6.001 recitation 3/21/07

0 set-car! and set-cdr!
O ring problems
o more set-car!, set-cdr! problems

Dr. Kimberle Koile

compound data mutation

constructor:
(cons X Yy)

selectors:

(car p)
(cdr p)

mutators:
(set-car! p new-x)
(set-cdr! p new-y)

; Pair,anytype -> undef

Ccreates a new pair

returns car part of pair

returns cdr part of pair

changes car pointer in pair

changes cdr pointer in pair

—— side-effect only!

sharing, equivalence, and identity

How can we tell if two things are equivalent?
-- What do you mean by "equivalent"?

1. The same object: test with eq?
(eq? a b) ==> #t

2. Objects that "look" the same: test with equal?
(equal? (list 1 2) (list 1 2)) ==> #t

(eq? (list 1 2) (list 1 2)) ==> #f

— —_—
I] I

=

N <—

example 1: pair/list mutation

(define a (list 1 2))
(define b a)
a ==> (1 2)
b ==> (1 2)

(set-car! a 10)

b ==> (10 2)

Compare with:
(define a (list 1 2))
(define b (list 1 2))

(set-car! a 10)

b ==> (1 2)

=1

example 2: pair/list mutation

(define x (list "a "b)) X — _ V

-

How is X mutated to achieve the result at right? a b

Ahadis

1 2
And this one? X — N M (set-car! (cdr x)
| | | (list 1 2))
l l Eval (cdr x) to get a pair
object
a b 'J Change car pointer of that pair

object
(set-cdr! (cdr x) M
(list 1)) |

'
1

set-car! and set-cdr! problems

For the given expressions:
(a) Draw the box and pointer diagram corresponding to the list or pair structure
(b) Write what Scheme prints out after evaluating the last expression in the sequence

1. (define x (cons 7 (list 8 9)))
(set-car! (cdr x) 10)

a. box and pointer diagram for x b. printed result for x

set-car! and set-cdr! problems

For the given expressions:
(a) Draw the box and pointer diagram corresponding to the list or pair structure
(b) Write what Scheme prints out after evaluating the last expression in the sequence

2. (definey ’(7)) DA
(define z (let ((x (list "a’(b c) (cary)))) V;_/q/_\l

(set-car! y (cdr x)) - X —= W—Fg—m

(set-cdr x (car (cdr x))) « 1//]
X))
z Y

a. box and pointer diagram for x, y and z b. printed result for z

(o b c)

instructor notes

more set-car! and set-cdr! problems

For the box & pointer diagram:

(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)
(c) Draw the structure that results from the mutation, and its printed representation.

— |

]

3 Xﬂ lr , \—n_

v
%ﬂ’*%ﬂa

b. Scheme expression:

e

¥

!
"

instructor notes

[Aghne x
ek (= '(3 2 1))

(LWt 2 (ean 2) (cadm

2))))

d.

X =>

(€3 2\) (z|) Q)

instructor notes

c. mutation: (set-car! (cdr (second x)) 4)

X =>

((324—)

(= I—L) ()

instructor notes

ring problems

Rings are circular structures similar to lists.
If we define aring r: (define r (make-ring ‘(1 2 3 4)))
the following are true: (nth0r)=>1 (nthlrn=>2 ... (nthd4r)=>1

| >~ 3 a

In order to make a ring, we need a procedure last-pair which returns the last pair in its argument:

(last-pair (list 1 2 3 4))=> (4) - @:’ %‘qq [t]: @
Y

1. Write last-pair.

(define (last-pair x
(¥ (M) (ear %))

(l_qg‘t— pairy (ean X))

"V (enmd Cnat? x) (o)
(Cnok (1667 x)) x) ;P
((natt? (edn x.) x)

(s (lagh- Ao Ceamx)))))

ring problems

—7 (T '\%dr*[t'Eﬁ@

| 2 3 H
‘(‘ 17 __JJ_/_[__—’%”T \:L;T:—J? ?
| 23 g

2. Write make-ring!, which takes a list and makes a ring out of it..

(define (make-ring! x)
(sok-ab! (last-prin x) x)

<)

ring problems

e

3. Write the procedure rotate-left, which takes a ring and returns a ring that has been rotated one to the right.
(define rl (rotate-left r))
(nthOrl)=>2

(define (rotate-left ring)

(ear f“;z)

ring problems

S [GO
| L3

4. What happens if you evaluate (length r) on the above ring?

Write the procedure ring-length, which returns the length of the original list used in
constructing the ring. (Hint: Write a helper procedure.)

