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AN INTELLIGENT ASSISTANT FOR CONCEPTUAL DESIGN

Informed Search Using a Mapping of Abstract Qualities to Physical Form

KIMBERLE KOILE
Massachusetts Institute of Technology, USA

Abstract.   In early stages of design, the language used is often very
abstract. In architectural design, for example, architects and their
clients use experiential terms such as “private” or “open” to describe
spaces. The Architect’s Collaborator (TAC) is a prototype design
assistant that supports iterative design refinement using abstract,
experiential terms. TAC explores the space of possible designs in
search of solutions satisfying specified abstract goals by employing a
strategy we call dependency-directed redesign: It evaluates a design
with respect to a set of goals, uses an explanation of the evaluation to
guide proposal and refinement of design repair suggestions, then
carries out the repair suggestions to create new designs.

1. Introduction

In early stages of design, the language used is often very abstract. Engineers
might talk about designing a piece of equipment that is “easy to maintain”.
Clothing designers talk of “baggy” clothing. Architects and their clients use
experiential terms such as “private” and “open”.  Throughout the design
process these abstract terms are operationalized and translated into physical
characteristics of the artifact being designed.  The design process can be
viewed as one of exploration, trying to turn goals, often articulated only in
very abstract terms at the beginning of the process, into an artifact that
realizes those goals.

If we are to build programs that help designers during the early stages of
design, often termed conceptual design, we must give those programs rich
vocabularies and the capability to represent and reason with abstract
concepts. The hypothesis put forth in this paper is the following:
Computational tools can support conceptual design by providing a mapping
of  abstract terms to measurable design features and by using that mapping in
an informed, exploratory search of a design space.  The Architect’s
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Collaborator (TAC) is a prototype design support system that illustrates
these ideas in the domain of architecture.  TAC employs techniques from
artificial intelligence to explore a space of designs using a technique we call
dependency-directed redesign.  TAC is an intelligent design assistant that
focuses on  design refinement using abstract terms, leaving to the designer
the tasks of providing a starting design, specifying and respecifying goals,
and ranking designs.

This paper begins by describing a design problem that TAC solved, then
discusses how TAC works and gives results from an experiment with a
Frank Lloyd Wright Prairie house and from a real-world design example.
The paper then discusses related work, future work, and contributions.

2. An Architectural Example

Architectural design is well-suited to research on conceptual design for
several reasons. Most design problems exhibit the difficulties mentioned
earlier:  They are exploratory in nature and involve the use of terms
representing abstract, experiential qualities.  Such experiential
qualities—e.g., openness, spaciousness, privacy—are not easily articulated
or formalized.  Yet they are an essential part of the architectural design
process: Architects and their clients often describe desired spaces in terms of
these qualities; architects use their knowledge from past experiences, from
environment behavior research, and from their own theories to create
physical form that manifests such qualities. This knowledge can be
articulated and structured as general design knowledge (e.g., Wright 1954;
Alexander et al. 1977; Zeisel and Welch 1981; Hertzberger 1993).  As
illustrated in this paper, this design knowledge can be operationalized and
used as the basis for a conceptual design support system that reasons about
abstract qualities and physical form.

To illustrate the above idea, TAC was given the design of an existing
house that the owners and their architects were redesigning. Several
problems with the house were identified, one of which is illustrated in Figure
1:  The living and dining rooms felt small and isolated from each other.

One way to solve the size problem is to make the rooms larger. Another
way is to make the rooms feel larger by creating views to neighboring
spaces. Creating views also helps with the feeling of isolation. Given a goal
of having the dining room not feel small and isolated, TAC used its
knowledge base of architectural concepts to translate this goal into having
the dining room visually open from the living room.  It calculated a visual
openness value, Figure 2, and determined that the value was insufficient.

TAC proposed making the rooms feel larger and less isolated by
increasing   the  visual  openness of  the  dining  room.   It   suggested  design



AN INTELLIGENT ASSISTANT FOR CONCEPTUAL DESIGN 3

    
Figure 1. A view from living room to dining   Figure 2.  Floor plan showing visual

openness of dining from viewpoint *;
                                                                            value is 0.42.  Shaded region is
                                                                            visible.  Dotted lines are open edges.

modifications to achieve this increase, and created seven new designs by:
rotating the stair 90 degrees, rotating the stair 270 degrees, moving the stair
to three different exterior edges, removing the stair, replacing the stair wall
with a screen. The last solution, with the stair wall “screenified”, was
implemented by the owners, Figures 3 and 4.

