, only to achieve the goal;
it requires on-line motion planning to achieve the goal; and, importantly, it
requires us to know what observations are likely to result from such motions in
all of the possible world states. We pursue a variant of this “most-likely state”
approach that addresses these drawbacks: it shifts, when necessary, to an ex-
plicit information-gathering mode, and does time-consuming motion planning
and geometric simulation, including the construction of an observation model
for belief-state update, off-line.

3.1 Problem formulation

We will assume that we know the robot’s pose (in its base coordinate frame)
perfectly, but have uncertainty about the object to be manipulated. Let @ be
the set of possible robot poses, in absolute joint coordinates, and let W be
the space of possible configurations of the world. In the simplest case, w € W
will be the pose of a single object of known shape, supported by a table,
and specified by (z,y,6) coordinates. This could be generalized to contain
information about the poses, shapes, or other properties of a set of objects. A
belief state of the system is a probability distribution over W representing the
system’s state of information about the world it is interacting with, together
with a single element ¢ of @, representing the known robot pose.

In this work, we use a discretized representation of W, allowing represen-
tation of belief states as multinomial distributions, and making other aspects
of the model simpler to represent. We will, therefore, allow w to range over
cells in W rather than individual points. Having described the state space of
the system, we need to be able to articulate a goal condition. Most straight-
forwardly, we might imagine the goal to be some predicate G(¢, w), specifying
a desired relation between the robot and the objects in the world (such as a
particular range of grasp locations). Having a goal condition on states of the
world is not directly useful, however: the system will be unable to determine,
with certainty, whether it actually holds in the world. So, we must formulate
goal conditions on belief states, instead. We can construct a goal condition,
Gs(¢,b) on belief states by requiring that the system believe, with confidence
4, that the goal condition holds; that is, that

> b(w)I[G(g,w)] > 146,
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where b is a belief state, b(w) is the probability that b assigns to world state
(region) w, and I is an indicator function with value 1 if its argument is true
and 0 otherwise. For compactness, in future, we will write statements such as
this as Py(G(¢,w)) > 1 — 4, where P, means probability, using belief state b
as the measure on w.

3.2 World-relative trajectories

Our goal is to select among possible robot motions online, based on sensory in-
formation incorporated into the belief state. It is typical, in lower-dimensional
control problems such as mobile-robot navigation, to use a uniform discretiza-
tion of the primitive action space. Such a fine-grained discretization of the
space presents two problems: first, there is a large branching factor in the
choice of actions; second, the horizon (number of “steps” that must be made
before the goal is reached) is quite long, requiring significant lookahead in
planning to select an appropriate action.

Our strategy will be to generate, off-line, a relatively small set of world-
relative trajectories and to characterize their effectiveness in terms of achieving
the goal and gaining information. Then, during the on-line execution phase,
we will use this information, together with the continually updated belief
state, to select and execute appropriate trajectories. One way to think of
these trajectories is as temporally extended “macro actions.” This approach
has a relatively small branching factor, and results in effective goal-directed
action with only one step lookahead.

A world-relative trajectory (WRT) is a function that maps a world config-
uration w € W into a sequence of Cartesian poses for the robot’s end effector.
In the simple case in which w is the pose of an object, then a world-relative
trajectory can just be a sequence of end-effector poses in the object’s frame.
Given a WRT 7 and a world configuration w, the sequence of hand poses
7(w) can be converted via inverse kinematics (including redundancy resolu-
tion) into a sequence of via-points for the arm in joint-angle space. So, if we
knew w exactly and had a valid WRT for it, we could move the robot through
the hand poses in 7(w) and reach the desired terminal configuration of the
arm with respect to the object. The first point on every trajectory will be the
same “home” pose, in a fixed robot-relative frame. The robot will begin each
trajectory execution by moving back to the home pose ¢y,.

