6.001 recitation 11 3/21/07

o stack, queue problems

Dr. Kimberle Koile

stacks and queues

We'll implement stacks and queues using the ADT, mutable-list, described in the accompanying

handout. Here's an example.

(let* ((e (make-element 4)) 5(”98' 5)\pﬁ'\’
(x (make-mutable-list e ¢))) oy
X) T % T‘x‘_—)&ﬁ\—; 4
rudoble- & - 2
(ko le- s 6(‘6 NV NZIV Ll'
(add-to-front! x 5) X — 3 = T [+—=([/
'mu%odo[e«(ls{' . [T

Eyﬂf“mr"@“?

(N\u:\’ab \e« (li.'k '6("&

Lanckak le- sk g€

<

Using the procedures for a new data type called mutable-list, provided in the accompanying
handout, write the following procedures.

1. Define set-last! which modifies the first or last pointers of a mutable-list to point at the new elements.

set-first! is defined for you. (Recall that the car of a mutable-list is a tag, so the first list element 1s actually
the cadr.)

(define (set-first! m-1 e)
;; type: mutable-list, <element|null>—> unspecified
(if (mutable-list? m-I)
(set-car! (cdr m-1) e)
(error "not a mutable list")))

(define (set-last! m-1 e)
;; type: mutable-list, <element|null>—> unspecified

stack and queue problems

2. Define set-prev! and set-next! that change the prev or next field of a mutable-element.

(define (set-prev! element prev)
;; type: element, <elementnull>—> unspecified

(define (set-next! element next)
;; type: mutable-list, <element|null>—> unspecified

3. Complete the definition for add-to-front! which takes any value and adds a new element to

the front of the list containing that value. Then define add-to-back! which does the same for the
back of the list.

(define (add-to-front! Ist item)
;; type: mutable-list A = unspecified
(let ((e (make-element item)))
(cond ((not (mutable-list? Ist))
(error "not a mutable list"))
((empty-mutable-list? Ist)

(set-first! Ist e)
(set-last!

(define (set-next! element next)
;; type: mutable-list, <element|null>—> unspecified

stack and queue problems

4. Complete the definition for add-to-front! which takes any value and adds a new element
containing that value to the front of the list.

(define (add-to-front! Ist item)
;; type: mutable-list A = unspecified
(let ((e (make-element item)))
(cond ((not (mutable-list? Ist))
(error "not a mutable list"))
((empty-mutable-list? 1st)
(set-first! Ist e)
(set-last! Ist e))
(else

stack and queue problems

5. Write add-to-back! which takes any value and adds a new element containing that value to
the back of the list.

(define (add-to-back! Ist item)
;; type: mutable-list A = unspecified

stack and queue problems

6. Complete the definition for remove-from-back! which removes the last element and returns it.

(define (remove-from-back! Ist)
;; type: mutable-list > A
(let ((e (make-element item)))
(cond ((not (mutable-list? Ist))
(error "not a mutable list"))
((empty-mutable-list? lIst)
(error "list 1s empty"))
((single-entry? lst)

stack and queue problems

7. Write remove-from-front! which removes the first element and returns it.

(define (remove-from-front! 1st)
;; type: mutable-list > A

stack and queue problems

8. Write push! and pop! to use the mutable list as a stack.

9. Write enqueue! and dequeue! to use the mutable list as a queue.

stack and queue problems

10. Using either a stack or a queue (or both!) define a procedure rpn-calc that takes a
simple arithmetic expression in postfix notatino and evaluates it. You may assume a
procedure list->mutable-list which takes a Scheme list and returns the corresponding

doubly-linked list.

e.g. (rpn-calc '(1 2 +) =+ 3
(rpn-calc ' 1 2 +- 10 + 6/ 3 *))=>6

stack and queue problems

11. Can you define rpn-calc without using any mutating procedure?