  

Chatham#2
*

Liv ing Dining

Screenify Stair

Figure 3. A view from living to dining with    Figure 4.  TAC’s solution with screen
 screen  in place of wall                                      New visual  openness value is 0.61.

TAC creates new designs with a visually-open dining room by using a
mapping between abstract qualities and operators on physical form, Figure 5.
It locates the function that relates visually-open to visual openness, and finds
that one territory is visually open to another if at least .6 of its area is visible.
Finding this not true, TAC uses a general rule about making an expression of
the form “x greater than y” true by increasing y, and proposes increasing
visual openness (the value of y in this case). It then finds in its knowledge
base techniques for increasing visual openness by modifying the things
blocking the view. It determines that the stair blocks the view, then applies
each of the techniques to the original design, producing the new designs.
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Figure 5.  Portion of TAC’s mapping of abstract terms to operators on physical form

This example illustrates TAC’s behavior: It translates a goal stated in
terms of abstract qualities into operators on physical form. It performs this
translation using a hierarchy that maps abstract terms to physically
measurable design characteristics and design operators for achieving those
characteristics.  It methodically searches the space of possible solutions by
suggesting modifications to the design, pruning suggestions when possible
so that it generates only new designs with a good chance of satisfying the
desired goal.  This informed search of a design space is performed using a
technique we call dependency-directed redesign. TAC’s intelligence thus
derives from two aspects:  its hierarchy that maps abstract terms to operators
on physical form, and its dependency-directed redesign strategy.

3. Hierarchy: Mapping Abstract Terms to Physical Terms

As mentioned, part of TAC’s intelligence derives from its mapping of
abstract qualities to details of physical form. TAC knows, for example, that
it can make one space more visible from another by removing intervening
walls. It knows that it can make a space feel more private by making less of
it visible or by making the path to it from a front door less direct. TAC also
knows about characteristics of Frank Lloyd Wright’s Prairie houses.

TAC represents architectural knowledge—general knowledge as well as a
designer’s or client’s particular preferences—using constructs called design
characteristics.  TAC also contains domain-independent knowledge from
geometry, arithmetic, logic, and computation, which it represents using what
we call TAC- func t ions .  The following sections describe TAC’s
representation  for  designs,  design characteristics, and  TAC-functions,  and
illustrate how these constructs are used to map abstract qualities to  details of
physical form.

Visual openness of Dining from Living greater than .6

Dining visually open  from Living

 functional definition

rotate elements blocking the view
move elements blocking the view
remove elements blocking the view
screenify elements blocking the view
puncture elements blocking the view

ways to increaseways to decrease

 … increase x
decrease y
set x
set y

  ways to change  x greater-than  y
              to be true
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3.1. REPRESENTING DESIGNS

TAC represents a design as a set of five models, each capturing a different
aspect of a design. The design element model contains size and location
information for walls, windows, etc.; it can be thought of as a primitive
computer-aided design (CAD) model. The edge model is a two-dimensional
geometric abstraction of the design element model, containing points and
non-overlapping edges. Edges are either one-dimensional abstractions of
design elements (e.g., walls), or  one-dimensional projections of design
elements. Projections, also called projected edges, are “invisible” edges that
extend in a parallel or perpendicular direction from design element edges
and help bound two-dimensional regions we call territories (Kincaid 1997).
Territories are grouped into a territory model, another geometric abstraction
of a design element model.  (See Figures 2 and 4 for examples.)  A use space
model  pairs territories with uses specified by the designer. Finally, a
circulation model is a graph representing paths between doorways.1

TAC’s representation for a design differs from most other representations
of architectural designs in three significant ways. First, the fundamental
vocabulary is that of design elements—walls, windows, etc. Most other
knowledge-based architectural design systems that generate new designs
represent only spaces, and thus cannot reason about physical form. Second,
territories, often called spaces in other systems, are derived from the design
elements, not specified independently. Finally, most other systems do not
have separate representations for territories and use. A notable exception is
(Simoff and Maher 1998).  Representing use separately from territories
enables TAC to reason about physical form independently of intended use.

3.2. DEFINING DESIGN CHARACTERISTICS

As mentioned above, design characteristics represent architectural properties
of a design, including such concepts as visual openness, physical
accessibility, and floor plan area.  Some design characteristics can be
computed directly from design elements, while others are derived from
computed design characteristics and are related to physical form via those
characteristics. Design characteristics form a  decomposition hierarchy,  with
characteristics computed from physical form at the bottom and those derived
from them higher up. In this way experiential qualities are mapped into
details of physical form. Four design characteristics, which appear in
examples  throughout this paper, illustrate this mapping.  The decomposition
hierarchy for these characteristics is shown at the end of this section.

