
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.001 Structure and Interpretation of Computer Programs
Spring, 2007

Recitation 4, Friday February 16

Order of Growth Notes Dr. Kimberle Koile

Order of Growth: For a process with an input of size n, we want to characterize how much of some
resource is required by the process as the input becomes larger.

Let n be a parameter that measures the size of the problem solved by the process
 R(n) be the amount of resources needed for a problem of size n

R(n) has order of growth Θ(f(n)) if there are positive constants k1 and k2 independent of n such that:

 k1f(n) ≤ R(n) ≤ k2f(n) for any sufficiently large value of n

R(n) is typically measured in terms of space (max size of expression) and time (number of steps)
requirements. We will measure the size of an expression by number of deferred operations.

Typical Orders of Growth

Θ(1) (constant): The resource requirements do not change with the size of the problem. All of our linear
iterative processes use constant space (e.g., iterative version of fact).

Θ(n) (linear): The resource requirements grow linearly with the size of the problem. (Multiplying the
size of the problem multiplies the resource use by the same factor.) All of our linear iterative
processes use a linear number of steps (e.g., iterative fact). All of our linear recursive processes use
linear space and number of steps (e.g., recursive fact).

Θ(bn) (exponential): The resource requirements grow exponentially with the size of the problem.
(Incrementing the size of the problem multiplies the resource use by a constant factor.) Recursive
fib requires an exponential number of steps (though linear space).

Θ(log n) (logarithmic): The resource requirements grow logarithmically with the size of the problem.
(Multiplying the size of the problem adds a constant amount to the resource use.) Fast-expt is
logarithmic in both number of steps and space.

Θ(nm) (power law): The resource requirements grow as a power of the size of the problem. (Multiplying
the size of the problem by some factor multiplies the resource use by a power of that factor.)
Linear growth is a special case of this (m = 1). Another common case is quadratic growth, Θ(n2).
The prime-testing procedure in the problems today is iterative and is an example of the power law.

Order of Growth Notes (cont'd)

Examples

fact

(define (fact n)
 (if (= n 1)1(* n (fact (- n 1))))))

(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 1)))
(* 4 (* 3 2))
(* 4 6)
24

(define (ifact n)
 (iter 1 1 n))

(define (ifact-iter product counter max-count)
 (if (> counter max-count)
 product
 (ifact-iter (* counter product)
 (+ counter 1)
 max-count)))

(ifact 4)
(ifact-iter 1 1 4)
(ifact-iter 1 2 4)
(ifact-iter 2 3 4)
(ifact-iter 6 4 4)
(ifact-iter 24 5 4)
24

expt

(define (expt b n))
 (if (- n 0)
 1
 (* b (expt b (- n 1)))))

(define (iexpt b n)
 (expt-iter b n 1))

(define (expt-iter b counter product)
 (if (= counter 0)
 product
 (expt-iter b
 (- counter 1)
 (* b product))))

time

space

time

space

time

space

time

space

fast-expt

Take advantage of: bn = (b n/2)2 if n is even, bn = b*bn-1 if n is odd.
e.g. b2 = b*b
 b4 = b2 * b2
 b8 = b4 * b4

(define (fast-expt b n))
 (cond ((= n 0) 1)
 ((even? n) (square (fast-expt b (/ n 2))))
 (else (* b (fast-expt b (- n 1))))))

fib

(define (fib n)
 (cond ((= n 0) 0)
 ((= n 1) 1)
 (else (+ (fib (- n 1))
 (fib (- n 2))))))

time

space

time

space