Each 7 is characterized by feasibility, observation, and result functions. The
feasibility function F.(w) is true if trajectory 7(w) is kinematically feasible for
the robot, and false, otherwise. Observation and result functions are indexed
by an actual world configuration w and an estimated world configuration e,
specifying what would happen if 7(e) were executed in world w; that is, if
the robot acted as if the world were in configuration e, when in fact it was
in configuration w. The observation function 2, (w,e) = (¢, ¢) specifies what
contacts, if any, the robot will sense during execution of 7(e) in w, where ¢ is
the position (joint angles) of the robot when the contact occurs and c¢ is the
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Estimated Object Pose

Actual Object Pose j

Fig. 1. The 2, (w, e) matrix for a WRT 7.

local sensor readings that can be expected when a sensed contact occurs. The
result function, R, (w, e) has value (¢, w) when the trajectory 7(e) will either
run to completion or to a sensed contact and terminate in robot pose ¢; if,
instead, a collision will occur that cannot be sensed (e.g., with the back of
the hand), then the object is likely to be knocked over or moved significantly,
and we will consider it a failure, and R, (w,e) will have value fail.

Figure 3.4 shows the 2, (w, e) function for a WRT 7 and a space of 3 world
configurations, and how it is determined. Each row corresponds to a different
true pose (z,y,6) of the object in the world, which is drawn in blue. Each
column corresponds to a different estimated pose of the object, which is drawn
in red. On the diagonals, the true and estimated poses are the same, so the
figures lie on top of one another. Each estimated pose e induces a different
actual trajectory 7(e) in robot coordinate space (in this case, our robot is
a point robot in x,y). The trajectories are shown in black. Each one starts
from the same home pose, shown in green, and then moves to a sequence
of waypoints that are defined relative to the estimated pose of the object.
Yellow circles indicate situations in which the robot will make contact with
the object. It happens on each of the diagonal elements, because the nominal
trajectory makes contact with the object. In the elements in the bottom-left
part of the figure, there is a contact between the robot and the actual object
during the execution of the trajectory, before it would have been expected if
the estimated pose had been the true one. In the elements in the upper right
part of the figure, the trajectory terminates with no contact. In all of the
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off-diagonal cases, the observation gives information about the object’s true
location, which is used to update the estimated pose.

We can take the approach of pre-calculating the feasibility, observation,
and result functions off-line. This may seem prohibitive, but it is important
to note that if trajectory 7(e) is kinematically feasible and there are no other
objects nearby, then the observation and result depend only on the relative
transformation between w and e. Furthermore, the range of relative transfor-
mations is bounded by the initial measurement uncertainty. So, the number of
simulations required to compute the relevant entries in the outcome function
for a discretized (z,y,0) state space and reasonable values of uncertainty is
tractable. Alternatively, these functions can be computed on-line during belief
update, only for the relevant states with non-zero probability.

3.3 Belief-state update

If we use a uniform discretization of W with n states, belief-state update
is a straightforward instance of a Bayesian filter. The agent’s current state
estimate is an n-dimensional vector, b, representing Pr(s¢|oy ...0¢,a1 ... at—1),
a probability distribution over current states given the history of actions and
observations up until time ¢. Given a new action a and an observation o, the
new belief state b/ = UB(b, a,0) is

(ols’,a) >, Pr(s'|s,a)b(s)

UB(b,a,0)(s') = . Pr(o|b, a)

(1)

The first factor in the numerator of Eq. 1 is an element of the observation
model, P(ols’, a), that specifies the probability of making an observation o af-
ter arriving in state s’ by using action a, and the second factor is an element of
the state transition model, P(s'|s,a), that specifies a probability distribution
over the resulting state s’, given an initial state s and action a.

In our case, the actions are particular trajectories, 7(e). The transition
model captures the task dynamics: for example, it can model how the object
might slide on the table in response to contact with the robot. In our experi-
ments we have assumed that the transition model for world states is roughly
diagonal, that is, that the robot has a “light touch” that will not substan-
tially disturb the object’s pose, if it contacts the object with a surface that
has tactile sensing. Otherwise, the assumption is that the object is substan-
tially disturbed, and the system enters a special failed state, from which it
is not expected to recover. More general models, with significant stochastic-
ity and dynamics can be incorporated readily. The transition model for the
robot’s pose is assumed to be deterministic: the robot has reliable control over
its own position, subject to kinematic feasibility constraints.