                                      
1 Design elements and their edges are entered by hand using a 2D design editor; projected
edges, territories, and circulation paths are computed automatically. Visualization capabilities
more sophisticated than 2D floor plans are possible, but are outside the scope of this research,
which is focused on intelligent exploration of design space.
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Example 1:  Visual-openness is quantitative and measures the portion of a
territory visible from another territory. Visual-openness is an example of a
design characteristic that is computed from physical form elements; its
evaluation function is a “black box” computational geometry routine.
Figures 2 and 4 show the results of visual-openness calculations.

Example 2: Visually-open is boolean-valued and defined in terms of
visual-openness by using a threshold: A territory is considered visually-open
from another territory if at least 0.6 of its area is visible from the other
territory. Visually-open is an example of a derived design characteristic.  Its
evaluation function is defined in terms of visual-openness using a Lisp-like
expression: (gt (visual-openness x from y) 0.6).

Example 3:  Perceived-main-entryness is vector-valued and gives a
measure of the perception of an exterior door as a main entry. Characteristics
that influence a visitor’s choice of door when approaching a house are
components of perceived-main-entryness. These include distance between
door and street, straightness of path between door and street, and formality
of door. Perceived-main-entryness is a derived characteristic; its evaluation
function collects all components into a vector. Perceived-main-entryness
also has necessary conditions:  In order to have a perceived-main-entryness
value, for example, an exterior door must be visible from the street.

Example 4: The design characteristic perceived-main-entry is defined in
terms of perceived-main-entryness. Its value is the exterior door most likely
to be perceived as the main entry. TAC constructs a partial order that ranks
exterior doors by their perceived-main-entryness values, and returns the top
of the partial order as the value of perceived-main-entry. Alternatively, the
evaluation function for perceived-main-entry could combine the components
of the perceived-main-entryness vector into a single value and choose the
door with the highest value.  Notice, however, that the components are
incommensurate, and it is not necessarily meaningful, nor obvious how to
combine them into a single value.

These examples of design characteristics illustrate TAC’s  decomposition
hierarchy of characteristics. The means by which a design characteristic’s
evaluation function is defined determines the characteristic’s place in the
hierarchy.  A characteristic that is  considered to be directly related to
physical form is at the bottom of the hierarchy and has an evaluation
function that is a predefined “black box” that operates on one or more
models representing a design. A derived design characteristic is higher up in
the hierarchy and has an evaluation function constructed using one of three
different methods: evaluation function body (e.g., as visually-open),
components, or components and necessary conditions (e.g., as perceived-
main-entryness). These methods provide the means for constructing the
hierarchy, as shown in Figure 6.



AN INTELLIGENT ASSISTANT FOR CONCEPTUAL DESIGN 7

visually-open

visual-openness

visible-from

privacy

distance-btwchange-in-direction-btw

components

physical-accessibility formality-of-entry

perceived-main-entryness

degree-of-hingesolidity

components

built-exterior-paths
components

components
necessary conditions

perceived-main-entry

evaluation function body

evaluation function body

Figure 6.  Dependency links for some of TAC’s design characteristics

3.3. COMPLETENESS

TAC’s knowledge base is complete enough to solve interesting, simple two-
dimensional redesign problems, as with the Chatham house design problems
described in sections 2 and 5.  It contains 30 TAC-functions which represent
arithmetic relations, logical relations, computational constructs, and set
concepts.  These TAC-functions form a basic set of domain independent
functions out of which new design characteristics can be built for other
architectural design problems.  The remaining ten TAC-functions represent
geometric concepts, e.g., distance between two things.  More geometric
concepts could be added, e.g., alignment, overlap (Cui and Randell 1992).

TAC contains 62 design characteristics, which represent architectural
concepts such as privacy, visual openness, paths between two design
elements.  Forty of these proved sufficient for the Chatham design problems.
The remaining 22 characteristics were added for a Frank Lloyd Wright
Prairie house experiment and included Wright-specific characteristics such
as circuitous path, place of prospect, and place of refuge (Hildebrand 1991).
More design characteristics could be added easily for design problems
involving other architectural types or other architects.

