
6.001 recitation 3/21/07

set-car! and set-cdr!
ring problems
more set-car!, set-cdr! problems

Dr. Kimberle Koile

2

compound data mutation

constructor:
(cons x y) creates a new pair

selectors:
(car p) returns car part of pair
(cdr p) returns cdr part of pair

mutators:
(set-car! p new-x) changes car pointer in pair
(set-cdr! p new-y) changes cdr pointer in pair

; Pair,anytype -> undef -- side-effect only!

How can we tell if two things are equivalent?
-- What do you mean by "equivalent"?

1. The same object: test with eq?
(eq? a b) ==> #t

2. Objects that "look" the same: test with equal?
(equal? (list 1 2) (list 1 2)) ==> #t
(eq? (list 1 2) (list 1 2)) ==> #f

1 21 2

sharing, equivalence, and identity

(define a (list 1 2))

(define b a)

a ==> (1 2)

b ==> (1 2)

1 2b

a

(set-car! a 10)

Compare with:

(define a (list 1 2))

(define b (list 1 2)) 1 2

a

1 2

b
(set-car! a 10)

example 1: pair/list mutation

example 2: pair/list mutation

(define x (list 'a 'b))

a b

x
X

21

How is x mutated to achieve the result at right?

And this one?

a b

x X

1

For the given expressions:
(a) Draw the box and pointer diagram corresponding to the list or pair structure
(b) Write what Scheme prints out after evaluating the last expression in the sequence

1. (define x (cons 7 (list 8 9)))
(set-car! (cdr x) 10)

a. box and pointer diagram for x b. printed result for x

set-car! and set-cdr! problems

For the given expressions:
(a) Draw the box and pointer diagram corresponding to the list or pair structure
(b) Write what Scheme prints out after evaluating the last expression in the sequence

2. (define y ’(7))
(define z (let ((x (list ’a ’(b c) (car y))))

(set-car! y (cdr x))
(set-cdr! x (car (cdr x)))
x))

z

a. box and pointer diagram for x, y and z b. printed result for z

set-car! and set-cdr! problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)
(c) Draw the structure that results from the mutation, and its printed representation.

3. a. x =>

b. Scheme expression: c. mutation: (set-car! (cdr (second x)) 4)

x =>

more set-car! and set-cdr! problems

Rings are circular structures similar to lists.
If we define a ring r: (define r (make-ring ‘(1 2 3 4)))

the following are true: (nth 0 r) => 1 (nth 1 r) => 2 … (nth 4 r) => 1

In order to make a ring, we need a procedure last-pair which returns the last pair in its argument:
(last-pair (list 1 2 3 4))=> (4)

1. Write last-pair.

(define (last-pair x)

ring problems

2. Write make-ring!, which takes a list and makes a ring out of it..

(define (make-ring! x)

)

ring problems

3. Write the procedure rotate-left, which takes a ring and returns a ring that has been rotated one to the left.
(define r1 (rotate-left r))
(nth 0 r1) => 2

(define (rotate-left ring)

)

ring problems

4. What happens if you evaluate (length r) on the above ring?

Write the procedure ring-length, which returns the length of the original list used in
constructing the ring. (Hint: Write a helper procedure.)

(define (ring-length ring)

)

ring problems

5. Rotating a ring to the right is harder than rotating to the left. (Why?) Write the procedure
rotate-right. (Hint: You might want to use the procedure repeated, which takes a procedure, a
number n, and an argument to the procedure, and repeatedly calls the op on the argument n times.)

(define (rotate-right ring)

)

ring problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure(if an error, describe it)
(c) Draw the structure that results from the mutation, and its printed representation.

1. a. x =>

b. Scheme expression: c. mutation: (set-cdr! (car x) '(8))

x =>

more set-car! and set-cdr! problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)
(c) Draw the structure that results from the mutation, and its printed representation.

2. a. x =>

b. Scheme expression: c. mutation: (set-cdr! (cddr x) (caaar x))

x =>

more set-car! and set-cdr! problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)
(c) Draw the structure that results from the mutation, and its printed representation.

3. a. x =>

b. Scheme expression: c. mutation: (set-car! (caar x) 3)

x =>

more set-car! and set-cdr! problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)
(c) Draw the structure that results from the mutation, and its printed representation.

4. a. x =>

b. Scheme expression: c. mutation: (set-cdr! (first x) (second x))

x =>

more set-car! and set-cdr! problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)
(c) Draw the structure that results from the mutation, and its printed representation.

5. a. x =>

b. Scheme expression: c. mutation: (set-car! (cdr x) ’())
(set-cdr! (car x) ’())

x =>

more set-car! and set-cdr! problems

