Relatively Robust Grasping

Kaijen Hsiao and Tomas Lozano-Pérez and Leslie Pack Kaelbling
Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, {k jhsiao, tlp, lpk}@csail.mit.edu

Abstract

In this paper, we present an approach for robustly grasping
objects under positional uncertainty. We maintain a belief
state (a probability distribution over world states), model the
problem as a partially observable Markov decision process
(POMDP), and select actions with a receding horizon us-
ing forward search through the belief space. Our actions are
world-relative trajectories, or fixed trajectories expressed rel-
ative to the most-likely state of the world. We localize the ob-
ject, ensure its reachability, and robustly grasp it at a goal po-
sition by using information-gathering, reorientation, and goal
actions. We choose among candidate actions in a tractable
way online by computing and storing the observation models
needed for belief update offline. This framework is used to
successfully grasp objects (including a powerdrill and a Brita
pitcher) despite significant uncertainty, both in simulation and
with an actual robot arm.

Introduction

We would like robots to be able to manipulate objects ro-
bustly and reliably, in unstructured environments. We con-
centrate on situations where there is an initial estimate of
an object’s state, made by a non-contact sensing modality
such as vision or range scanning, that has some residual un-
certainty. This uncertainty may be too great to guarantee
that an open-loop grasping strategy will succeed. We de-
velop strategies that use local sensing (such as force or tac-
tile sensing, or hand-mounted cameras or range sensors) in
combination with attempts to grasp the object to refine the
state estimate and eventually achieve the desired grasp.

We model the problem of grasping 3D objects as a
POMDP. The partially observed Markov decision process
(POMDP) framework (Smallwood and Sondik 1973) allows
optimal policies to be derived for domains with finite state,
action, and observation spaces, but even in simple cases,
finding the optimal policy for a POMDP can be compu-
tationally intractable. There are new approximation meth-
ods that can solve discrete POMDPs with several thousand
states effectively (Smith and Simmons 2005), (Kurniawati,
Hsu, and Lee 2008). However, the problem of grasping un-
der uncertainty has continuous state, action, and observa-
tion spaces, making it particularly difficult to address in this
framework.

Instead of solving for an optimal policy offline, we use a
receding horizon policy that selects actions online by using

forward search through the belief space (the space of proba-
bility distributions over the underlying state space). We use
world-relative trajectories as our actions, which are entire
trajectories expressed relative to the current most likely ob-
ject location. We can calculate the observation models for
these world-relative trajectories offline, and then select them
online using POMDP forward search. In this paper, we will
demonstrate how this framework allows us to intelligently
select actions that gather information about the location of
the object, reorient it when unreachable, and achieve desired
goal-seeking grasps, both in simulation and on a real robot.

Related Work

There were some early attempts to address grasping under
uncertainty in robot manipulation within a non-probabilistic
uncertainty framework (e.g., (Lozano-Pérez, Mason, and
Taylor 1984), (Latombe 1991)) as well as a probabilis-
tic framework (LaValle and Hutchinson 1994), (Brost and
Christiansen 1996). More recently there have been some di-
rect applications of the POMDP framework to robot manip-
ulation tasks (Hsiao, Kaelbling, and Lozano-Perez 2007),
made tractable by very aggressive aggregation of world
states.

An intermediate position is to assume that there is uncer-
tainty in the outcomes of actions, but that the uncertainty
will immediately be resolved through observations. (Al-
terovitz, Simeon, and Goldberg 2007) construct and solve
such an MDP model for guiding non-holonomic needles.
There has been a great deal of recent work on generaliza-
tions of the motion planning problem that take positional
uncertainty and the potential for reducing it via observa-
tions into account and plan trajectories that will maximize
the probability of success or related other objectives (Pren-
tice and Roy 2007), (Gonzalez and Stentz 2005), (Censi
et al. 2008), (Melchior and Simmons 2007). (Burns and
Brock 2007) have a different model, in which the system
selectively makes observations to reduce uncertainty during
planning, but the resulting plan is executed open-loop.

Belief-state estimation is a central part of most prob-
abilistic approaches to control and has become standard
in mobile-robot control (Thrun, Burgard, and Fox 2005).
Although it is much less common in the manipulation
literature, several examples exist (Petrovskaya and Ng
2007), (Gadeyne, Lefebvre, and Bruyninckx 2005), (Hsiao,

Kaelbling, and Lozano-Perez 2007).

This paper builds on the work of (Hsiao, Kaelbling, and
Lozano-Perez 2008), in which the problem of grasping ob-
jects in 3D is also modeled as a POMDP using world-
relative trajectories as actions, but information-gathering ac-
tions are chosen only based on their short-term ability to re-
duce entropy in the belief state.

POMDP forward search

When using POMDPs, actions are chosen based on the cur-
rent belief state, which is a probability distribution over the
underlying state space. We need to be able to select an ac-
tion for any belief state we might find ourselves in. One typ-
ical way to do this is to solve for an optimal policy offline
that tries to map all possible belief states to actions. Ap-
proximate solvers generally search intelligently through the
region of belief space that is likely to be encountered from
a start belief state, and the resulting policy allows one to
both interpolate and extrapolate to all possible belief states.
However, using such a solver requires us to enumerate small,
discrete sets of all the possible actions and observations be-
forehand, and the enumerated actions and observations can-
not change depending on the current belief state.