4. Dependency-Directed Redesign

As mentioned earlier, TAC’s intelligence derives from its design
characteristic hierarchy, which maps abstract concepts to details of physical
form, and from its informed search using that hierarchy.  Its informed search
employs a technique we call dependency-directed redesign, which is
inspired by artificial intelligence work on  dependency-directed backtracking
(Stallman and Sussman 1977), plan repair (Sussman 1975, Simmons 1992),
and abstraction in search (Sacerdoti 1974).  From dependency-directed
backtracking, TAC borrows the idea of using an explanation of goal failure
to guide search for a solution.  From plan repair, TAC borrows the idea of
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searching to find an intermediate state in which some goals are satisfied,
then repairing that state to satisfy remaining goals. From abstraction in
search, TAC borrows the idea of limiting search in a very large solution
space by searching in a smaller space: TAC searches in what we call repair
suggestion space rather than in design space.  Combining these three ideas,
TAS uses an explanation to prune repair suggestion space, proposing only
those repairs that have a good chance of leading to solutions, and thus
decreasing the number and improving the relevance of new designs.

4.1. FROM EXPLANATION TO REPAIR SUGGESTIONS

Dependency-directed redesign uses an explanation of goal failure and a
knowledge base of repair strategies to propose suggestions for modifying a
design:  Given an initial design and a set of goals, TAC evaluates a design
with respect to the goals and uses the resulting explanation to propose repair
suggestions for any goals not satisfied.  It then prunes and refines
suggestions, and creates new designs for the remaining suggestions.

Returning to the Chatham house prior to remodeling (Figures 1 and 2),
consider the goal of having the dining room visually open from the living
room. The goal is represented by the expression (visually-open Dining from
Living).  TAC evaluates this goal, determines that it is not satisfied, and
produces an explanation of the failure in the form of a tree that represents a
trace of the goal expression’s evaluation, Figure 7. By walking down the
tree, TAC can determine why a goal was not satisfied and then use that
information to propose suggestions for design repair.

(visually-open Dining from Living)
     value:  false

(gt (visual-openness Dining from Living) 0.6)
     value:  false

(gt 0.42 0.6)
     value:  false

(visual-openness of Dining from Living)
     value:  0.42

substitute evaluation function body

reduce expression

explanation

Figure 7. Explanation for (visually-open Dining from Living) for Chatham example

In particular, TAC identifies opportunities to repair the cause of failure
by looking for expressions whose  value it  knows  how  to change via
domain independent routines called fixers.  Fixers reason about how to get
from a current value to a desired value;  they propose increasing, decreasing,
or setting values. They rely on a characteristic’s increasers, decreasers, and
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setters—expressions  that  when  evaluated  modify  a  design, thereby
changing the value of the characteristic.  (Examples of fixers and increasers
were shown in Figure 5, labeled as “ways to change …” and “ways to
increase”, respectively.)  Whether a design characteristic or TAC-function
has a fixer, increasers, decreasers, or setters depends on the nature of the
characteristic or function.  Some characteristics, such as the color of a design
element,  are directly settable and  have setters  that change a value.   Others,
such  as   visual-openness, are not  directly settable, and hence do  not  have
setters; instead their values are changed by modifying the design. Thus,
instead of setters, the characteristic visual-openness has increasers, since
certain modification operators, e.g., removing an intervening design element,
have a good chance of increasing its value.

To repair the Chatham design so that the dining room is visually open
from the living room, TAC traverses the explanation shown in Figure 7 until
it finds methods for “fixing” a node’s expression.  When it gets to the gt
node, it  finds that it knows how to fix a (gt x y) expression: it can set y to be
greater than x, decrease y to be less than x, set x to be greater than y, or
increase x to be greater than y. In the current expression, y is a constant, 0.6.,
and cannot be decreased or set; x is the visual-openness expression, and
visual-openness cannot be directly set. One option remains: increasing x.
TAC checks its knowledge base and finds that it knows how to increase the
value of visual-openness by means of increasers associated with that
characteristic. So it proposes increasing the value of visual-openness:

(increase-value of  (visual-openness Dining from Living)

                                 until visual-openness greater than 0.6)

TAC then retrieves increasers (see Figure 5), which are written in terms
of operators on design elements that block the view between things, e.g.,

(remove blocking-elts-btw x y)                     (screenify blocking-elts-btw x y)

Substituting arguments of Dining and Living from the original goal
expression, TAC then proposes specific repair suggestions, e.g.,

(remove blocking-elts-btw Dining Living)      (screenify blocking-elts-btw Dining Living)

TAC now checks the design to identify design elements that block the view,
finds the stair, substitutes it into the repair expressions, and proposes, e.g.,

(remove Stair)                                                 (screenify Stair)

For each suggestion, TAC then creates new designs, one of which was
shown in Figure 4.

