
6.001 recitation 3/23/07

from last time: set-car!, set-cdr!
trees

Dr. Kimberle Koile

2

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure(if an error, describe it)
(c) Draw the structure that results from the mutation, and its printed representation.

1. a. x =>

b. Scheme expression: c. mutation: (set-cdr! (car x) '(8))

x =>

more set-car! and set-cdr! problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)
(c) Draw the structure that results from the mutation, and its printed representation.

2. a. x =>

b. Scheme expression: c. mutation: (set-cdr! (cddr x) (caaar x))

x =>

more set-car! and set-cdr! problems

• A tree is a nested list; each node is a list of the children of that node
• A child is either another tree or a leaf node

– A child that is a tree is called a subtree
– A leaf node is anything that is not a pair (i.e., a symbol or a self-evaluating value).

1 5

4
2 3

6

trees

1. Draw a box-and-pointer structure for the following tree. How does the interpreter print this structure?

box&pointer

printed representation

tree representation

2a. Draw the interpretation of this list as a tree structure: (((1 2) 3) (4 (5 6) 7 (8 9 10))

2b. Draw the box-and-pointer diagram.

tree representation

1 5

4
2 3

6

(1 ((2 3) 4) 5 6)

counting leaves

(define (countleaves tree)
(cond ((null? tree) 0)

((leaf? tree) 1)
(else (+ (countleaves (car tree))

(countleaves (cdr tree))))))

(define (leaf? x)
(not (pair? x)))

(define (countleaves tree)
(cond ((null? tree) 0)

((leaf? tree) 1)
(else (+ (countleaves (car tree))

(countleaves (cdr tree))))))

(define (leaf? x)
(not (pair? x)))

1 5

4
2 3

6

(define (double-tree tree)

(cond ((null? tree) ‘())

((leaf? tree))

(else (((car tree))

((cdr tree))))))

(1 ((2 3) 4) 5 6)

2 10

8
4 6

12
=>

(2 ((4 6) 8) 10 12)

doubling a tree: version 1

v. 2 (define (double-tree tree)

(if (leaf? tree)

()

()))

v. 1 (define (double-tree tree)
(cond ((null? tree) ‘())

((leaf? tree))

(else (((car tree))

((cdr tree))))))

1 5

4
2 3

6

(1 ((2 3) 4) 5 6)

2 10

8
4 6

12
=>

(2 ((4 6) 8) 10 12)

doubling a tree: version 2, map

v. 2 (define (double-tree tree)

(if (leaf? tree)

()

()))

(define (map-tree proc tree)
(if (leaf? tree)

(proc tree)
(map-tree proc tree)))

(define (double x)
(* 2 x))

(define (double-tree tree)

)

v. 1 (define (double-tree tree)
(cond ((null? tree) ‘())

((leaf? tree))

(else (((car tree))

((cdr tree))))))

doubling a tree: version 3, map-tree

• A binary tree is one in which each node is represented by an entry and a link
• The “left” link points to elements smaller than node entry
• The “right” link points to elements larger than node entry
• To check where an element is in a set:

– compare x with an entry
– if x is less than entry, search left subtree; if greater, search right subtree

• Two trees that represent the set {1, 3, 5, 7, 9, 11}:

1 5

7

93

5 9

3

71

11

binary trees

