
6.001 recitation 19 4/27/07

our evaluator (cont'd)

Dr. Kimberle Koile

cond

> direct evaluation: add as new clause in toplevel eval procedure

> syntactic translation: translate the expression into a known type

See eval-if, eval-sequence

See cond->if

extending our evaluator: 2 ways

(define (eval exp env)
(cond

((self-evaluating? exp) exp)
((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)

(make-procedure (lambda-parameters exp)
(lambda-body exp) env))

((begin? exp) (eval-sequence (begin-actions exp) env))
((cond? exp) (eval (cond->if exp) env))
((and? exp) (eval (and->if exp) env))
((until? exp) (eval-until exp env))
((application? exp)

(mapply (eval (operator exp) env)
(list-of-values (operands exp) env)))

(else (error "Unknown expression type -- EVAL" exp))))

our evaluator: direct (define (if? exp) (tag-check exp 'if))

(define (eval-if exp env)
(let ((predicate (cadr exp))

(consequent (caddr exp))
(alternative (cadddr exp)))

(let ((test (m-eval predicate env)))
(cond
((eq? test #t) (m-eval consequent env))
((eq? test #f) (m-eval alternative env))
(else (error "predicate not a conditional: "

predicate))))))

(define (m-eval exp env)
(cond

((self-evaluating? exp) exp)
((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)

(make-procedure (lambda-parameters exp)
(lambda-body exp) env))

((begin? exp) (m-eval-sequence (begin-actions exp) env))
((cond? exp) (m-eval (cond->if exp) env))
((and? exp) (m-eval (and->if exp) env))
((until? exp) (eval-until exp env))
((application? exp)

(mapply (m-eval (operator exp) env)
(list-of-values (operands exp) env)))

(else (error "Unknown expression type -- EVAL" exp))))

our evaluator: syntactic

(define (cond? exp) (tagged-list? exp 'cond))

(define (cond->if exp)
(cond-clauses->if (cond-clauses exp)))

(define (cond-clauses->if clauses)
(if (null? clauses)

#f
(list 'if (first (car clauses))

(second (car clauses))
(cond-clauses->if (cdr clauses)))))

example: UNTIL, direct

Suppose that we want to add a new kind of expression called until. Its syntax is as follows:

(until test exp1 exp2 … expn)

and its behavior is to first evaluate the test expression. If the value is true, the until expression returns the
symbol done. Otherwise it evaluates each of the expressions exp1 exp2 … expn in turn, then repeats this
entire process. (Note: The problem in the online tutor returns #t instead of ‘done.)

Assume that we have the following abstractions:
(define (until? exp) (tagged-list? exp 'until))
(define (until-test exp) (cadr exp))
(define (until-body exp) (cddr exp))

Suppose that we want to add a new kind of expression called until. Its syntax is as follows:

(until test exp1 exp2 … expn)

and its behavior is to first evaluate the test expression. If the value is true, the until expression returns the
symbol done. Otherwise it evaluates each of the expressions exp1 exp2 … expn in turn, then repeats this
entire process. (Note: The problem in the online tutor returns #t instead of 'done.)

Assume that we have the following abstractions:
(define (until? exp) (tagged-list? exp 'until))
(define (until-test exp) (cadr exp))
(define (until-body exp) (cddr exp))

a. We add a new expression to the evaluator by means of direct evaluation: we add the following clause to
m-eval ((until? exp) (eval-until exp env)

Complete the definition of eval-until.

(define (eval-until exp env)
(if

example: UNTIL, direct

b. Add UNTIL to the evaluator by using a syntactic transformation: Write a definition for until->if.

(define (until->if exp)

example: UNTIL, direct

IF-THEN-ELSE direct
1. IF-THEN-ELSE (from Spring 2006 final)

We are going to add a new special form called if-then-else to our meta-circular evaluator. It has
the same semantics as our regular Scheme if, but the syntax differs in that we explicitly write then
and else in an expression. For example:

(if (> x 0) then (decrement x) else (stop)

a. We add the following clause to the evaluator: ((if-then-else? exp) (eval-if-then-else exp env))

Write the procedure if-then-else? by completing the following definition. Your answer
should ensure that both the then and else clauses are present in the expression.

(define (if-then-else? exp)

IF-THEN-ELSE direct
b. We add the following clause to the evaluator: ((if-then-else? exp) (eval-if-then-else exp env))

Write the procedure eval-if-then-else by completing the following definition. You may
assume that a correct if-then-else expression has both labels and clauses for the consequent
and alternative.

(define (eval-if-then-else exp env)

IF-THEN-ELSE: syntactic transformation
c. We now decide to use syntactic transformation instead of directly adding if-then-else directly

to our evaluator. We add the following clause to m-eval:
((if-then-else? exp) (m-eval (if-then-else->if exp) env))

Write the procedure if-then-else->if. You may assume that a correct if-then-else expression
has both labels and clauses for the consequent and alternative.