4.2. FROM REPAIR SUGGESTIONS FOR GOALS TO NEW DESIGNS

The Chatham house example illustrates how TAC works with a single goal,
translating a goal expression into operators on physical form, carrying out
those operators to create new designs. More realistic design problems have
multiple, often conflicting goals.  TAC deals with this situation by using a
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generate-and-test control structure, generating intermediate designs that
satisfy a subset of the goals, then iteratively repairing those designs to satisfy
remaining goals.  An enabling assumption for this approach is that some
goals will be independent, so that working on one goal does not always undo
a previously satisfied goal (Sussman 1975).   For the goals that do interact,
some amount of work to reevaluate and resatisfy goals is necessary.  TAC
limits the amount of work in two ways.  First, as previously described, it
separates the proposing of repairs from the performing of repairs, thereby
enabling it to avoid designs that it knows will not satisfy goals.  Second, its
generate-and-test control structure includes a lookahead step: When
proposing repair suggestions for a particular goal, it “looks ahead” for
potential goal interactions. It looks both for conflict, i.e., when satisfying a
goal will undo an already satisfied goal, and synergy, i.e., when a
modification will satisfy more than one goal. Three kinds of conflict and
synergy were identified: obvious, predictable, unpredictable. TAC handles
the first two of these: Obvious interactions are detected by comparing goals,
predictable interactions are detected by comparing repair suggestions for
goals. Being able to reason about obvious and predictable interactions
enables pruning of repair suggestions before creating designs, which helps
control search and increases the chances that intermediate designs are closer
to solutions. Unpredictable interactions, by definition, cannot be detected
ahead of time, and lead to the need for generate-and-test.

An example of TAC’s reasoning with multiple goals is shown for one of
Frank Lloyd Wright’s Prairie houses, the Horner house (Figure 8).

Living

Dining

Fireplace

e1
e2 e3

e4 e5

Figure 8.  Edge model for Horner house; e1 to e5 are edges

TAC was asked to evaluate the house with respect to five goals usually
satisfied in Prairie houses: the center of the Living room visible from the
Dining room, the Living room visually open from the Dining room, one
fireplace in the Living room and one in the entire design, and the fireplace
on an interior edge.  The first four goals are satisfied already, but the last
goal is not: the fireplace is not on an interior edge.  Attempting to satisfy this
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goal illustrates some interesting goal interactions.
Figure 9 illustrates TAC’s behavior given the five goals. Starting with the

unsatisfied goal, TAC proposes six suggestions (s1 to s6): move the fireplace
to any of five interior edges (e1 to e5) or add a new fireplace on an interior
edge. It notices that adding a fireplace conflicts with the goal of having one
fireplace, so it prunes that suggestion. It then creates five new designs, each
with a fireplace on one of the specified edges. It checks these designs and
finds that in D4 and D5 the fireplace is not entirely on an interior edge, so it
discards these two designs. It rechecks the other four goals for the remaining
designs, finding that D2 and D3 are solutions.  It determines that moving the
fireplace to e1 (in design D1) has caused the visibility goals to become
unsatisfied: the fireplace has blocked the view between living and dining
territories.  So TAC proposes removing or puncturing2 the fireplace.  It
notices that removing the fireplace will conflict with keeping the number of
fireplaces at one, so it prunes that suggestion.  It carries out the fireplace
puncture operation and creates design D6. It checks the visually-open goal
and finds it now satisfied, so D6 is a solution. It has no more designs to
check, so it stops,  returning solutions  D2,  D3, and D6  (Horner#2,
Horner#3, and Horner#1#1 in Figure 10).

Figure 9.  Control structure for Horner design example

The goals in this example exhibited several different kinds of interaction.
Obvious synergy was exhibited by the two fireplace count goals: having one
fireplace in the living territory also satisfied having one fireplace in the
entire design.  Predictable  conflict occurred between the  goal of having one
fireplace and a suggestion to remove the fireplace. Note that the goals
themselves in this case were not in conflict, but rather one goal was in
conflict with a particular repair suggestion proposed for another goal.

                                      
2 “Puncturing” a fireplace is a technique Wright used in the Robie house.

s1 move to e1
s2 move to e2
s3 move to e3
s4 move to e4
s5 move to e5
s6 add fireplace

fireplace-on-interior-edge

visually-open

visible-center s8s7
D1 D2 D3 D4 D5

s1
s2 s3 s4

D0

s5

D6

D6 s7 remove Fplace
s8 puncture Fplace at x

solution

discardsolutions

Given design D0 = Horner

s6
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Unpredictable synergy occurred between the visible-center goal and the
visually-open goal: puncturing the fireplace to make the living territory
center visible also caused the living territory to be visually open.