(define (ring-length ring)
(Aele, (h@[(wr n }W@we/)
(&P C@Xj here r\%)

7
Chelper v 1. n) (i here))))
U\d[}@r 1 Cesly rmj)\)

ring problems

S [G
- S

5. Rotating a ring to the right is harder than rotating to the left. (Why?) Write the procedure
rotate-right. (Hint: You might want to use the procedure repeated, which takes a procedure, a
number n, and an argument to the procedure, and repeatedly calls the op on the argument n times.)

(define (rotate-right ring)

CY—G(D%“"@Q(@%@%wlﬁ@g
(- (ring vle\/\j\%\ m§w§> _7)
PL‘HS))

more set-car! and set-cdr! problems

For the box & pointer diagram:

(a) Write what Scheme prints out for the structure (if it can)

(b) Write a Scheme expression that makes the structure(if an error, describe it)

(c) Draw the structure that results from ﬁmutation, and its printed representation.

{

1. X — l :r% ‘/ a.l x =>
NN ((¢4) 4) (2) 4)
—_ 5
e Raukihe
o.C . M VU
b. Scheme expression: c. mutation: (set-cdr! (car x) '(8))

(defne X
(lek (& <(2)))

\o¥ Clek (L, (cons a a)\j"'
(Lons b b)) 3

1

. QOV\AV@“C ‘ v

" <A(Tf£e)((xo~ (It ﬁ%))) Iy \”@@@
o

(set-car! (ear @) (egur 2))
(\sr)c— car' o (e o.\) X => () ¢g) (a) QB
o))

more set-car! and set-cdr! problems

eted O Q o X
For the box & pointer diagram: X K)N 0"’"'3

(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)

(c) Draw the structure that results from the mutation, and its printed representation.
X

2. J/ . =>
w - a.| x (abe) Oc)

- r

— (14 k
b

1on.

BN

“H

P

b. Scheme expres c. mutation: (set-cdr! (cddr x) (caaar x))

wn

()\d{v\(, X
(b ((w (a b))
(cas (LG W)
reme O oy

X =>

(((alaﬂ“ () Q>

more set-car! and set-cdr! problems

For the box & pointer diagram:

(a) Write what Scheme prints out for the structure (if it can)

(b) Write a Scheme expression that makes the structure (if an error, describe it)

(c) Draw the structure that results from the mutation, and its printed representation.

3. x’ﬁr_} Nl (7 a.| x =>

- (1 2)) @)
0
L0 LA

b. Scheme expression: ‘

Ll

c. mutation: (set-car! (caar x) 3)

C rebine X
(leb (Lhmp (2D

(Lo (ene 1 dos)
(\\& 1/3 tweo \\)

X =>

o (Bayx) =

more set-car! and set-cdr! problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)

(c) Draw the structure that results from the mutation, and its printed representation.

x—7 |

4.

[1T+—+L

/——

e

oF

Q

b. Scheme expression:

(Aewq;\e) X

(lek e ‘(a)))
et (Lm (Wst k kYY)

Cems m Cednr mY)

=

d.

X

=>

(((a) (a)) (&)

c. mutation: (set-cdr! (first x) (second x))

X

=>

(C(&3 0L> C‘ﬂ)

more set-car! and set-cdr! problems

For the box & pointer diagram:

(a) Write what Scheme prints out for the structure (if it can)

(b) Write a Scheme expression that makes the structure (if an error, describe it)

(c) Draw the structure that results from the mutation, and its printed representation.

5. a.| x =>

I__’—l e .- u.n[;,n?a(—a_t/te,

b. Scheme expression: c. mutation: (set-car! (cdr x) ’())
(set-cdr! (car x) *())

(deline,

(Leb (¢ Cems Q) 'O
(e Ua (eng ¢ o))

(g‘d&,"o—aﬁtl_ e A)
(k- cam! ¢ 4)

—

)
X => (YES)