The observation model describes the sensory conditions (e.g., finger con-
tacts) that can result from a given action in a given state. In an off-line process,
for each WRT 7, we construct a representation of the observation function,
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2, (w,e), and result function, R,(w,e) on the discretized w, e space. In the
case of a single object with a canonical support surface on a table, the space
of w and e are is characterized by the x,y,0 coordinates of the object. We
are assuming, here, that the uncertainty is not huge: therefore, for any w, we
only need to compute and store £2;(w, e) for a set of b that are not too distant
from w. Thus, this table is effectively only three-dimensional. Furthermore,
the entries in the observation function are dependent only on the relationship
between w and e, and not their absolute values, so a number of the entries
can be determined from a single simulation.

Computing an entry of these matrices requires simulating a trajectory
forward from a starting robot pose, and calculating if and when it contacts
objects in the world, and, if it does, what the nominal sensory readings will be
in that situation. This is a geometric computation that can be done entirely
off-line, relieving the on-line system of performing simulations. The {2 function
can then be used to define the observation model P(o|s,a), as follows:

P(¢,c|w,7(e)) - N(QT(U),S),E) .

The state of the world is w, the action is the trajectory 7;(e), and the nominal
observation §2;(w,e). We then assert that the probability of making some
particular observation of local sensors ¢ when the arm is at a pose with joint
angles ¢ is a Gaussian distribution about that nominal observation with some
fixed covariance. Having computed the nominal observations in advance means
that the observation probabilities required for the on-line belief-state update
can be calculated with little additional work.

The belief-state update operation is, in the worst case, quadratic in the size
of the state space; but in our case the transition distribution is very sparse, so
there are a bounded number of states s’ such that Pr(s’|s, a) is non-zero, which
makes the complexity ultimately linear in the size of the state space instead.
Furthermore, we are assuming that the belief state is also quite sparse (due to
initial sensor information), so the complexity is further reduced considerably,
making this operation straightforward to compute online.

3.4 Robust world-relative trajectory execution

Consider the execution of a single WRT with the goal of grasping the object
and let the system be in initial belief state b. Now, let w*(b) be the world state
w for which b(w) is maximized; it is the most likely state. Then, 7(w*(b)) is
a sequence of poses in robot coordinates. We command the robot to follow
the trajectory by executing guarded move commands to each waypoint in the
sequence, terminating early if a contact is sensed. An early contact (or an
empty grasp with no contact) results in an observation that can be used to
update the belief state. Then we will execute 7(w*(b)) again, but this time
with respect to a new w*(b).
More formally, we can describe the algorithm in pseudocode:
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while not Gs(¢,b) do
traceBack (o)
(¢, ¢) = guardedEzecute(T(w*(b)))
b= UB(b,7(w* (b)), (6,c))
end while
The guardedExecute command follows the trajectory by executing a se-
quence of guarded moves between the waypoints, interpolating linearly be-
tween joint coordinates, but stops if a contact is sensed before the waypoint
is reached. When the guardedExecute command terminates, it returns two
quantities: ¢ is the robot’s current pose in joint angles and c is a descrip-
tion of the information from the local sensors, if a contact occurred (could be
forces, torques, locations and/or normals of surface contacts, etc.). The values
of ¢ and ¢ are then used to update the belief state. If the goal condition on
the belief state is not satisfied, we retrace the previous trajectory back to the
home pose (to avoid any further contacts, which we will not be able to model
effectively), relativize 7 to the new most likely world state, and re-execute.

Fig. 2. Execution of WRT and (z,y, 0) belief state update.

