
6.001, Fall Semester, 2006—Quiz I 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 2006

Quiz I

Closed Book – one sheet of notes

Throughout this quiz, we have set aside space in which you should write your answers. Please try
to put all of your answers in the designated spaces, as we will look only in this spaces when grading.

Note that any procedures or code fragments that you write will be judged not only on correct
function, but also on clarity and good programming practice. Also note that while there may be a
lot of reading to do on a problem, there is relatively little code to write, so please take the time to
read each problem carefully.

NAME:

Section Time: Tutor’s Name:

PART Value Grade Grader
1 20
2 15
3 20
4 25
5 20

Total 100

For your reference, the TAs are:

• Vikki Chou

• Tom Lasko

• Alex Vandiver



6.001, Fall Semester, 2006—Quiz I 2

Part 1: (20 points)

For each of the following expressions or sequences of expressions, state the value returned as the
result of evaluating the final expression in each set, after evaluating any previous expressions in
the set; or indicate that the evaluation results in an error. If the result is an error, state in general
terms what kind of error (e.g. you might write “error: wrong type of argument to procedure”). If
the evaluation returns a built-in procedure, write primitive procedure. If the evaluation returns
a user-created procedure, write compound procedure.

For each question, we also ask you to identify the “type” of the returned expression, using the
notation introduced in lecture (assuming that the expression does not result in an error).

You may assume that evaluation of each sequence takes place in a newly initialized Scheme system.

Question 1.

(lambda (a b) (+ 1 a))

Value: Type:

Question 2.

((lambda (x y)
(/ (- x y)

(+ x y)))
6 3)

Value: Type:

Question 3.

((lambda (a + b)
(+ a b))

3 * 4)

Value: Type:



6.001, Fall Semester, 2006—Quiz I 3

Question 4.

((lambda (x)
(lambda (y)

(- (* x x) (* y y))))
5)

Value: Type:

Question 5.

+

Value: Type:



6.001, Fall Semester, 2006—Quiz I 4

In the rest of this quiz, we are going to be exploring a simple system for keeping tracking of voting
results, for use in the upcoming election. The basic element of the system will be a record of votes
for a candidate in a specific precinct (or voting area).

While the questions all follow a common theme and build on one another, they are all independent:
Even if you get a question wrong, or leave it blank, you can still go on to the rest of the questions
and answer them. In those later questions you can use the names of the functions you were asked
to write in earlier questions, whether or not you got that previous question correct.

Part 2: (15 points)

First we need to worry about a data structure for representing this information. We will assume
that we have a constructor called precinct-data which takes as arguments a name of a candidate
(represented as a string), a number of votes for that candidate, and the number of the precinct, in
that order. For example

(define data1 (precinct-data "fred" 203 1))
(define data2 (precinct-data "judy" 253 1))
(define data3 (precinct-data "fred" 102 2))
(define data4 (precinct-data "judy" 203 2))
(define data5 (precinct-data "fred" 193 3))
(define data6 (precinct-data "judy" 143 3))

(define test-votes (list data1 data2)) ; simple list case

(define allvotes (list data1 data2 data3 data4 data5 data6)) ;; larger test case

Associated with this constructor are several selectors or accessors: who, votes and precinct
each extract the associated parts of a precinct count.

Question 6. Write an implementation for the constructor and these accessors:



6.001, Fall Semester, 2006—Quiz I 5

Question 7. In the space provided, draw a box-and-pointer diagram for your implementation for
the structure bound to test-votes, which is defined on the previous page.

(define data1 (precinct-data "fred" 203 1))
(define data2 (precinct-data "judy" 253 1))

(define test-votes (list data1 data2)) ; simple list case



6.001, Fall Semester, 2006—Quiz I 6

Part 3: (20 points)

Assume that the procedure addup exists, with the following behavior: it takes as argument a list
of numbers, and it returns as value the sum of those numbers.