Instead, we use online POMDP forward search to select
actions. This allows us to use actions parameterized by the
current belief state, such as “move to this position relative
to the most likely state,” which are not possible when using
the type of offline policy solver described above. Parame-
terizing actions in this way allows us to access a continuous
range of potential robot motions while only having to con-
sider, at each time step, a small, discrete set of motions that
are likely to be useful given what we currently know about
the object location. We can also sample and consider only
observations that are likely to result from those motions,
from an observation space that is also high-dimensional and
continuous.

To track the current belief state at each time step dur-
ing execution, we use a state estimator (which is simply a
discrete Bayesian filter), which estimates a new belief state
given the previous belief state, the action taken, and the ob-
servation received. Based on the updated belief state, we
would then like to pick an action that has the highest ex-
pected future reward.

In order to estimate the expected future rewards for each
action, we construct a forward search tree like the one shown
in Figure 1. At the top of the tree is our current belief state,
b. From there, we branch on all of the possible actions. For
each action, we expect that we might see a number of pos-
sible observation outcomes, so we enumerate and branch on
possible observations. Each observation branch is associ-
ated with a new belief state, which is the result of doing a
belief update on the parent belief using that branch’s action
and observation. Each new resulting belief state is akin to
the root belief state; we can again branch on all possible
actions, to consider what would happen if we took a sec-
ond action, and branch further on the observations we might
obtain after those second actions, updating the belief state
again.

ON

Pt
< maximum
/N FAAN AN
ol 02 o3 ol o2 03 o1 02 o3

- al a2 a3
VAN

R\
ol 02 o3 ol 02 03 ol o2 o3
vioovov v vy v
Figure 1: Forward search on the POMDP tree.

Repeated branching on actions and then observations con-
tinues until we reach a desired horizon H. In Figure 1, H
is only 2, with all but one of the second-level node expan-
sions omitted due to space constraints. When we reach the
desired horizon, the leaf nodes of the tree are evaluated us-
ing a static evaluation function, which assigns a value to the
resulting belief state. The static evaluation function can be
based on, for instance, the entropy of the belief state, or the
probability of succeeding.

We can then use the tree to calculate the value of taking
each action at the root node. For each action node at level
H, we take an expectation over the values assigned to its
observation nodes and then subtract a fixed cost for taking
an action. Once the action nodes at level H have values, we
can select the action with the maximum value. We continue
taking maximums over actions and expectations over obser-
vations all the way up the tree to the root, which can now
choose the next action to execute.

Receding horizon planning

We could use POMDP forward search to explore large por-
tions of the reachable space, and then use our extensive
search tree to determine a policy that hopes to cover all the
belief states that we might reach. However, most of those
belief states will never arise, which means that we would be
doing much more computation and using much more storage
space than necessary (Ross et al. 2008). We instead plan us-
ing a receding horizon, which means that at each time step,
we make an optimal plan that takes into account only the
next H steps. We then take a single action, make an obser-
vation, and plan again using what we now know about the
world. This approach requires a reasonably good static eval-
uation function for belief states at the leaves, so that even
with limited lookahead we can choose actions intelligently.
At the same time, it allows the POMDP search tree to be less
accurate and exhaustive in its search, since we only have
to pick a reasonable next action, knowing we will have a
chance to plan again after the next observation.

Even when using POMDP forward search with a receding
horizon, there are still a number of challenges involved in

making action selection tractable. The belief state must be
compact to represent and reasonbly efficient to update; the
action and observation branching factors must both be quite
low; the horizon must be short; and we need to be able to
use the observation and transition models for belief update
quickly. We will now discuss how we fill in the choices of
state space, actions, and observations, and how we compute
the observation and transition models.

The state space and belief space

To make the state space manageable, we partition it into
observable and uncertain components. We assume that the
robot’s position is approximately observable based on pro-
prioception, and thus do not need to include it in the un-
certain part of our belief state. A POMDP with fully and
partially observable components separated in this fashion
is called a MOMDP, which stands for mixed observability
MDP (Ong et al. 2005).

Let ® be the set of possible robot poses, in absolute joint
coordinates, and let WV be the space of possible configura-
tions of the world. In the simplest case, w € W will be the
pose of a single object of known shape, supported by a table,
and specified by (z,y, 0) coordinates. A belief state of the
system is a probability distribution over WV representing the
system’s state of information about the world it is interacting
with, together with a single element ¢ of ®, representing the
known robot pose. We represent belief states using a set of
sampled points in W (spaced regularly on a grid) together
with weights that are proportional to the probability density
at those grid points.

Having described the state space of the system, we need
to be able to articulate a goal condition. Most straightfor-
wardly, we might imagine the goal to be some predicate
G(¢,w), specifying a desired relation between the robot and
the objects in the world (such as a particular range of grasp
locations, or desired contacts between parts of the hand and
parts of the object, or a combination of the two). The range
of grasp locations can even include non-contiguous regions,
if there are multiple locations on the object we might wish
to grasp.

Having a goal condition on states of the world is not di-
rectly useful, however: the system will be unable to deter-
mine, with certainty, whether it actually holds in the world.
So, we must formulate goal conditions on belief states, in-
stead. We can construct a goal condition, G5(¢, b) on belief
states by requiring that the system believe, with confidence
d, that the goal condition holds; that is, that

Zb(w)I[G(an 'UJ)] >1-9)

where b is a belief state, b(w) is the probability that b assigns
to the discrete world state w, and I is an indicator function
with value 1 if its argument is true and O otherwise. For
compactness, in future, we will write statements such as this
as Py(G(¢,w)) > 1 — 4, where P, means probability, using
belief state b as the measure on w.

