6.001 recitation 3/23/07

0 from last time: set-car!, set-cdr!
O trees

Dr. Kimberle Koile

more set-car! and set-cdr! problems

For the box & pointer diagram:

(a) Write what Scheme prints out for the structure (if it can)

(b) Write a Scheme expression that makes the structure(if an error, describe it)

(c) Draw the structure that results from ﬁmutation, and its printed representation.

{

1. X — l :r% ‘/ a.l x =>
NN ((¢4) 4) (2) 4)
—_ 5
e Raukihe
o.C . M VU
b. Scheme expression: c. mutation: (set-cdr! (car x) '(8))

(defne X
(lek (& <(2)))

\o¥ Clek (L, (cons a a)\j"'
(Lons b b)) 3

1

. QOV\AV@“C ‘ v

" <A(Tf£e)((xo~ (It ﬁ%))) Iy \”@@@
o

(set-car! (ear @) (egur 2))
(\sr)c— car' o (e o.\) X => () ¢g) (a) QB
o))

more set-car! and set-cdr! problems

eted O Q o X
For the box & pointer diagram: X K)N 0"’"'3

(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)

(c) Draw the structure that results from the mutation, and its printed representation.
X

2. J/ . =>
w - a.| x (abe) Oc)

- r

— (14 k
b

1on.

BN

“H

P

b. Scheme expres c. mutation: (set-cdr! (cddr x) (caaar x))

wn

()\d{v\(, X
(b ((w (a b))
(cas (LG W)
reme O oy

X =>

(((alaﬂ“ () Q>

trees

« A treeis anested list; each node is a list of the children of that node
e A child is either another tree or a leaf node
— A child that is a tree is called a subtree
— A leaf node is anything that is not a pair (i.e., a symbol or a self-evaluating value).

S g@ 6 [taf nooleg
/\. @
@ G

tree representation

1. Draw a box-and-pointer structure for the following tree. How does the interpreter print this structure?

AR T
| 2 F—F A? er ?
B

S

box&pointer

printed representation (((1 2) 3\ 4+ (T)

tree representation

2a. Draw the interpretation of this list as a tree structure: (((12) 3) (4 (5 6)-Zs (8 9 10))

! g q (O

113*5(0

2b. Draw the box-and-pointer diagram.

T e L Ifg

,[(=1/ ‘ﬁ_al:l-m " J;_‘
7
c

Lo &
X

Q}QZ

] pe

counting leaves

(define (countleaves tree)
(cond ((null? tree) 0)
((leaf? tree) 1)
(else (+ (countleaves (car tree))
(countleaves (cdr tree))))))

(define (leaf? x)

(not (pair? x))) (1 (2 3) 4) 5 6)

%)T—T_q_—%
<

1 o— L1 b
o0

doubling a tree: version 1

(define (countleaves tree) (define (double-tree tree)
(cond ((null? tree) 0) (cond ((null? tree) ‘()
((leaf? tree) 1) ((leaf? tree))
(else (+ (countleaves (car tree))
(countleaves (cdr tree)))))) (else (((car tree))
(define (leaf? x) ((cdr tree))))))

(not (pair? x)))

(1 (2 3) 4) 5 6) (2 ((4 6) 8) 10 12)

doubling a tree: version 2, map

v. 1 (define (double-tree tree) v. 2 (define (double-tree tree)
(cond ((null? tree) ()) (% 2 +ree) (if (leaf? tree)
((leaf? tree) Jouble—tree)
((¥ 2 heo))
(else (€onS (double - +ee (car tree))
(e sl boe))
((cdr tree))))))
1A 5 6 . 2 A 10 12
/N 4 /\ 8
2 3 4 6

(1 (2 3) 4) 5 6) (2 ((4 6) 8) 10 12)

doubling a tree: version 3, map-tree

v. 1 (define (double-tree tree) v. 2 (define (double-tree tree)
(cond ((null? tree) ‘() (if (leaf? tree)
((leaf? tree))
(&- p -Hr'ee) (% 2 +ree)
(else (cons (Aouble—hee (cartree)) rmap doublectoe tree ")
(T tree)»))) \\
(define (map-tree proc tree) CM A'\)W (deflne (double x)
(if (leaf? tree) Q (* 2 x))
(proc tree) /‘/

- (define (double-tree tree)
(W\A(» [}\({—M) (m«(;/m prvc—w

Jr\,u..\) '\ (rvm(v’hu dombde 4"“’)

RN m’l\P
\N&QC H\?wéw Q/W\M&ﬁ

