
6.001 recitation 3/14/06

Symbols
Robots & A-lists

Dr. Kimberle Koile

(car ‘ ‘list)

Symbols in Scheme

(lambda (x) (* x x))

eval

lam
bda-rule

A compound proc
that squares its

argument

#[compound-...]
pr

in
t

(quote beta)

eval

quote-rule
symbol

pr
in

t

beta

beta

Symbols are ordinary values

(list 1 2) ==> (1 2)

symbol
gamma

symbol
delta

(list (quote delta) (quote gamma))
==> (delta gamma)

(define a 1)
(define b 2)

What does the Scheme interpreter print for each of the expressions:

(list a b)

(list ’a ’b)

(list ’a b)

(car ’a)

practice

(define a 1)
(define b 2)

What does the Scheme interpreter print for each of the expressions:

(car ''a)

(cadr ''list)

((cadr ’’list) a b)

more practice

Wallace and Gromit

Wallace and Gromit have just finished their vacation on the moon and are about to head back to Earth in their
rocket ship (located at position G below). The local robot desperately wants to go back with them, but must
hurry to get to the rocket ship in time. (He’s at S below.) He has to navigate around two obstacles (shown as
triangles AEF and BCD.) He uses his nifty search engine to find the best path. In recitation 14 (October 27)
we’ll figure out which way he goes. Today let’s figure out the representations needed for his search engine.
Below is a graph representing possible paths from the robot’s starting location (S) to the rocket ship’s
location (G). The graph consists of nodes (labeled S, and A to G) which are connected by links (aka arcs or
edges). Nodes have such properties as id, e.g., S; links in which they are endpoints; and estimated distances
to the goal node. Links have properties such as the nodes that are endpoints and length; e.g., the link between
S and B has endpoints node S and node B, and a length of 5 (units not specified). Paths through the graph
can be represented as ordered sets of nodes and/or links.

data abstraction, symbols, and search

data representation: symbols and alists

Link lengths: Estimates of distance to G from:
S-A 6 B-D 6 A 7
S-B 5 B-E 5 B 9
S-C 4 C-D 6 C 13
A-B 1 D-E 5 D 7
A-D 7 D-G 8 E 4
A-E 3 E-F 6 F 4
A-F 7 E-G 4 G 0
B-C 6 F-G 4 S 1

data abstraction: symbols and alists

(define *node-data* '((A 7) (B 9) (C 13) (D 7) (E 4) (F 4) (G 0) (S 1)))

(define *link-data* '(((S A) 6) ((S B) 5) ((S C) 4) ((A B) 1) ((A D) 7) ((A E) 3)
((A F) 7) ((B C) 6) ((B D)6) ((B E) 5) ((C D) 6) ((D E) 5)
((D G) 8) ((E F) 6) ((E G) 4) ((F G) 4)))

alist practice: assoc

What does the Scheme interpreter print for each of the expressions:

(assoc 'A *node-data*) =>

(assoc A *node-data*) =>

(assoc 9 *node-data*) =>

(assoc '7 *node-data*) =>

(assoc '(C 13) *node-data*) =>

(define *node-data* '((A 7) (B 9) (C 13) (D 7) (E 4) (F 4) (G 0) (S 1)))

nodes and links

(define *node-data* '((A 7) (B 9) (C 13) (D 7) (E 4) (F 4) (G 0) (S 1)))

(define *link-data* '(((S A) 6) ((S B) 5) ((S C) 4) ((A B) 1) ((A D) 7) ((A E) 3)
((A F) 7) ((B C) 6) ((B D)6) ((B E) 5) ((C D) 6) ((D E) 5)
((D G) 8) ((E F) 6) ((E G) 4) ((F G) 4)))

To get the estimated distance to the goal for a node, we could use the *node-data* list
and the procedure assoc or find-assoc:

(define (get-node-estimate node-id)

)

nodes and links

(define *node-data* '((A 7) (B 9) (C 13) (D 7) (E 4) (F 4) (G 0) (S 1)))

(define *link-data* '(((S A) 6) ((S B) 5) ((S C) 4) ((A B) 1) ((A D) 7) ((A E) 3)
((A F) 7) ((B C) 6) ((B D)6) ((B E) 5) ((C D) 6) ((D E) 5)
((D G) 8) ((E F) 6) ((E G) 4) ((F G) 4)))

To get the length of a link, we could use *link-data* and assoc or find-assoc:

(define (get-link-length node-id1 node-1d2)

)

creating nodes using alists

1. Use map to create nodes using *node-data*.
(define *nodes*

)
)

Consider these representations for nodes and links:

(define (make-node id estimate-to-goal)
(cons id estimate-to-goal))

(define (node-id node)
(car node))

(define (node-estimate-to-goal node)
(cdr node))

(define (make-link node1 node2 length)
(list (list node1 node2) length)))

(define *node-data* '((A 7) (B 9) (C 13) (D 7) (E 4) (F 4) (G 0) (S 1)))

finding a node
2. Find a node in *nodes* given a symbol representing a node id.

Use this function to test for node-id equality:
(define equal-node-id? (id1 id2)

)

(define find-node (id)

)

(define *link-data* '(((S A) 6) ((S B) 5) ((S C) 4) ((A B) 1) ((A D) 7) ((A E) 3)
((A F) 7) ((B C) 6) ((B D)6) ((B E) 5) ((C D) 6) ((D E) 5)
((D G) 8) ((E F) 6) ((E G) 4) ((F G) 4)))

3. Use map to create links using *link data*.

(define *links*

)

(define (make-link node1 node2 length)
(list (list node1 node2) length)))

creating a link

creating a node containing links!

(define (make-node id estimate-to-goal links)
(list id estimate-to-goal links))

(define *node-data* '((A 7) (B 9) (C 13) (D 7) (E 4) (F 4) (G 0) (S 1)))

(define *link-data* '(((S A) 6) ((S B) 5) ((S C) 4) ((A B) 1) ((A D) 7) ((A E) 3)
((A F) 7) ((B C) 6) ((B D)6) ((B E) 5) ((C D) 6) ((D E) 5)
((D G) 8) ((E F) 6) ((E G) 4) ((F G) 4)))

4. Assume our representation for nodes now includes links:

(define (make-link node1 node2 length)
(list (list node1 node2) length)))

	Symbols in Scheme
	Symbols are ordinary values
	data representation: symbols and alists
	data abstraction: symbols and alists
	alist practice: assoc
	nodes and links
	nodes and links
	creating nodes using alists
	finding a node
	creating a link
	creating a node containing links!