Actions: World-relative trajectories

Our goal is to select among possible robot motions online,
based on sensory information incorporated into the belief
state. It is typical, in lower-dimensional control problems
such as mobile-robot navigation, to use a uniform discretiza-
tion of the primitive action space. Such a fine-grained dis-
cretization of the primitive action space for a robot with
many joints presents two problems: first, there is a large
branching factor in the choice of actions; second, the hori-
zon (number of “steps” that must be made before the goal
is reached) is quite long, requiring significant lookahead in
planning to select an appropriate action.

Instead, our strategy will be to generate, offline, a rel-
atively small set of world-relative trajectories. A world-
relative trajectory (WRT) is a function that maps a world
configuration w € VYV into a sequence of Cartesian poses for
the robot’s end effector. In the simple case in which w is the
pose of an object, then a world-relative trajectory can just be
a sequence of end-effector poses in the object’s frame. Given
a WRT 7 and a world configuration w, the sequence of hand
poses 7(w) can be converted via inverse kinematics (includ-
ing redundancy resolution) into a sequence of via-points for
the arm in joint-angle space. So, if we knew w exactly and
had a valid WRT for it, we could move the robot through the
hand poses in 7(w) and reach the desired terminal configu-
ration of the arm with respect to the object. The first point
on every trajectory will be the same “home” pose, in a fixed
robot-relative frame, and the robot will begin each trajectory
execution by moving back to the home pose ¢y,.

In general, we won’t know w exactly, but we will have
to choose a single w to use in calculating 7(w). Let w*(b)
be the world state w for which b(w) is maximized; it is the
most likely state. We can execute 7(w*(b)), and have the
highest probability of reaching the desired terminal config-
uration according to our current belief state. We command
the robot to follow the trajectory by executing guarded move
commands to each waypoint in the sequence, terminating
early if a contact is sensed. An early contact (or reaching
the end of the trajectory with no contact) results in an obser-
vation that can be used to update the belief state. In addition
to the collision point, we obtain further contact observations
by carefully closing the fingers when a collision is sensed.

One way to think of WRTs is as temporally extended
“macro actions.” This choice of actions allows our forward
search to have a relatively small branching factor, and results
in effective goal-directed action even with limited looka-
head.

The observation and transition models

In order to do forward search in the belief space, we need to
be able to calculate the effect on the belief state of executing
each 7 and receiving the resulting observation. Much of the
relevant observation model can be pre-computed for each 7
and stored. During the online execution phase, we will use
the stored observation information, together with the contin-
ually updated belief state, to select and execute appropriate
trajectories.

Each 7 is characterized by feasibility and contact obser-

Estimated Object Pose

Actual Object Pose

Figure 2: The €2, (w,) matrix for a WRT 7.

vation functions. Each estimated pose e induces a different
actual trajectory 7(e) in robot coordinate space. The feasi-
bility function F(e) is true if trajectory 7(e) is kinemati-
cally feasible for the robot, and false, otherwise. The obser-
vation function is indexed by an actual world configuration
w and an estimated world configuration e, specifying what
would happen if 7(e) were executed in world wj; that is, if
the robot acted as if the world were in configuration e, when
in fact it was in configuration w. The observation function
O (w,e) = (¢, c) specifies what contacts, if any, the robot
will sense during execution of 7(e) in w, where ¢ is the
Cartesian position of the robot hand relative to the object
when the contact occurs (or reaches the end of the trajec-
tory), and c is the local sensor readings that can be expected
when a sensed contact occurs (none, if no sensor readings
would be seen). The swept path of the robot is all of 7(e)
in the event that the robot reaches the end of the trajectory
without contact, and 7(e) — ¢ (the trajectory up to the point
of contact) in the event that the robot makes contact.

Figure 2 shows the Q- (w, e) function for a WRT 7 and a
space of 3 world configurations, and how it is determined.
Each row corresponds to a different true pose (x,y,6) of
the object in the world, which is drawn in blue. Each col-
umn corresponds to a different estimated pose of the object,
which is drawn in red. On the diagonals, the true and es-
timated poses are the same, so the figures lie on top of one
another. The estimated pose e determines the trajectory 7(e)
that the robot will follow (in this case, our robot is a point
robot in z, y). The trajectories are shown in black. Each one
starts from the same home pose, shown in green, and then
moves to a sequence of waypoints that are defined relative to
the estimated pose of the object. Yellow circles indicate sit-
uations in which the robot will make contact with the object.
It happens on each of the diagonal elements, because the
nominal trajectory makes contact with the object. In the ele-
ments in the bottom-left part of the figure, there is a contact
between the robot and the actual object during the execution
of the trajectory, before it would have been expected if the
estimated pose had been the true one. In the elements in the

Actual object pose |
Estimated object pose []

Figure 3: Predicted observations depend only on the rela-
tive transformation between the actual and estimated object
pose.

upper right part of the figure, the trajectory terminates with
no contact. In all of the off-diagonal cases, the observation
gives information about the object’s true location, which is
used to update the estimated pose.

Computing the observation matrix

Computing an entry of the observation matrix requires sim-
ulating a trajectory forward from a starting robot pose, and
calculating if and when it contacts objects in the world, and,
if it does, what the nominal sensory readings will be. This
simulation includes closing the fingers when a collision is
detected, to gather additional contact information. This is
a geometric computation that can be done entirely offline,
relieving the online system of performing simulations.