With that assumption, we want to write a procedure, called get-votes-for, which takes as argu-
ments a name of a candidate (as a string) and a list of precinct data objects (such as the example
shown for allvotes). It returns as value the sum of the votes from all precincts for the candidate.
We have provided a template below:

(define (get-votes-for cand data)
(addup
(map ANSWER8

(filter ANSWER9 data))))

where

(define (map proc lst)
(if (null? lst)

’()
(cons (proc (car lst))

(map proc (cdr lst)))))

(define (filter pred lst)
(cond ((null? lst) ’())

((pred (car lst)) (cons (car lst) (filter pred (cdr lst))))
(else (filter pred (cdr lst)))))

Question 8. Complete the code needed for ANSWER8

Question 9. Complete the code needed for ANSWER9 (you may find it useful to use string=?)



6.001, Fall Semester, 2006—Quiz I 7

Question 10. Now write an implementation of addup that has a linear recursive process.

Question 11. As an alternative, write an implementation of addup that has an interative process.



6.001, Fall Semester, 2006—Quiz I 8

Part 4: (25 points)

If our election has a lot of precincts (which it certainly will have in reality) then the list of precincts
(such as allvotes) will be very long. So we might want to sort this list into a new list, where the
entries are sorted, for example by precinct number.

Here are a pair of procedures that sort a list:

(define (sort lst comp)
(define best-and-rest (bubble-up lst comp))
(if (null? (cdr best-and-rest))

best-and-rest
(cons (car best-and-rest)

(sort (cdr best-and-rest) comp))))

(define (bubble-up lst comp)
(define (help best done todo)
(cond ((null? todo)

(cons best done))
((comp best (car todo))
(help best (cons (car todo) done) (cdr todo)))
(else (help (car todo) (cons best done) (cdr todo)))))

(help (car lst) ’() (cdr lst)))

Question 12: To help you absorb the code above, what is the value of

(bubble-up (list 2 1 3) <)

What is the value of

(sort (list 2 1 3) <)



6.001, Fall Semester, 2006—Quiz I 9

Question 13: Using these procedures, complete the following procedure to sort a list of precinct
data by precinct number, in increasing order.

(define (sort-by-precinct data)
(sort data ANSWER7))

Question 14: What is the order of growth in time of the procedure bubble-up measured in terms
of the length of the argument list?

Choose from:
A: constant
B: linear
C: exponential
D: quadratic
E: logarithmic
F: something else

What is the order of growth in space, measured as the maximum number of deferred operations,
also measured as a function of the length of the argument list?

Question 15: What is the order of growth in time of the procedure sort measured in terms of
the length of the argument list?

Choose from the same list of options:

What is the order of growth in space, measured as the maximum number of deferred operations,
also measured as a function of the length of the argument list?



6.001, Fall Semester, 2006—Quiz I 10

Part 5: (20 points)

While the code described above lets us sort precinct data, in a variety of ways, it is a bit cumbersome
as it includes some redundant data. Suppose, instead, that we want to store vote information in
a new format. This new format, called a candidate record includes the name of the candidate,
plus a list of precinct records each of which is a combination of number of votes and precinct
number. In other words, this new format has the candidate’s name included only once.

Here is an implementation of such an abstraction:

(define (make-candidate-record name precinct-records)
(list name precinct-records))

(define (make-precinct-record votes precinct)
(list votes precinct))

We want you to write a procedure that will convert data from our original format, into this new
format, for a specific candidate. Here is the main procedure:

(define (convert-form data candidate)
(make-candidate-record candidate (construct-votes data candidate))

so that for example evaluating

(convert-form allvotes "fred")

returns the value

("fred" ((203 1) (102 2) (193 3)))

Question 16:

Write the procedure construct-votes:



6.001, Fall Semester, 2006—Quiz I 11

Question 17: The procedure we just wrote will convert the precinct records for a specific candidate
to the new form. Suppose instead we want to convert all the records. We can do this by using
convert-form, so long as we provide the right set of data to the procedure.

Below is a template of code to do this:

(define (convert-all-new data)
(if (null? data)

’()
ANSWER17

)))

Provide the coded needed for ANSWER17. Hint: you may want to use filter to extract portions
of the data to process, although you may also write procedures to do this directly.


