
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.001 Structure and Interpretation of Computer Programs
Spring, 2007

Recitation 1, February 7

Scheme Dr. Kimberle Koile

Language Constructs

1. Primitives: simplest entities in the language
 . evaluate to themselves
 examples:

 . evaluate to a procedure
 examples:

2. Combinations: compound elements built by combining smaller ones (primitive procedures and
subexpressions)

 (foo a b c) First expression after left parenthesis must be a procedure to be applied; a, b, c are
subexpressions representing the procedure's arguments

 . evaluate subexpressions, then apply value of the operator

(+ 3 4)

(+ (+ 3 4) (+ 10 11) (+ 1 1))

3. Abstractions: compound elements can be named and used as single entities
 . needs a special form called define (why?)

 (define bar 4)
 (define foo +)
 (foo bar 3)

 (define foo*2 (* foo 2))

 (define foo*2 (* (foo 3 4) 2))

Examples

(* 5 99)

(+5 99)

(* (5 9))

(* -5 99)

(* (- 5 99))

What special characters have we seen so far in Scheme?

Problems

What is the result printed by the Scheme interpreter for each expression? Assume that the first 7 expressions are
evaluated in order.

1. 42

2. (/ 5 2)

3. (+ (* 2 3) (- 4 8))

4. +

5. (define + (* 2 5))

6. (* 2 +)

7. (+ 2 5)

8. Write the Scheme expression representing the following (assume that + has not been redefined):

5 + 4 + (2 – (3 – (6 + ¾)))
 3(6 – 2)(2 – 7)