This computation may seem prohibitive, since fora x, y,
grid of just 31x31x25 = 24,025 points, having to simu-
late all combinations of w and e in pairs would require
24,025% = 207,792, 225 simulations. However, the crucial
insight here is that if trajectory 7(e) is kinematically feasible
and there are no other objects nearby, then the observation
depends only on the relative transformation between w and
e, as shown in Figure 3. For two sets of w and e with the
same relative transformation, as with the examples in the
figure, w and 7(e) may differ, but 2. (w, e), which is ex-
pressed relative to w, is the same. Thus, when calculating
the full Q. (w, e) matrix for a WRT, we can pick a single e
(for instance, the initial w* (b)), compute 7(e), and simulate
just that sequence of robot poses while varying w. The num-
ber of simulations required to compute .- (w, e) is therefore
merely the number of points in the belief grid that have non-
trivial probability, and takes just a few seconds. Once the
simulations are completed, the results can be stored for fast
re-use when selecting actions online.

Based on these canonical observations, as well as the vol-
ume of free space swept out by the arm during the execu-
tion of the trajectory, we construct an observation model
P(o|w, T(e)), which is used for belief state update. For a
detailed discussion of the model, see (Hsiao 2009).

Reducing the observation branching factor

The space of possible observations given a single known
world state is continuous due to noise, but the distribution
has one or two fairly peaked modes, which we can treat as
discrete clusters of observations. When the world state is not
known, then we might have any of an enormous number of

these observation clusters, arising from all possible under-
lying world states. We will aggressively cluster this space
of observations, represent each cluster with a canonical ob-
servation, and branch on these canonical observations in the
forward search.

The observations are clustered and pruned first in an of-
fline phase and again in an online phase that depends on
the current belief state. In the offline phase we group ob-
servations with similar contacts independent of the absolute
pose in which the contacts take place, then prune clusters
whose aggregate probability is less than .01. In our exper-
iments, this results in a set of 68 observations, which is re-
duced from the initial 24,025 modes, but still too large to
branch on in the forward search. So, online, given a be-
lief node to expand, with trajectory 7(e), we group observa-
tions for which the resulting belief states after state estima-
tion, SE(b, 7(e),0), have similar entropy and covariance.
Finally, we take the set of highest-probability clusters that
account for 50% of the total probability mass.

Computing the transition model

The transition model captures the dynamics of how the ob-
ject moves in response to contact with the robot during ex-
ecution of a trajectory, 7(e). If no contact is made with the
object, it is assumed that the object does not move. If con-
tact is made with the object, the transition model is a mixture
of Gaussians around two outcomes: 1) the object remains in
place, and 2) the object gets bumped through the contacts
that were made when the trajectory terminated. Details are
in (Hsiao 2009).

RRG-Goal: Robust WRT execution

In many situations, merely executing a single goal-seeking
WRT over and over again until our belief state goal condi-
tion is met is sufficient to robustly grasp an object. Con-
sider the execution of a single WRT with the goal of grasp-
ing the object and let the system be in initial belief state b.
We first compute the most likely state, w*(b), and gener-
ate 7(w* (b)), a sequence of waypoints in robot coordinates.
We then command the robot to move to each waypoint in
turn using guarded moves, collect the resulting observation
(either early contact or reaching the end of the WRT with-
out touching anything), and use that observation to update
the belief state. If the goal condition on the belief state is
not satisfied, we retrace the previous trajectory back to the
home pose (to avoid any further contacts, which we will
not be able to predict effectively), relativize 7 to the new
most likely world state, and re-execute. Repeated execution
of the goal-seeking WRT relative to the current most likely
state is continued until the belief state goal condition is met,
at which point the robot declares success and attempts to
pick up the object. We refer to this simple algorithm for
robust execution of a single, goal-seeking WRT (with the
addition of allowing an optional reorient action to be used if
the goal-seeking WRT is infeasible, which will be described
shortly) as the RRG-Goal algorithm, short for Relatively Ro-
bust Grasping with Goal-seeking WRT.

Figure 4 shows the operation of the system while grasp-
ing a rectangular box using RRT-Goal. The robot attempts

Most likely robot- Where it actually is Initial belief state Summed over theta
relative position

Tried to move down; Observation probabilities Updated belief state
finger hit corner

2

Back up Try again with new belief Grasp

Goal:

variance x < 1.5 cm
y<20cm

theta < 10 deg

80% success threshold

Observation probabilities Updatedvbelief Declare success!

Figure 4: Execution of WRT and (z,y, 6) belief state up-
date.

to execute a grasping trajectory, relative to the most likely
element of that belief state. The first image in the top row
shows where the robot thinks the most likely state of the box
is relative to its hand. The second image shows the loca-
tion of the robot at the first waypoint in that trajectory: we
can see that the object is actually not in its most likely posi-
tion (if it were, the robot’s hand would be centered above it).
The third image in the first row shows the initial belief state,
with probabilities depicted via the radius of the balls shown
at grid points on the (x,y, #) state space of the box. Subse-
quent belief state images show the belief state summed over
0 for easier visualization, as in the fourth image in the first
row. In action 1 (row 2), the hand executes a guarded move
toward the next waypoint in the trajectory, and is terminated
by a fingertip contact on the corner of the box, as shown in
the first figure in the second row. The middle figure in the
second row shows the probability of observing that fingertip
contact in each world configuration. Combining this infor-
mation with the initial belief state, we obtain the updated
belief state shown in the third figure in the second row. It is
clear that the information obtained by the finger contact has
considerably refined our estimate of the object’s position.
The third and fourth rows of figures show a similar process.
The same WRT is executed a second time, now with respect
to the most likely state in the updated belief state. This time,
the hand is able to move all the way down, and the fingers
close on the box, with the resulting belief state shown in the
final figure. Now, given a goal condition such as having the

box centered between the fingers within 1.5 cm and oriented
within 10 degrees of being straight, but not being concerned
where along the box the fingers are grasping, we can evalu-
ate the probability that it holds in the current belief state. In
this case, it holds with probability > .8, so if § were .2, we
would terminate.

