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1. Substitution 

         
Consider the example below. Notice that  x is used in multiple places. When do we substitute for  x and 

when don't we? 

  (define x-y*y 
    (lambda (x y) 
      (- x ((lambda (x) (* x x)) y)))) 

Use the substitution model to evaluate the following expression, and write each substitution step. 

  (x-y*y  11  3) 
   ([proc (- x ((λ (x) (* x x)) y))]  11  3)  
   (-  11  ((λ (x) (* x x)) 3))  
   (-  11  (* 3 3))  
   (-  11  9)  
 
   Value: 2    

 
2.  Recursion   
 

2.1.  a.  Implement addition as a recursive algorithm that employs repeated successor (in Scheme, this is 
the inc function).  Hint:  check for base case, then recursive case. 

 (define (add x y) 
      (if (= x 0) 
          y 
               (add (dec x) (inc y)))) 
 
 
 b.  Write four substitution steps for (add 3 2) 

      (add 3 2) 
    (if (= 3 0) 2  (add (dec 3) (inc 2))) 
    (if #f 2 (add 2 3)) 
           (if (= 2 0)  3 (add (dec 2) (inc 3))) 
           (if #f 3 (add 1 4)) 
           (if (= 1 0) 4 (add (dec 1) (inc 4)) 
           (if #f 4 (add 0 5)) 
           (if (= 0 0) 5 (add (dec 0) (inc 5)) 
            5 

 
 There are a variety of ways to write substitution steps, depending on how much detail is given. In the 
above example, I've omitted the evaluation of add, dec, and inc to [proc:add], [proc:dec], and 
[proc:inc], respectively.  The goal is just to make sure that you understand how the substitution 
model works.  We'll contrast this model with a different model, the environment model, soon. 

 
 
 



 
Note:  The following version is a recursive algorithm; the call to inc is deferred.  (There's no reason 
to write the procedure in this way; it's shown here as an example.) 

(define (add x y) 
      (if (= x 0) 
          y 
               (inc (add (- x 1) y)))) 

      (add 3 2) 
    (if (= 1 0) 2 (inc (add (- 3 1) 2))) 
    (if #f 2 (inc (inc (add (- 2 1) 2)))) 
    (inc (inc (inc (add (- 1 1) 2)))) 
    (inc (inc (inc (add 0 2)))) 
    (inc (if (= 0 0) 2 (inc (inc (inc (add (- 0 1) 2))))) 
    (inc (if #t 2 (inc (inc (inc (add (- 0 1) 2))))) 
    (inc (inc (inc 2))) 
    (inc (inc 3)) 
           (inc 4) 
    5 
 
 
 
2.2.  Implement subtraction as a recursive algorithm that employs the dec function, which decreases its 

argument by 1.    

 (define (sub x y) 
       (if (= y 0) 
                 x 
                 (sub (dec x) (dec y)))) 
 
 
 
 



2.3   Implement exponentiation through repeated multiplication. 
         a.  recursive algorithm 

      (define (expt x n) 
  (if (= n 0)  
          1  
           (* x (expt x (- n 1))))) 

      Example: (expt 3 4) 
(* 3 (expt 3 3)) 
(* 3 (* 3 (expt 3 2)) 
(* 3 (* 3 (* 3 (expt 3 1))) 
(* 3 (* 3 (* 3 (* 3 (expt 3 0)))) 
(* 3 (* 3 (* 3 (* 3 1))) 
(* 3 (* 3 (* 3 3))) 
(* 3 (* 3 9)) 
(* 3 27) 
81 
 
 

    b.  iterative algorithm  (Hint:  Define a helper function.) 

      (define (expt x n) 
 (helper x n 1)) 

        (define (expt-helper x counter result) 
       (if (= counter 0) 
              result 
               (expt-helper x (- counter 1) (* result x)))) 

Example: (expt 3 4)               (Note:  substitution of helper body omitted for  brevity) 
(expt-helper 3 4 1) 
(expt-helper 3 3 3) 
(expt-helper 3 2 9) 
(expt-helper 3 1 27) 
(expt-helper 3 0 81) 

 
 d.  What value is returned for (count2 4)?   4 


