6.001, Spring 2007—Recitation 5/9 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring 2007

Recitation 5/9
Register Machines

Expression Types

(const C)

(reg R)

(label L)

(op 0)

A constant value. It acts somewhat like quote. To get the number one, you would use (const
1).

Retrieve the value of a register R. To get the value of the register arg0, you would use (reg
arg0).

Retrieve the offset of the given label L. To get the value of the label loop-top, you would
use (label loop-top).

Perform operation O on some values. Following the (op 0), you should list the input argu-
ments to the operation, which may be consts, regs, or labels. An expression may only contain
1 op. In order to compute the result of adding 1 to the register arg0, you would use

(op +) (reg arg0) (const 1).

Instruction Types

(assign reg expr)

(goto

(test

(branch

Sets register reg to be the result of expression expr. The assigned register doesn’t need a tag
because it is always a register being assigned. For example, to increment the result register:
(assign result (op +) (reg result) (const 1))

expr)

Sets the pc to be the result of expr, which is usually a label or a register. Effectively continues
the execution at another point in the code. To jump to the label loop-top:
(goto (label loop-top))

expr)

This is equivalent to assigning the cr. The cr register is used to determine whether to take
a branch. For example, to set the cr based on whether the register x is less than 10:
(test (op <) (reg x) (comnst 10))

expr)

If the value in the cr is true, acts like a goto. Otherwise it does nothing. To conditionally
jump to the label 1loop-done:
(branch (label loop-done))

6.001, Spring 2007—Recitation 5/9 2
Writing Code
Write double: code to compute 2x, given z in arg0, and leave the output in result.

double
(assign result (op *) (reg argO) (comst 2))
(goto (reg continue))

1. Write func: code to compute 2 + y, given x in arg0, y in argl, and leave the output in
result.

2. Write abs: code to compute |z|, give x in arg0, leave the output in result. abs is not an
available primitive.

3. Write infinite-loop: code that never halts.

4. Determine what the following code does, then write the scheme code that does the same
thing.

foo
(test (op <) (reg arg0) (reg argl))
(branch (label foo-done))
(assign arg0 (op -) (reg arg0) (reg argl))
(goto (label foo0))

foo-done
(assign result (op =) (reg arg0O) (const 0))
(goto (reg continue))

6.001, Spring 2007—Recitation 5/9
Contracts

Input Register(s) whose value is read and used before it is written.
Output Register(s) designated as output.

Modifies Register(s) whose value after the code block could differ from their original value.

1. What is the contract for the following code:

expt
(assign result (const 1))

expt-loop
(test (op <=) (reg argl) (const 0))
(branch (reg continue))
(assign result (op *) (reg result) (reg arg0))
(assign argl (op -) (reg argl) (comst 1))
(goto (label expt-loop))

Input:
Output:
Modifies:

2. What is the contract for the following code:

foo
(assign y (reg x))
(assign x (op cons) (reg x) (reg y))
(test (op null?) (reg x))
(branch (label yack))
(assign val (const 2))
(assign x (reg y))
(goto (reg continue))

yack
(assign foo (comnst 7))
(assign val (op car) (reg x))
(goto (reg continue))

Input:
Output:
Modifies:

6.001, Spring 2007—Recitation 5/9 4
Save and Restore

(save reg)

Place the value in register reg on top of the stack. To place the value in the register result
on the stack:
(save result)

(restore reg)

Take the top value off the stack and put it in register reg. To remove the top element of the
stack and place it in the register result:
(restore result)

Procedure Call

1. save things you care about

2. assign values to the inputs, including continue to an appropriate label
3. goto the procedure’s label

4. return label

5. restore things you cared about, in reverse order

Problems

3. Implement aexpb, which computes ae’. You should call expt in your solution.