Additional WRT actions

The most basic strategy of executing a single goal-seeking
WRT can be effective in many situations, as demonstrated in
the experimental results. However, there are many situations
in which it may fail.

Goal-seeking trajectories

In our experiments, we use only a single, hand-generated
goal-seeking WRT for each object. However, for some
tasks, we may need more than one goal-seeking WRT to ef-
fectively achieve the goal for all possible object locations;
there is no reason we need to limit ourselves to a single
goal-seeking WRT. Kinematic constraints arising from the
boundaries of the workspace may render execution of 7(w)
simply infeasible for some values of w. It may also be that,
even when it is executed in the appropriate world state (7(w)
is executed in w) a collision will result, due to obstacles. In
addition, if our goal condition contains noncontiguous re-
gions corresponding to different possible grasps of an object,
we would need more than one WRT to be able to achieve the
different goal grasps.

Explicit information gathering

The execution process described in the previous section will
succeed if the goal-seeking trajectories result in local sen-
sory observations that provide enough information to update
the belief state so that it is eventually concentrated enough
to meet the goal criterion. However, this will not necessarily
happen. Consider the final belief state shown in Figure 4.
It is clear that the object is well localized in the x and 6 di-
mensions, but there is still considerable uncertainty in the y
dimension (the grasp that the robot executed knows only that
the fingers are on the box in the y dimension, but not where).
If the goal had required that the box be grasped very near
the center in the y dimension, for example, then this result
would not have satisfied the goal condition, we would have
no real way to improve the situation through further execu-
tion of our goal-seeking WRT, and the control loop would
run forever. For this reason, we will sometimes need to exe-
cute WRTS that are designed explicitly to reduce uncertainty
in the belief state, not to achieve the ultimate desired world
configuration.

Reorienting and other actions that move the object

We can also execute trajectories that try to change the actual
state of the world, rather than merely trying to reduce uncer-
tainty in the belief state. If all of our goal-seeking trajecto-
ries are kinematically infeasible in w*(b), for instance, we
may wish to reorient the object so that at least one of them
becomes feasible. To do so, we can add a WRT that attempts
to grasp the object (using a grasp that does not necessarily

satisfy the goal conditions) and then rotates the object after
successfully running to completion.

In our experiments, we have reorientation grasps for ob-
jects for which the goal-seeking trajectory can be kinemati-
cally infeasible at high orientation deviations; these reorien-
tation grasps are all grasps from above that attempt to rotate
the object about its center of mass. The observation model
is the same for reorientation grasps as for other WRTs; how-
ever, the transition model additionally models the object ro-
tation, taking into account the possibility of the rotation fail-
ing or leaving the object at an intermediate rotation.

Generating WRTSs

Most of the WRTSs used in this paper were generated through
demonstration (by moving the robot and recording object-
relative waypoints), although we have experimented with
generating WRTs automatically, and a few of the WRTs
that we use were generated in this fashion. WRTs can be
constructed automatically simply by finding desired places
on the object to grasp, finding collision-free trajectories to
those hand positions, and then expressing those trajectories
in object-relative, Cartesian coordinates. In our implementa-
tion, we constructed information-gain trajectories by finding
hand positions that place the fingers on nearly parallel pairs
of object surfaces. We then found collision-free trajecto-
ries to those hand positions, for the nominal object position,
using the default planners in the OpenRAVE motion plan-
ning system (Diankov and Kuffner 2008). We also added an
information-gathering WRT for most of the objects that just
sweeps horizontally across the entire workspace looking for
the object, which is particularly useful for roughly locating
the object under high uncertainty.

Intuitively, for each object that we wish to grasp, we need
to provide a set of information-gathering and goal-seeking
WRTs that constrain the possible object states in such a
way that the constrained object position is not easily confus-
able with any object position outside of the goal condition,
within the start uncertainty. Furthermore, if we expect the
workspace to be cluttered, and have geometric models of the
obstacles (such as could be provided by a laser rangefinder),
we can provide additional WRTS that would allow us to col-
lect sufficient information even when some of our WRTs are
infeasible due to possible collisions.

RRG-Info: Using POMDP forward search

Given a set of available WRTS, including information-
gathering, goal-seeking, and reorientation WRTs, we would
like to select a WRT that will allow us to reach our belief
state goal condition quickly. To do so, we use POMDP for-
ward search, as described above.

In our forward search, the static evaluation function for
a belief state is simply the probability of succeeding, if we
were to execute one of our goal-seeking WRTs in that state,
and terminate. More specificially,

vp(b) = max [P} (G(82(ry (w7 (b)), w)))]

which is, according to our belief state b, the maximum prob-
ability that G will be true in the state resulting from exe-

Powerdrill target grasp Info-grasp 1 Info-grasp 2 Info-grasp 3

Figure 5: Goal-seeking and info-gathering grasps for the
powerdrill.