Horner#1#1
Move-to-edge Fireplace1
  (18.8 52.7)(27.6 52.7)
  Puncture Fireplace1 At
   (23.7 69.4)(23.7 34.3)

Horner#3
Move-to-edge Fireplace1
  (29.1 52.7)(31.7 52.7)

Horner#2
Move-to-edge Fireplace1
  (15.8 52.7)(18.8 52.7)

Figure 10.  Solutions for Horner design problem

4.3. EFFECTIVENESS

Removing, puncturing, and adding design elements are examples of TAC’s
design modification operators. TAC contains 23 such operators, 13 of which
form a basic set applicable to a wide range of design problems.  Ten others
are more specialized, e.g., adding built exterior paths.  None of TAC’s
current design modification operators change the footprint of a design; more
design modification operators could be added that do.

Preliminary experiments showed that TAC’s dependency-directed
redesign strategy proved effective:  Its two techniques for performing
informed search—using an explanation to guide search in repair suggestion
space, and pruning and consolidating repair suggestions using a lookahead
method that identifies conflict and synergy—significantly reduced search in
a large design space.  Without using explanation or lookahead, TAC would
have generated approximately 4x108 designs for the Horner design problem
described in this section:  23 operators, 10 producing at least 4 new designs
each, yields 53 new designs for each of 5 goals, or 535, approximately 4x108.

The tables below summarize control structure experiments for the Horner
design problem. Five goals were specified in each of two orders, optimal and
nonoptimal.3 Table 1 gives results using explanation to guide search; Table 2
gives results using both explanation and lookahead.

                                      
3 An optimal goal order is one in which goals with synergistic operators, i.e., that will satisfy
more than one goal, precede goals with which they interact.  See (Koile 2001) for details.
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TABLE 1. Five goals, Horner design problem, explanation used, no lookahead

Goal Order # solutions # designs # repair cycles
optimal 4 16 5

nonoptimal 37 339 48

TABLE 2. Five goals, Horner design problem, explanation and lookahead used

Goal Order # solutions # designs # repair cycles
optimal 4 8 3

nonoptimal 11 47 5

Using an explanation to guide search reduced the number of designs
generated to 339 for a nonoptimal goal order, and to 16 for an optimal goal
order, which is considerably better than 4x108. Adding the lookahead
mechanism further reduced the number of designs generated for nonoptimal
goal order to 47, and for optimal goal order to 8.

The optimal goal order, both with and without lookahead, resulted in the
same four solutions.  The nonoptimal goal order, however, resulted in
additional solutions. Most of these solutions were very similar to those found
with optimal order.  (They might have punctured the fireplace in a slightly
different location, for example.)  Several of the solutions found without
lookahead, however, were significantly different, because designs were
created that violated goals that were not the current focus—a situation not
uncommon in search problems.  TAC then repaired those designs, creating
additional solutions.  For this reason, the best control structure for generating
solutions when goals interact would include an option for relaxing lookahead
when desired.

5. A Real-World Design Problem

A system such as TAC can be used by architects as both a design tool and an
analysis tool.  This section illustrates TAC’s utility as a design tool in an
experiment using the Chatham house discussed in the opening example.4

The Chatham house was being redesigned at the same time that TAC was
under development.  The architects and TAC thus were able to work in
tandem on the same design problems. TAC was given a model of the house
and a set of design goals defined by the owners and their architects, and in
response proposed new designs. Several of the designs are presented here to
show that TAC finds plausible solutions to a real architectural design
problem, and that is does so with breadth and generality.

The Chatham house, floor plan, and approach paths are shown below.

                                      
4 See (Koile 2001) for discussion of TAC’s utility in analysing designs and definitions of
architectural type.
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      Figure 11.  The Chatham house          Figure 12.  Chatham house first floor and
approach paths to exterior doors
The usual approach point is marked by o.

Four problems with the house were identified:
•  site: visitors approaching the house are not sure which door to use
•  entry: living room is not private with respect to the front door
•  territories: main living spaces feel isolated from one another
•  use: kitchen activity is too far from the dining activity

We phrased goals for TAC in terms of physical access and visual openness:
•  site: one perceived main entry
•  entry: living room visually semi-open and physically semi-accessible
    (i.e., reached via somewhat crooked path) from the perceived main entry
•  territories: main living spaces visually open from one another
•  use: kitchen activity next to the dining activity
Figure 13 shows one of the designs produced by the architects, along

with a similar design proposed by TAC. In both designs, TAC and the
architects solved the problem of having more than one perceived main entry
by removing the front door and making the side door the new front door.
Moving the front door also increased the change in direction, and thus the
crookedness of the path, between the entrance and the living territory, and
decreased the visibility of the living territory from the entrance. The
visibility was decreased too much, so both TAC and the architects removed a
section of wall between the front door and the living territory, a modification
that also makes the living territory more easily accessible from the entrance.
TAC and the architects turned the stair to increase visual openness between
the dining and  living territories. They exchanged the playroom and  kitchen
activities so that the kitchen activity would be adjacent to the dining activity.

