
Round 1
Lambda Calculus
500
 It is the value of the following expression:
((lambda (+ - *) (* + -))
 (* 3 6)
 ((lambda (/ ^) (* ^ /))
 4 6)
 (lambda (- *) (+ - *)))

 What is 42?

Orders of Growth
400
 The orders of growth in time and space of:
(define (h n)
 (if (= n 0)
 1
 (+ (h (quotient n 3))
 (h (quotient n 3)))))

 What are Θ(n) in time and Θ(log n) in space?

500
 This is the minimum order of growth of any comparison-based sorting algorithm.

 What is Θ(n log n)

Higher-Order Procedures

200
 It is the type of the following procedure:
(define (test foo bar n)
 (if (bar n)
 (+ 1 (foo n))
 (test foo bar (+ n 3))))

 What is (number -> number), (number -> boolean), number -> number?

300
 It is the type of the following procedure:
(define (test a b)
 (lambda (x) (a (b x))))

 What is (A -> B), (C -> A) -> (C -> B)?

400
 If double is a procedure that takes a procedure of one argument and returns a
procedure that applies the original procedure twice, this is the value returned by:

(((double (double double)) inc) 5)

 What is 21?

500
 It is the value of the following expression:
(define (foo x k)
 (if (= x 0) (k 0)
 (foo (- x 1) (lambda (y)
 (k (+ y x))))))
(foo 5 (lambda (y) y))

 What is 15?

Lists

300
 It is the value of the following expression:

(define x '(a b x))
(define y (list x x (list 'x x)))
(set-cdr! (cdr y) (list (quote x)))
y

 What is ((a b x) (a b x) x)?

400
 If we were to implement cons, car, and cdr as procedures, by writing cons as a
procedure of its two arguments:
(define (cons x y)
 (lambda (m) (m x y)))

 this is how cdr would be defined.

 What is
(define (cdr l)
 (l (lambda (x y) y)))

500
 It is the value of the following expression:

(let ((foo 'a))
 `(list foo ,foo ,'foo ',foo))

 What is (list foo a foo (quote a))?

Round 2
Data

400
 The problem with the following fragment of code:

(define make-vector cons)
(define vector-x car)
(define vector-y cdr)
(define v1 (make-vector 2 3))
(define (magnitude v)
 (let ((cars (* (car vec) (car vec)))
 (cdrs (* (cdr vec) (cdr vec))))
 (sqrt (+ cars cdrs))))

 What is an abstraction violation?

600
 It is the length of the list foo:

(define foo (list 1))
(set-car! foo 2)
(set-cdr! foo `(3 ,4 ,foo))

 What is infinity?

800
 The value of the following stream:
(define foo
 (cons-stream 1
 (add-streams foo foo)))

 What is the powers of two?

1000
 The mathematical definition of the ith element of this stream:

(define foo
 (cons-stream 1
 (add-streams foo (stream-cdr ints))))

 What is the sum of integers from 1 to i?

Environment Model
600
 In a lexically scoped language like Scheme, this is, by definition, where free variables
in procedures passed as arguments are looked up:

 * in the environment where the procedure is called.
 * in the environment where the lambda expression was evaluated.
 * in the global environment.
 * in the primitive list in the global environment.
 * in Billings, Montana.

 What is "in the environment where the lambda expression was evaluated?"

1000
 During procedure applications, if we always extend the environment in which the
combination was evaluated, rather than extend the environment pointed to by the
double-bubble, then we are using this kind of scoping rule.

 What is dynamic?

Object-Oriented Programming
200
 In the following code, dairy-product inherits from this other class:

(define (make-dairy-product self name temp)
 (let ((container 'none)
 (bad #f)
 (scent 'lemon)
 (food-part (make-food self name temp)))
 (make-handler 'dairy-product
 (make-methods
 'NAME (lambda () name)
 'SCENT (lambda () scent)
 'SPOILED? (lambda () (set! scent 'vile) #t))
 food-part)))

 What is food?

600
 We require all constructors (e.g. make-foo) to accept an argument named self, in
order to maintain a pointer from each handler to this.

 What is the instance?

800

 It is the value of the final expression below:

(define (make-kid self)
 (let ((root-part (make-root-object self)))
 (make-handler 'kid

 (make-methods
 'MALE? (lambda () (not (ask self 'female?)))
 'FEMALE? (lambda () (not (ask self 'male?))))
 root-part)))

(ask (create-kid) 'female?)

 What is an error (out of stack space)?

Meta-Circular Evaluator

400
 It is the value of the following expression in a dynamic-binding Scheme:

(let ((x 20))
 (let ((f (lambda (y) (- y x))))
 (let ((x 10))
 (f 30))))

 What is 20?

600
 The number of times m-eval is invoked when the following expression is entered into
the evaluator:

((lambda (x) (* x 2)) 3)

 What is 7 (combination, lambda, 3, (* x 2), *, x, 2)?

800
 The three functions to modify in the evaluator to handle define statements of the
form:

(<variable> := <binding>)

 What are definition?, definition-variable, and definition-value (optionally make-
define) ?