Figure 6: Goal-seeking grasps for all objects except the pow-
erdrill. Top row: cooler, taperoll, can. Middle row: wooden
bowl, cup, teabox. Bottom row: box, giant teacup, Brita
pitcher.

cuting any of our goal-seeking actions using the most likely
state, T4 (w*(b)).

We refer to the use of POMDP forward search to select
among information-gathering, goal-seeking, and reorienta-
tion WRTs as the RRG-Info algorithm, short for Relatively
Robust Grasping with Information-Gathering.

Experiments

We conducted experiments using this framework with a 7-
DOF Barrett Arm and Hand, both in simulation (using Open
Dynamics Engine to simulate the physics of the world) and
on an actual robot. The hand is outfitted with ATI Nano17 6-
axis force/torque sensors at the fingertips, and simple binary
contact pads covering the inside (and some outside) surfaces
of the fingers and the palm.

Our experiments used 10 different objects, shown with
their goal-seeking grasps in Figures 5 and 6. Goal regions
and required contact locations for each object were hand-
chosen to guarantee that being within the goal region ensures
a stable grasp of the object. These regions are much larger
for some objects than for others (for instance, the goal region
for the can is large, since the hand only has to envelop it),
and the goal regions for certain objects (the cup, wooden
bowl, can, and taperoll) ignore the orientation of the object,
looking only at the object position relative to the hand.

In all experiments, the maximum number of actions al-
lowed was 10; after the 9th action, if the planner had not

Results for uncertainty standard deviation of
19m X, 1cmy, 3 deg theta

100 -
90 - n il
80 Ji
;g i B RRG-Info
O RRG-Goal
40 H
30 O Open-loop
20 A
10 4
0 | L1 L1 L1 L1 L1

Percent grasped correctly
(o))
o
|

Q> S D &+ S 2D
I 00& S SES
& K N & & &

@ & x$ & o$

& & R
& S

Figure 7: Sim results for all objects at low uncertainty.

Results for uncertainty standard deviation of
5cmx,5cmy, 30 deg theta

B RRG-Info

ORRG-Goal

O Open-loop

Percent grasped correctly

i
BN WA U N ® OO
O OO OO0 000 o0 o o
N

> S D &+ G- 2D
0&?’ L &» 00$ N ¢ & K & &
S Q & & &
& & ¢ < S
S & $§
& §
N S

Figure 8: Sim results for all objects at high uncertainty.

yet declared success and terminated, the goal-seeking grasp
was executed open-loop before evaluating whether the grasp
had succeeded. All simulation experiments were carried out
with at least 100 trials each. In our experiments, we com-
pare three different strategies: 1) Open-loop: executing the
goal-seeking WRT once, open-loop, 2) RRG-Goal, and 3)
RRG-Info with a horizon of 2 (except where otherwise spec-
ified).

Figure 7 shows the results for experiments carried out in
simulation with initial (Gaussian) uncertainty standard de-
viations of 1 cm in «, 1 cm in ¥y, and 3 degrees in 6. The
planner was asked to succeed at least 90% of the time (§ =
.1), and thus terminates when the probability of success rises
above 90%. The graph shows the percentage of grasps that
were executed successfully for each object placed at ran-
dom positions drawn from the same distribution as the ini-
tial uncertainty, for the three algorithms. Even at these low
uncertainty levels, executing the goal-seeking grasp open-
loop fails with fairly high probability for many of the ob-
jects. Using just RRG-Goal allows us to succeed nearly
all of the time, and using RRG-Info brings our success rate
above 97% for all objects except the teabox, for which the

planner only selects the goal-seeking WRT, because it recog-
nizes that it will succeed with a probability of approximately
90% (it succeeds 89% of the time) just by selecting the one
action. Raising the target success rate to 95% causes it to
select other actions, raising the success rate to 98.4%.

Figure 8 shows the results for grasping all 10 objects in
simulation with higher levels of initial uncertainty (standard
deviations of 5 cm in x, 5 cm in ¥, and 30 degrees in 6).
Note that at this level of uncertainty, it is possible for the
object to be 15 cm and 45 degrees away from the initial esti-
mated position; the object is somewhere on the table in front
of the robot, but the robot has only a rough idea of where,
and so it is essentially groping around blindly. With this
much uncertainty, executing the goal-seeking grasp open-
loop seldom succeeds. Using just RRG-Goal is sufficient for
many of the objects, with the notable exception of the box
(this is the example we gave when motivating information-
gathering grasps) and the powerdrill, for which the goal-
seeking grasp is grasping a nearly-cylindrical handle that
gives it little information about the orientation of the drill.
Using RRG-Info brings our success rate above 95% for all
objects except the cup and teabox. The small sizes of both
the cup and the teabox cause the fairly coarse grid sampling
(the grid spacing that we use is 1 cm and .1 radians for this
level of uncertainty) to be too poor an approximation for the
actual continuous observation probability distribution. At
a resolution this coarse, the majority of the probability mass
sometimes lies between the grid points, and so the grid point
with the highest sampled probability may not actually be the
one closest to the actual most likely state. Thus, localizing
the object within a 1 cm goal region is not always possible.
However, for both objects, the planner is always able to lo-
calize the object to within a small area, and moreover, knows
that it has done so. If we used a variable-resolution grid that
switched to the same grid used at the low uncertainty levels
when the planner became sure that the belief state is con-
tained within the smaller grid, we would most likely obtain
results similar to those in the low-uncertainty graph.