The designs also show differences, some of which result from the
architects’ working with a larger goal set than TAC. Some of these goals
were not given to TAC because they would not have illustrated new TAC
behavior, e.g., making the kitchen territory more visually open from the
dining territory. Other goals were outside the scope of TAC’s current
operators, which do not change a design’s footprint, e.g., enlarging the entry
porch. Other differences between TAC’s designs and the architects’ are due

bathkitchen

lliving

play

dining porch

side door

front door
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to both unspecified goals and lack of information in TAC’s knowledge base.
When the dining territory became smaller as a result of turning the stair, for
example, TAC did not enlarge the territory at the expense of the porch, as
the architects did:  TAC did not know of an implicit assumption that the
dining territory would not be smaller, nor that a territory can be enlarged by
borrowing area from a neighboring territory.

Chatham#10#1#4#2

play bat h kitchen

l iving dining porch

play bath kitchen

l iving dining porch

Chatham#10#1#4#2

play bat h kitchen

l iving dining porch

play bath kitchen

l iving dining porch

Figure 13.  Architects’ design (top) and TAC’s design; labels are activities

An alternate design produced by the architects and a similar design
proposed by TAC are shown in Figure 14.

Figure 14.  Alternate design by the architects (top) and TAC’s similar design
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In the designs shown in figure 14, TAC and the architects again have
made the side door the new front door, removed a section of wall between
the entrance and the living territory, and exchanged playroom and kitchen
activities. Instead of turning the stair, however, they have replaced the solid
wall of the stair with a screen, e.g., as shown in Figure 3.

TAC came up with designs that differed significantly from the architects’
designs. TAC’s design in Figure 15 uses a screen the full width of the living
territory as  a  means of increasing privacy by  decreasing  visibility from the
front door. Adding the screen satisfied the goal, but violated an implicit goal
of creating only useful-sized territories.

Chatham#2#7#2#2

play bath kitchen

living di ning porch

Figure 15.  TAC’s design with full width screen

TAC also was not told that the owners preferred the stair in a central
location, so it suggested moving the stair to exterior walls, creating plausible
designs but not what the owners had in mind, Figure 16. TAC was not told
that the architects and owners desired that the house be connected to a
neighborhood, nor given information about the neighborhood. As a result,
TAC did not know that the side door makes a better main entry because the
street on that side of the house is less busy and the houses closer together. It
thus produced designs with the front door as the main entry and the side door
removed, Figure 17.

Chatham#10#1#7#2

play bath kitchen

living dining porch

play bath kitchen

living dini ng por ch

Chatham#2#6#2#2

Figure 16. TAC design:  stair on exterior edge
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Chatham#10#1#7#2

play bath kitchen

living dining porch

play bath kitchen

living dini ng por ch

Chatham#2#6#2#2

Figure 17. TAC design:  screen at front door

Some of TAC’s novel designs are quite plausible and result from its
ability as a computational tool to carry out transformations easily and
quickly: It produces many variations on a theme, a task an architect would
find very tedious. In some cases, TAC’s designs may be redundant or even
bad, as in Figure 15, but they can be easily set aside by the designer as she
focuses on the designs that meet specified and unspecified criteria. TAC has
utility as a brainstorming tool and can help a designer and client elucidate
goals by calling attention to desired or undesired features.

6. Related Work

There is a vast literature on computational tools for conceptual design.
Tools that are most similar to the work reported in this paper either reason
with similar experiential knowledge or employ similar reasoning techniques.
An earlier paper, (Koile 1997), surveyed systems that evaluated designs with
respect to experiential qualities. The discussion here is confined to work that
shares features with TAC’s dependency-directed redesign strategy,
especially in the field of architecture.

Two methodologies that share features with TAC’s redesign strategy are
case adaptation in case-based reasoning, and performance-based refinement.

