6.001 recitation 3/23/07

0 from last time: set-car!, set-cdr!
O trees

Dr. Kimberle Koile

more set-car! and set-cdr! problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)

(b) Write a Scheme expression that makes the structure(if an error, describe it)

(c) Draw the structure that results from the mutation, and its printed representation.

1. X——i—L—T‘*
_~

b. Scheme expression:

%

|/

v

T

d.

X =>

c. mutation: (set-cdr! (car x) '(8))

X =>

more set-car! and set-cdr! problems

For the box & pointer diagram:
(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)

(c) Draw the structure that results from the mutation, and its printed representation.
X

2 J al x =>
W .
T

b. Scheme expresas‘lon: b “ c. mutation: (set-cdr! (cddr x) (caaar x))

X =>

trees

« A treeis anested list; each node is a list of the children of that node
e A child is either another tree or a leaf node
— A child that is a tree is called a subtree
— A leaf node is anything that is not a pair (i.e., a symbol or a self-evaluating value).

tree representation

1. Draw a box-and-pointer structure for the following tree. How does the interpreter print this structure?

box&pointer

printed representation

tree representation

2a. Draw the interpretation of this list as a tree structure: (((12) 3) (4 (5 6) 7 (8 9 10))

2b. Draw the box-and-pointer diagram.

counting leaves

(define (countleaves tree)
(cond ((null? tree) 0)
((leaf? tree) 1)
(else (+ (countleaves (car tree))
(countleaves (cdr tree))))))

(define (leaf? x)

(not (pair? x))) (1 (2 3) 4) 5 6)

doubling a tree: version 1

(define (countleaves tree) (define (double-tree tree)
(cond ((null? tree) 0) (cond ((null? tree) ‘()
((leaf? tree) 1) ((leaf? tree))
(else (+ (countleaves (car tree))
(countleaves (cdr tree)))))) (else (((car tree))
(define (leaf? x) ((cdr tree))))))

(not (pair? x)))

(1 (2 3) 4) 5 6) (2 ((4 6) 8) 10 12)

doubling a tree: version 2, map

v. 1 (define (double-tree tree) v. 2 (define (double-tree tree)
(cond ((null? tree) ‘() (if (leaf? tree)
((leaf? tree))
(
(else (((car tree))
(
((cdr tree))))))
1A 5 6 . gﬁ 12
/\ 4 /\ 8
2 3 4 6

(1 (2 3) 4) 5 6) (2 ((4 6) 8) 10 12)

)

doubling a tree: version 3, map-tree

v. 1 (define (double-tree tree) v. 2 (define (double-tree tree)
(cond ((null? tree) ‘() (if (leaf? tree)
((leaf? tree))
()
(else (((car tree))
()
((cdr tree))))))
(define (map-tree proc tree) (define (double x)
(if (leaf? tree) (* 2 x))
(proc tree)
(map-tree proc tree))) (define (double-tree tree)

binary trees

A binary tree is one in which each node is represented by an entry and a link
The “left” link points to elements smaller than node entry
The “right” link points to elements larger than node entry

To check where an element is in a set:
— compare x with an entry
— if x is less than entry, search left subtree; if greater, search right subtree

Two trees that represent the set {1, 3,5,7,9, 11}:

{ 3
/\ /\
9 1 7

A\ A
\

11