(define (if-then-else->if exp)

FOR: syntactic transformation
2 . We decide to add a new special form called a for, such as (for i 0 4 (display i) (newline)). The

format of a for is as follows: The first expression after the for is a variable name; the next two
expressions must be integers (note that expressions other than integers are not allowed, e.g. (+ 2 2)).
The final sequence of expressions with in the for will be referred to as the body. The above for
statement is then executed as follows: the body is evaluated with i taking values from 0 to 4
inclusive, and the value 'done is returned. So in this case we would have the behavior:
(for i 0 5 (display i) (newline))

0
1
2
3
4
done

(continued next slide)

FOR: syntactic transformation (cont'd)
2 . e.g. (for i 0 5 (display i) (newline))

a. We are going to write for->if, but first we want a procedure that creates a for expression given the
parts.

(define (make-for var init end body)

FOR: syntactic transformation (cont'd)
2 . e.g. (for i 0 5 (display i) (newline))

Suppose we add this clause to m-eval: ((for? exp) (m-eval (for->if exp) env))
Suppose that we also define:

(define (for-tag 'for))
(define (for? exp) (tagged-list? exp for-tag))
(define for-var cadr)
(define for-start-value caddr)
(define for-end-value cadddr)
(define for-body cddddr)

b. Here is a template for the syntactic transformation. The basic idea is that we are going to create a
local frame using a let, in which we bind the loop variable and relative to which we can evaluate the
subsequent expressions.

(define (for->if exp)
(list 'let

ANSWER1
(list 'if

ANSWER2
' 'done
ANSWER3)))

FOR: syntactic transformation (cont'd)
2 . e.g. (for i 0 5 (display i) (newline))

(define for-var cadr)
(define for-start-value caddr)
(define for-end-value cadddr)
(define for-body cddddr)

(define (for->if exp)
(list 'let

ANSWER1
(list 'if

ANSWER2
' 'done
ANSWER3)))

The expression for ANSWER-1 should create an expression that when
evaluated will bind the variable to the initial value. Provide the expression.

The expression for ANSWER-2 should create an expression that when
evaluated will determine if the for should be exited.

FOR: syntactic transformation (cont'd)
2 . e.g. (for i 0 5 (display i) (newline))

(define for-var cadr)
(define for-start-value caddr)
(define for-end-value cadddr)
(define for-body cddddr)

(define (for->if exp)
(list 'let

ANSWER-1
(list 'if

ANSWER-2
' 'done
ANSWER-3)))

The expression for ANSWER-3 should create an expression that when
evaluated will evaluate the body of the for expression then evaluate a new
for expression in an iterative fashion. (Use make-for when appropriate.)

LOOP
3. LOOP

We are going to add a new special form called loop
to our evaluator. For example:
(loop (i 1 inc) (= i 4)

(newline)
(display (list i (fact i))))

(1 1)
(2 2)
(3 6)
; Value: done

(define start-list ‘(1 3 5))

(loop (lst start-list cdr) (null? lst)
(newline)
(display (fact (car lst))))

1
6
120
; Value: done

The syntax of loop is as follows. The first clause includes a
loop variable (i in the first example), an expression whose
value is the initial value of the variable (1 in the first
example), and an increment procedure to apply to the loop
variable on each iteration to create a new value for the loop
variable (the value associated with inc in the first example).
The next clause is an end test, an expression that will
evaluate to true or false. The remaining expressions are the
body of the loop.

The semantics of loop is as follows. The loop variable is
initially set to the value of its initialization expression. The
end test is then evaluated. If the value is true, the loop exits,
and the symbol done is returned. If not, the expressions in
the body of the loop are evaluated. The increment procedure
is then applied to the loop variable, and that variable is bound
to the returned value. The process then repeats.

3. LOOP (cont'd)

Each of the following procedures extracts elements of a loop. Complete the definitions (assume that each would be
applied to a full loop expression).

Question 6:
(define (loop-variable exp) YOUR-ANSWER)

Question 7:
(define (loop-initial-value exp) YOUR-ANSWER)

Question 8:
(define (loop-increment exp) YOUR-ANSWER)

Question 9:
(define (loop-end-test exp) YOUR-ANSWER)

Question 10:
(define (loop-body exp) YOUR-ANSWER)

LOOP

Question 11: Provide an expression for ANSWER-11. (Together
with Question 12, this should create a new environment with the
loop variable bound to a new value.)

Question 12: Provide an expression for ANSWER-12.

Question 13: Provide an expression for ANSWER-13 to determine
if the loop has satisfied the end condition.

Question 14: Provide an expression for ANSWER-14 to return the
correct value from the loop.

Question 15: Provide an expression for ANSWER-15 to evaluate
the body of the loop.

Question 16: Provide an expression for ANSWER-16 to handle
the next loop iteration.

3. LOOP (cont'd)

To implement the special form, we add a dispatch to m-
eval, and create a new evaluation procedure:

(define (m-eval exp env)
(cond …

((loop? exp) (eval-loop exp env))
…
(application? exp) …)
(else ….)))

(define (eval-loop exp env)
(eval-loop-doit (loop-variable exp)

(loop-initial-value exp)
(loop-increment exp)
(loop-end-test exp)
(loop-body exp)
env))

(define (eval-loop-doit var init next end bod env)
(let ((new-env (extend-environment

ANSWER-11
ANSWER-12
env)))

(if ANSWER-13 ; test to see if done
ANSWER-14 ; value to return
(begin ANSWER-15 ; evaluate body

ANSWER-16)))) ; go to next iteration

LOOP