Figure 2 shows the operation of the system while grasping a rectangular
box using a single WRT. The belief state images depict probabilities via the
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radius of the balls shown at grid points on the (z,y,6) state space of the
box. The first figure in the second row shows an initial belief state. The robot
attempts to execute a grasping trajectory, relative to the most likely element of
that belief state. The first figure in the top row shows the robot at the first via-
point in that trajectory: we can see that the object is actually not in its most
likely position (if it were, the robot’s hand would be centered above it). Now,
the hand executes a guarded move toward the next waypoint in the trajectory,
and it is terminated by a fingertop contact, as shown in the second figure in
the top row. The middle figure in the second row shows the probabilities of
observing that fingertip contact in each world configuration. Combining this
information with the initial belief state, we obtain the updated belief state
shown in the third figure in the second row. It is clear that the information
obtained by the finger contact has considerably refined our estimate of the
object’s position. The third and fourth rows of figures show a similar process.
The same WRT is executed, now with respect to the most likely state in the
updated belief state. This time, the hand is able to move all the way down,
and the fingers close on the box, with the resulting belief state shown in the
final figure. This most basic strategy can be effective in many situations, as
demonstrated in the experimental results. However, there are many situations
in which it may fail. The two main problems are kinematic infeasibility and
lack of information.

3.5 Multiple goal-seeking trajectories

Our premise is that there is, a priori, a large set W of possible world config-
urations and that we don’t know which ones we will encounter in the online
phase. For many tasks, there will be no single WRT 7 that can effectively
achieve the goal independent of where the object is in the workspace. Kine-
matic constraints arising from the boundaries of the workspace may render
execution of 7(w) simply infeasible for some values of w. In addition, it may
be that, even when it is executed in the appropriate world state (that is that
7(w) is executed in w) a collision will result, due to the fact that the robot
is not, in fact, a disembodied hand. In such situations, it will be necessary
to have a policy m made up of a set of WRTs that effectively “cover” the
space of possible world configurations. Given several possible WRTSs, and a
current belief state b, how can we choose which one to execute? Intuitively, we
would like to execute a trajectory that will result in the goal condition being
satisfied. We define the belief pre-image of a goal condition G5 with respect
to the execution of trajectory 7(e) as

BPre(Gs,m(e)) = {b | Py(G(R(r(e),w))) > 1 — 4} .

That is, the set of belief states b such that, according to the probability mea-
sure b(w), the likelihood that G will be true in the state resulting from exe-
cuting 7(e) is greater than 1 —§.
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So, if there is a trajectory 7(e) such that b € BPre(Gs,7(e)), then we
would expect that executing 7(e) would result in a belief state that satisfies
the goal condition. Generally speaking, the space of e may be too large to
search exhaustively, and the WRT's are designed to work most effectively when
executed relative to the correct world state, so we will restrict our attention
to 7(w*(b)) for all 7 € 7. Since we have computed R off-line and we assume
we have access to G, testing whether the current b is in the belief pre-image
of the goal under 7(w*(b)) is relatively easy.

An additional consideration is the possibility that executing a particular
trajectory will generate an undetectable contact. This is a highly undesirable
situation that will probably move or knock over the object, requiring a major
intervention. We can define the failure probability of trajectory 7(e) in b as:

FP(7(e),b) = Py(R(7(e),w) = fail) ,

and use it to break ties among multiple WRTs for which b is in the belief
pre-image of the goal.

3.6 Explicit information gathering

The execution process described in the previous section will succeed if the
trajectories result in local sensory observations that provide enough informa-
tion to update the belief state so that it is eventually concentrated around the
correct world state. However, this will not necessarily happen. For example,
consider the final belief state shown in figure 2. It is clear that the object is
well localized in the x and € dimensions, but there is still considerable uncer-
tainty in the y dimension (the grasp that the robot executed knows only that
the fingers are on the box in the y dimension, but not where). If the goal had
required that the box be grasped very near the center in the y dimension, for
example, then this result would not have satisfied the goal condition, and we
would have no real way to improve the situation through further execution of
our goal-seeking WRT, and the control loop would run forever. For this reason,
we will sometimes need to execute trajectories that are designed explicitly to
reduce uncertainty in the belief state, but not to achieve the ultimate desired
world configuration.

If we are to choose a trajectory for its information-gathering properties,
we need to be able to evaluate its expected effect on the belief state. It is very
difficult to predict the effects of repeated execution of a trajectory, so we will
model only the information gained as a result of the first contact that can be
expected to result from executing the trajectory.

