
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.001 Structure and Interpretation of Computer Programs
Spring, 2007

Recitation 5, Friday February 23

Data Abstraction: cons, list Dr. Kimberle Koile

Language Elements
• Primitives

• primitive data: numbers, strings, Booleans
• primitive procedures

• Means of Combination
• procedure application
• compound data

• Means of Abstraction
• naming
• compound procedures

- block structure
- higher order procedures

• conventional interfaces – lists
• data abstraction

 - constructors
 - accessors
 - contract
 - operations

Data Abstractions
 cons

 list
 1. Constructor
 (list <a> …) => <l>
 2. Accessors
 (first <l>)
 (rest <l>)
 3. Contract
 (first (list <a> <c>)) => <a>

 (rest (list <a> <c>)) => (<c>)
 list (cont'd)
 4. Operations
 (list? <l>) ; returns #t if <l> is a list
 (adjoin <z> <l>) ; adds <z> to the front of the list
 …
 5. Abstraction Barrier
 6. Concrete Representation and Implemenation
 (cons <a> (cons (cons <c> '())))
 (define first car)
 (define rest cdr)
 (define adjoin cons)

Examples

(define a 1)
(define b 2)
(define c 3)

(car (cons a b)) ==>

(cdr (cons a b)) ==>

(first (list a b)) ==>

(rest (list a b)) ==>

(pair? (list a b)) ==>

(adjoin a (list b c)) ==>

(adjoin (list a b) (list c)) ==>

In Scheme, we often want to access elements deep in a cons structure. Therefore, the following accessors
have been defined to help us out:

(cadr x) ==> (car (cdr x)) (cddr x) ==> (cdr (cdr x))
(caddr x) ==> (car (cdr (cdr x))) (cdadar x) ==> (cdr (car (cdr (car x))))
(cdaar x) ==> (cdr (car (car x)))

For lists, we also often want to easily access the n'th element of a list. The accessors first, second, third,
..., tenth are defined to access the corresponding values of a list. For example, (third (list 1 2 3 4)) => 3

How could you define first, second, third, and fourth using the c???r functions?

(first x) ==> _____________ (third x) ==> ______________

(second x) ==> _____________ (fourth x) ==> ______________