Figure 9 shows parametric results for just the powerdrill in
simulation at the 5 cm/30 degree level of uncertainty, where
0 was varied to show the trade-off between the number of
actions executed and the probability of success. The four
strategies used here are RRG-Goal and RRG-Info with a
horizon of 3, 2, and 1. Each point on the graph represents the
average number of actions taken before termination and the
% successful for more than 100 simulated runs. Just execut-
ing the goal-seeking grasp repeatedly does not work well at
all for this object, whereas just searching with a horizon of
1 works reasonably well. Increasing the horizon to 2 causes
the planner to choose actions that result in a lower probabil-
ity of success after just 2 actions, but that pay off in terms
of a higher probability of success for fewer actions later on.
This is largely due to the fact that, although infograsp 1 pro-
vides information about all three dimensions at once and in-
fograsp 2 only provides information about two dimensions,
infograsp 2 for the powerdrill (shown in Figure 5) acts as a
“funnel’ for infograsp 1, enabing it to succeed more often.
Increasing the horizon to 3 adds no additional benefit.

Although even searching with a horizon of 1 manages to

100
90 1
80
70 1 RRG-Info
60 + e

- RRG-Info

50 H=2

40 4 W = RRG-nfo

30 | -=-RRG-Goal

20 1

10 ~
0 \ T T

2 4 6 8 10
Number of actions taken

% grasped correctly

Figure 9: Parametric comparisions of various algorithms
with the powerdrill in simulation.

succeed with essentially the same probability as using a hori-
zon of 2 or 3 after 10 actions, searching 2 or 3 deep reduces
the number of actions needed to succeed more than 90% of
the time from an average of 7 actions to an average of 4 ac-
tions, which is a dramatic speedup. However, informally, we
have observed that using a horizon of 1 is as good as using
a horizon of 2 for most objects. Because even a horizon of 1
is usually sufficient to pick reasonable actions, if we have a
large number of WRTs to select from (as we might need to
have in the presence of a great deal of clutter), we can still
select reasonable actions quickly. For comparison, selecting
the first action from among the 5 available powerdrill actions
takes us 3 seconds for a horizon of 1 (using a non-optimized
Python implementation); using a horizon of 2 takes 10 times
longer, and using a horizon of 3 takes 60 times longer.

On the real robot, we ran 10 experiments each for both
the Brita pitcher and the powerdrill at initial uncertainty lev-
els of 5 cm in x, 5 cm in y, and 30 degrees in 0, again with
random positions drawn from the same distribution, using
RRG-Info. Both objects were grasped stably and lifted suc-
cessfully 10 out of 10 times, with the trigger being pressed
successfully on the powerdrill and the Brita pitcher being
grasped properly by the handle. For the other objects, we ran
five experiments each: 1 at uncertainty levels of 1 cm/3 deg
with RRG-Info, and four at uncertainty levels of 5 cm/30 deg
(three with RRG-Info, and one with RRG-Goal). The object
placements and results are shown in the chart in Figure 10.

Most of the grasps succeeded. Two grasps (the box and
teabox with RRG-Goal) failed as expected, due to the goal-
seeking grasp’s inability to collect information in a relevant
goal dimension. The cooler grasp that failed was due to ex-
ecuting an information-gathering grasp that swept horizon-
tally across the workspace but hit the corner of the cooler on
a part of the hand with no sensors, thus shoving the object
out of the workspace. The can was knocked over by a jerky
hand movement. The cup failure was due to the same fail-
ure mode discussed in the simulation results; the teabox in
real life adds the additional complication of being too light

to sense without pushing the object significantly. The giant
teacup grasp failed because the mesh (especially at the han-
dle) is very thin, and our approximation of the robot’s swept
path can miss the fact that the fingers go through the handle
in its most likely location. This failure mode is also seen in
simulation. Videos of the real robot experiments can be seen
at http://people.csail.mit.edu/kjhsiao/wrtpomdps.

Several of the failures were due to limitations in the cur-
rent implementation, such as using a fixed-resolution as
opposed to a variable-resolution grid, having jerky robot
control, using an imprecise swept path approximation, and
not computing and taking into account the probabilities of
WRTs failing due to contacts with sensorless parts of the
hand. Nonetheless, there are several general principles that
we can observe from our experiments. The first is that a
small search horizon is effective in our framework; a hori-
zon of 1 is usually sufficient, and a horizon greater than
2 is generally not useful, which means that planning does
not have to be very expensive. The second is that we are
still able to choose effective actions despite the aggressive
observation clustering that we do to limit the observation
branching factor. The third is that one of the limitations of
our framework is the quality of the transition model. Our
system currently works well for objects that either do not
move much when bumped into during a guarded move, or
else that are large enough, or have sufficiently large goal re-
gions, that information-gathering grasps (often on surfaces
far away from the center) can provide enough information
to overcome the fact that the object moves significantly ev-
ery time we touch it. If we had a more predictive transi-
tion model that could more accurately estimate how objects
move when we bump into them, we could further improve
our results. A more accurate transition model could even
enable us to add actions that purposely push objects in order
to gain information, by, for instance, shoving them against
walls or other immovable objects. Finally, some objects are
too light or fragile to bump into even with the most sensitive
touch sensors, and this method is unlikely to work well for
those objects; in many of those cases, it may be better to use
“pre-touch” sensors, such as IR or electric field sensors, to
localize objects without having to touch them (Mayton et al.
2009), (Hsiao et al. 2009).

