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Order of Growth:  For a process with an input of size n,  we want to characterize how much of some 
resource is required by the process as the input becomes larger. 
 
Let n be a parameter that measures the size of the problem solved by the process 
      R(n)  be the amount of resources needed for a problem of size n 
   
R(n) has order of growth Θ(f(n)) if there are positive constants k1 and k2 independent of n such that: 

  k1f(n) ≤ R(n) ≤ k2f(n)     for any sufficiently large value of n 

 

R(n) is typically measured in terms of space (max size of expression) and time (number of steps) 
requirements. We will measure the size of an expression by number of deferred operations. 

 

Typical Orders of Growth 

Θ(1)  (constant):  The resource requirements do not change with the size of the problem.  All of our linear 
iterative processes use constant space (e.g., iterative version of fact). 

Θ(n) (linear):  The resource requirements grow linearly with the size of the problem.  (Multiplying the 
size of the problem multiplies the resource use by the same factor.)  All of our linear iterative 
processes use a linear number of steps (e.g., iterative fact). All of our linear recursive processes use 
linear space and number of steps (e.g., recursive fact). 

Θ(bn) (exponential): The resource requirements grow exponentially with the size of the problem.  
(Incrementing the size of the problem multiplies the resource use by a constant factor.)  Recursive 
fib requires an exponential number of steps (though linear space). 

Θ(log n) (logarithmic): The resource requirements grow logarithmically with the size of the problem.  
(Multiplying the size of the problem adds a constant amount to the resource use.)  Fast-expt is 
logarithmic in both number of steps and space. 

Θ(nm) (power law): The resource requirements grow as a power of the size of the problem.   (Multiplying 
the size of the problem by some factor multiplies the resource use by a power of that factor.)  
Linear growth is a special case of this (m = 1). Another common case is quadratic growth, Θ(n2).  
The prime-testing procedure in the problems today is iterative and is an example of the power law. 

 
 



Order of Growth Notes  (cont'd)     
 

 

Examples 

 
fact 

(define (fact n)  
 (if (= n 1)1(* n (fact (- n 1)))))) 
 

(fact 4) 
(* 4 (fact 3)) 
(* 4 (* 3 (fact 2))) 
(* 4 (* 3 (* 2 (fact 1)))) 
(* 4 (* 3 (* 2 1))) 
(* 4 (* 3 2)) 
(* 4 6) 
24 
 
(define (ifact n) 
   (iter 1 1 n)) 
 
(define (ifact-iter product counter max-count) 
   (if (> counter max-count) 
          product 
         (ifact-iter (* counter product) 
               (+ counter 1) 
               max-count))) 
 
(ifact 4) 
(ifact-iter 1 1 4) 
(ifact-iter 1 2 4) 
(ifact-iter 2 3 4) 
(ifact-iter 6 4 4) 
(ifact-iter 24 5 4) 
24  
 
 
expt 
 
(define (expt b n)) 
  (if (- n 0) 
       1 
       (* b (expt b (- n 1))))) 
 
 

(define (iexpt b n) 
     (expt-iter b n 1)) 
 
(define (expt-iter b counter product) 
     (if (= counter 0) 
          product 
          (expt-iter b 
                          (- counter 1) 
                          (* b product)))) 

time 
 
space 

time 
 
space 

time 
 
space 

time 
 
space 



 
 
 
fast-expt 
 
Take advantage of:  bn = (b n/2)2   if n is even, bn = b*bn-1  if n is odd. 
e.g.  b2 = b*b 
        b4 = b2 * b2 
        b8 = b4 * b4 
 
(define (fast-expt b n)) 
    (cond ((=  n 0) 1) 
              ((even? n) (square (fast-expt b (/ n 2)))) 
              (else (* b (fast-expt b (- n 1)))))) 
 
 
 
 
fib 
 
(define (fib n) 
    (cond ((= n 0) 0) 
              ((= n 1) 1) 
              (else (+ (fib (- n 1)) 
                              (fib (- n 2)))))) 
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