6.001 recitation 3/23/07

0 from last time: set-car!, set-cdr!
O trees

Dr. Kimberle Koile



more set-car! and set-cdr! problems

For the box & pointer diagram:

(a) Write what Scheme prints out for the structure (if it can)

(b) Write a Scheme expression that makes the structure(if an error, describe it)

(c) Draw the structure that results from ﬁmutation, and its printed representation.
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b. Scheme expression: c. mutation: (set-cdr! (car x) '(8))
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more set-car! and set-cdr! problems

eted O Q o X
For the box & pointer diagram: X K)N 0"’"'3

(a) Write what Scheme prints out for the structure (if it can)
(b) Write a Scheme expression that makes the structure (if an error, describe it)

(c) Draw the structure that results from the mutation, and its printed representation.
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b. Scheme expres c. mutation: (set-cdr! (cddr x) (caaar x))
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trees

« A treeis anested list; each node is a list of the children of that node
e A child is either another tree or a leaf node
— A child that is a tree is called a subtree
— A leaf node is anything that is not a pair (i.e., a symbol or a self-evaluating value).
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tree representation

1. Draw a box-and-pointer structure for the following tree. How does the interpreter print this structure?
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tree representation

2a. Draw the interpretation of this list as a tree structure: (((12) 3) (4 (5 6)-Zs (8 9 10))
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2b. Draw the box-and-pointer diagram.
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counting leaves

(define (countleaves tree)
(cond ((null? tree) 0)
((leaf? tree) 1)
(else (+ (countleaves (car tree))
(countleaves (cdr tree))))))

(define (leaf? x)

(not (pair? x))) (1 (2 3) 4) 5 6)
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doubling a tree: version 1

(define (countleaves tree) (define (double-tree tree)
(cond ((null? tree) 0) (cond ((null? tree) ‘()
((leaf? tree) 1) ((leaf? tree) )
(else (+ (countleaves (car tree))
(countleaves (cdr tree)))))) (else ( ( (car tree))
(define (leaf? x) ( (cdr tree))))))

(not (pair? x)))
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doubling a tree: version 2, map

v. 1 (define (double-tree tree) v. 2 (define (double-tree tree)
(cond ((null? tree) ()) (% 2 +ree) (if (leaf? tree)
((leaf? tree)  Jouble—tree )
( (¥ 2 heo) )
(else ( €onS  ( double - +ee (car tree))
(e sl boe) )
( (cdr tree))))))
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doubling a tree: version 3, map-tree

v. 1 (define (double-tree tree) v. 2 (define (double-tree tree)
(cond ((null? tree) ‘() (if (leaf? tree)
((leaf? tree) )
(&- p -Hr'ee) ( % 2 +ree )
(else ( cons (Aouble—hee (cartree)) rmap doublectoe tree ")
(T tree)»))) \\
(define (map-tree proc tree) CM A'\)W (deflne (double x)
(if (leaf? tree) Q (* 2 x))
(proc tree) /‘/

- (define (double-tree tree)
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