Conclusion

We have shown that our framework of using POMDP for-
ward search with world-relative trajectories increases the ro-
bustness of grasping objects with positional uncertainty by
a great deal. The fact that repeatedly executing the goal-
seeking grasp does so well on its own for most objects means
that much of the robustness comes just from tracking the be-
lief state, executing actions relative to the most likely state,
and reasoning about whether the grasp is likely to be within
the goal region. However, information gathering and re-
orientation grasps are necessary to add robustness in some
cases, and in those cases, using POMDP forward search is a
good way to select actions intelligently.

Acknowledgement: This research was supported in
part by the National Science Foundation under Grant No.

= succeeded 3 I 8 (3% 2 @ gize
o =3 o Y o o
; =X o 20 o o X A3
= failed) = =a o c o~
= =3] M o
= failed as expected -

1 ¢cm/3 deg RRG-Info
(-2x, -2y, -5 deg)

5 ¢cm/30 deg RRG-Info
(3x, -3y, 10 deg)

5 ¢cm/30 deg RRG-Info
(7%, 7y, 40 deg)

5 cm/30 deg RRG-Info
(-5x, 10y, -15 deg)

5 cm/30 deg RRG-Goal
(=5 cm, 45 deg mag)

Figure 10: Results for grasping the other eight objects with
the actual robot. Object placements as deviations from the
expected position are shown in parentheses.

0712012 and in part by DARPA IPTO Contract FA8750-05-
2-0249, “Effective Bayesian Transfer Learning”.

References

Alterovitz, R.; Simeon, T.; and Goldberg, K. 2007. The
stochastic motion roadmap: A sampling framework for
planning with markov motion uncertainty. RSS.

Brost, R. C., and Christiansen, A. D. 1996. Probabilis-
tic analysis of manipulation tasks: A computational frame-
work. IJRR 15(1):1-23.

Burns, B., and Brock, O. 2007. Sampling-based motion
planning with sensing uncertainty. /CRA.

Censi, A.; Calisi, D.; Luca, A. D.; and Oriolo, G. 2008.

A bayesian framework for optimal motion planning with
uncertainty. /CRA 1798-1805.

Diankov, R., and Kuffner, J. 2008. Openrave: A plan-
ning architecture for autonomous robotics. Technical Re-
port CMU-RI-TR-08-34, Robotics Institute, CMU.
Gadeyne, K.; Lefebvre, T.; and Bruyninckx, H. 2005.
Bayesian hybrid model-state estimation applied to simul-
taneous contact formation recognition andgeometrical pa-
rameter estimation. [JRR 24:615.

Gonzalez, J. P, and Stentz, A. 2005. Planning with un-
certainty in position an optimal and efficient planner. JROS
2435-2442.

Hsiao, K.; Nangeroni, P.; Huber, M.; Saxena, A.; and Ng,
A. 2009. Reactive grasping using optical proximity sen-
sors. In ICRA.

Hsiao, K.; Kaelbling, L. P.; and Lozano-Perez, T. 2007.
Grasping pomdps. ICRA.

Hsiao, K.; Kaelbling, L. P.; and Lozano-Perez, T. 2008.
Robust belief-based execution of manipulation programs.
In WAFR.

Hsiao, K. 2009. Relatively Robust Grasping. Ph.D. Dis-
sertation, Massachusetts Institute of Technology.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. Sarsop: Ef-
ficient point-based pomdp planning by approximating op-
timally reachable belief spaces. In RSS.

Latombe, J. 1991. Robot Motion Planning. Norwell, Mass:
Kluwer Academic Publishers.

LaValle, S. M., and Hutchinson, S. A. 1994. An objective-
based stochastic framework for manipulation planning. In
IROS, 1772-1779.

Lozano-Pérez, T.; Mason, M.; and Taylor, R. H. 1984.
Automatic synthesis of fine-motion strategies for robots.
IJRR 3(1).

Mayton, B.; Garcia, E.; LeGrand, L.; and Smith, J. R.
2009. Electric field pretouch: Towards mobile manipula-
tion. In RSS Workshop on Mobile Manipulation in Human
Environments.

Melchior, N. A., and Simmons, R. 2007. Particle rrt for
path planning with uncertainty. /CRA.

Ong, S. C. W,; Png, S. W.; Hsu, D.; and Lee, W. S. 2005.
Pomdps for robotic tasks with mixed observability. In RSS.
Petrovskaya, A., and Ng, A. Y. 2007. Probabilistic mobile
manipulation in dynamic environments, with application to
opening doors. IJCAL

Prentice, S., and Roy, N. 2007. The belief roadmap: Ef-
ficient planning in linear pomdps by factoring the covari-
ance. ISRR.

Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online planning algorithms for pomdps. Journal of Artifi-
cial Intelligence Research.

Smallwood, R. D., and Sondik, E. J. 1973. The optimal
control of partially observable Markov processes over a fi-
nite horizon. Operations Research 21:1071-1088.

Smith, T., and Simmons, R. G. 2005. Point-based pomdp
algorithms: Improved analysis and implementation. In
UAI, 542-547.

Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. Cambridge, MA: MIT Press.