Concretely, assume we are currently in belief state b, and are considering
executing some WRT 7. In order to make that trajectory concrete, we have to
execute it relative to some world configuration. We might select w*(b) as the
conjectured world, as we do for goal-oriented trajectories. Doing so determines
a row in the observation function, 2, (-, w*(b)), which specifies the expected
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observation as a function of the true world state in which 7(w* (b)) is executed.
Now, we can consider the effects that such observations would have on the
belief state. Intuitively, we would like to select a trajectory that will result in
observations that disambiguate among world configurations that are likely in
the current belief state.

So, we define the information gain of a WRT 7 in belief state b as follows:

1G(r,0) = H(b) — Zb(wj)H(UB(b7 T(w" (b)), 2r(wj, w™(b))))

where H is the entropy of a probability distribution and UB is the belief-
state update function, that computes a new belief state based on an old belief
state, an action, and a new observation. Intuitively, we are comparing the
entropy of the current belief state with the expected entropy of the belief
state that will result from incorporating the observation made due to execut-
ing the trajectory. Here is pseudo-code for the control algorithm that takes
information-gathering actions into account:

while not Gs(¢,b) do
traceBack (o)
if there is a 7* such that b € BPre(Gs, 7*(w*(b))) then
(¢, ¢) = guardedEzecute(T* (w*(b)))
else
7 = argmax, (IG(r,b) — cFP(t,b))
(¢, ¢) = guardedEzecute(T* (w* (b))
end if
b= UB(b, 7(w*(b)), ($,¢))
end while
This algorithm has the same basic structure as before, but it checks to see
whether one of the WRTSs, relativized to the current most likely state, is in
the belief pre-image of the goal. If so, then it executes that WRT. If not, then
it executes the WRT that optimizes some linear combination of information
gain and failure probability (the weighting constant, ¢, embodies a measure
of the risk tolerance of the system).

3.7 Off-line generation of world-relative trajectories

The previous section provides an on-line strategy for selecting and executing
WRTs from a set that has been provided for on-line execution. How can we
generate a good set of WRTs? We divide the problem into generating WRT's
for goal achievement and for information gain.

Generating reasonable goal-oriented trajectories is a task-dependent prob-
lem. It could be done by explicit teaching or using a general grasp planner [2]
to generate target grasps and calling a robot motion planner to generate
trajectories that achieve the grasps. Then, re-expressing the trajectories in
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world-relative coordinates will allow them to be used relative to other world
configurations in which they are kinematically feasible.

Generating trajectories this way has two potential weaknesses, however:
they may not generalize well to world configurations other than the ones for
which they were planned; and they may have very small domains, due to
having tight clearances with respect to objects in the world or being near
workspace limits. It will be part of future work to formulate strategies for
putting aspects of these criteria into a planner used to search for trajectories.
Clearances can be increased by, for example, selectively increasing the size of
the robot. In the experiments reported below, we use a single goal-oriented
trajectory that was hand-constructed.

Information-gain trajectories can be constructed automatically by con-
sidering different major surfaces of the objects in the world and planning
trajectories to touch those surfaces; or, to find face pairs that are graspable
and to construct trajectories to grasp them. Each of these trajectories can
be expected to reduce uncertainty in some dimensions, and we can use the
information-gain metric to select among appropriate ones on-line. In our im-
plementation, information-seeking trajectories were limited to grasping face
pairs; it will also be useful to have trajectories that contact individual surfaces
but we have not yet implemented this. We used the following procedure: (1)
Process an object model to find pairs of nearly parallel surfaces on the object
whose mean distance does not exceed the hand opening. (2) Generate a set
of evenly-spaced target grasp points on the surfaces. (3) Define target hand
frames that (a) place the finger tips at these grasp points, (b) have the fingers
roughly parallel to the grasp surfaces and (c) have one of 8 evenly spaced ap-
proach angles. (4) Attempt to find a collision-free trajectory to the specified
hand frames, for a single placement of the target object, using the default
planners in the OpenRave motion planning system [8]. (Each trajectory took
at most a few tens of seconds to plan. ) The resulting trajectories become
candidate WRT's, which were then evaluated on the basis of their kinematic
robustness as well as their potential to gain information as well as to fail by
knocking the object, by computing their associated feasibility, observation,
and result functions. The two leftmost frames in Figure 3 shows two different
automatically generated grasps on an elongated box; both have quite high
information gain scores starting from a uniform belief (no prior information):
4.95 for the one on the left and 4.44 for the one on the right. The key difference
between them can be seen when we consider other belief states. The grasp on
the left, since it’s at one end of the box, gives excellent information about x
displacements (narrow dimension of the box) and some information about y
displacements (long dimension of the box). The grasp on the left gives the
same information about z displacements but it gives almost no information
about y displacements in the relevant range. The information gain scores for
a belief in which y is known but = and 6 are uncertain are nearly the same:
4.05 and 4.03. In a belief state where x is known but y and € are uncertain,
the scores are: 4.61 and 3.97.
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4 Implementation and experiments

We have implemented an initial version of this system, in simulation. The
robot is a 7-DOF Barrett Arm with a Barrett Hand. It is picking objects of
known shape from a table of known height. Each finger has contact sensors
and an individual force-torque sensor at the finger tips.

Fig. 3. Top and bottom left: information-gathering grasps for a box; Rest of frames
are grasps for the pitcher; dark blue box shows most likely state. Top left: Initial
state. Top middle: first execution of information gathering grasp. Top right: second
execution of same grasp. Bottom left: a second information gathering grasp. Bottom
middle: a second execution of same grasp. Bottom right: final grasp

The 6 rightmost frames in Figure 3 show three different grasps on a Brita
pitcher. The first two grasps are information-gathering grasps, aimed at re-
ducing the spread of the belief state; these grasp trajectories were planned
automatically as described earlier. The last grasp is the intended grasp, which
was chosen by hand; two of the fingers are being used to avoid rotation about
the handle.

To test the effectiveness of our robust-execution approach, we did a large
number (at least 100 for each setting) of simulation runs using several variants
of the approach for four different levels of uncertainty: 1 cm standard deviation
in x and y and 3 degrees in 6, 3 cm and 9 degrees, 5 cm and 15 degrees, and
5 cm and 30 degrees. The results are shown in Figure 4.

We tried the following 5 control algorithms:

e Best WRT, open loop, with perfect info: robot knows exactly where the
object is when it carries out the nominal WRT, for the true state. The
only failures are due to positions of the pitcher that lead to hand positions
outside of the robot workspace. This is an upper bound on performance.

e Best WRT, open loop, with imperfect info: robot executes nominal WRT,
for the initially most likely state, open-loop. This is a lower bound on
performance.
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Fig. 4. Results for the Brita pitcher.

e Hand-generated guarded moves: robot executes a hand-generated, fixed,
guarded-move trajectory (move -x 20 cm or until touch, back off 1 cm,
move +y 7 cm or until touch, back off .65 cm, move right 2 cm or until
touch, close fingers).

e Robust execution:, repeated robust execution of the nominal WRT relative
to the most likely state (algorithm in section 3.4).

e Robust execution with info gain: Algorithm from section 3.6 with two pos-
sible information-gathering grasps (the second one shown in Figure 3 and
another grasp).

We can see that the performance of the control system based on WRTs
with information gathering is very near the optimal possible performance for
a stationary arm on this problem.

The approach presented in this paper enables robust execution of manip-
ulation programs with no on-line planning. There are a number of extensions
to the basic approach that should be explored. The offline planning strategy
should be extended to be more cognizant of the needs of on-line execution:
kinematic robustness, avoiding undetectable contacts and information gain,
e.g, as in [20]. Ultimately, we should consider some mix of on-line and off-line
planning. In addition, better results may be obtained by doing a few steps
of lookahead to select information-gain actions, particularly to enable gaining
information that is relevant to the specific goal of the system.

Acknowledgement: This research was supported in part by the National
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