Case-based reasoning:  Case adaptation methods employed in case-based
reasoning systems are similar in spirit to TAC’s repair mechanism. Given a
design case, they modify it to meet specified design goals.  Indeed, TAC’s
modification operators can be thought of as a “taxonomy for design
adaptation” (Oxman 1996). Several case adaptation systems are mentioned
here. (See Voss and Oxman (1996) for a survey.)

Constraint satisfaction techniques have been used to adapt architectural
design cases. Some systems first adapt a case’s topology using graph
algorithms, then adapt geometry using constraint satisfaction techniques
(e.g., Smith et. al. 1996, Hua et. al. 1996). Design knowledge may be
represented implicitly in the systems’ parameters and constraints (e.g., Smith
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et. al. 1996), or explicitly using techniques such as hierarchies of object
types (e.g., Giretti and Spalazzi 1997). Constraint satisfaction techniques are
not appropriate for TAC’s repair problem: Since particular design element
arrangements for realizing abstract design characteristics are not known a
priori, specific constraints between design elements cannot be specified.

Model-based reasoning techniques have been used to adapt cases, though
typically for engineering fields in which qualitative models of device
behavior can be built. Even though not in the domain of architecture, the
systems described in Goel (1991) and Prabhakar and Goel (1998) are worthy
of mention as examples of using explanation of failure (case mismatch) to
guide iterative repair. The systems retrieve a mechanical design case, and
evaluate the case using simulation via a causal model of the device’s
behavior.  They then propose modifications by identifying the source of the
device failure and selecting repair strategies. Model-based reasoning is not
possible for TAC’s task because the global effects of modification operators
on abstract design characteristics cannot be predicted.

 Performance-based refinement . The term “performance-based
refinement” has been used in the computer-aided architectural design
community to mean using desired values of performance variables (akin to
TAC’s design characteristics) to guide design refinement—just what TAC
does. As Flemming and Mahdavi (1993) suggest, most performance-based
refinement tools only evaluate performance variables; the designer must
“guess” at likely design modifications for affecting desired values. The work
of Mahdavi (1997, 1998) is an exception.  GESTALT, described in Mahdavi
(1997), employs an “intelligent” generate-and-test method to iteratively
modify a design using knowledge of functional relationships between
physical form and performance variables.  It maps experiential qualities,
such as light quality, to methods for changing them, as TAC does.  Such
qualities in GESTALT are quantitative (e.g., a five point scale of light
quality) and can be mathematically modeled or formalized through
regression analysis.  Hence, optimization techniques can be used to select
particular values for desired characteristics. TAC’s power would be
enhanced by employing this technique when possible, rather than always
assuming monotonic relationships. Many design characteristics in
architectural design are not quantitative, however, so TAC’s qualitative
reasoning cannot be replaced completely with optimization methods.

7.  Future Work and Contributions

TAC’s representations form a good foundation for the development of rich
knowledge bases of architectural design knowledge.  As with all systems
that rely on knowledge bases, however, acquiring the knowledge is
nontrivial.  If a designer can assemble a set of designs that exhibit a
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particular characteristic, machine learning techniques may able to help with
the knowledge acquisition task.  In addition, explanation-based learning
techniques may be useful in adding knowledge of discovered synergies and
conflicts to the knowledge base.

TAC’s knowledge base could be extended to include knowledge of
materials and light, both of which affect the experiential qualities of a space.
The knowledge base also could be extended to include sociological
influences on physical form (e.g., Wright 1954, Hillier and Hanson 1984).
Changing attitudes about domestic life, for example, transformed the front
and back parlors of Victorian times into the modern-day living room.

Focus to date has been on TAC’s representation and reasoning
capabilities, with little time spent addressing user interface issues.  Thinking
about what constitutes an appropriate interface for designers opens up a
number of intriguing possibilities.   TAC would benefit, for example, from
integration with a sketching tool, e.g., (Gross 1996), so that a designer could
move between sketching and TAC’s evaluation and repair steps. TAC might
also benefit from an interface that allowed a user to increase or decrease
values of design characteristics and observe the resulting changes in physical
form.  A similar idea is proposed in (Flemming and Mahdavi 1993).

TAC’s control structure could be extended to support goal specification
and refinement.  As design goals evolve along with a design solution, a
designer might want to interrupt one of TAC’s evaluation and repair cycles,
redefine goals, then have TAC continue. This extension would be
straightforward.  TAC also could be extended to assist a designer in
specifying goals by suggesting some goals automatically. If a design has a
second floor, for example, TAC could suggest that the design needs a stair.
The issue of how complete the goal set needs to be and whether goals could
be inferred are open research questions.

TAC demonstrates that it is possible to construct a prototype intelligent
assistant that supports conceptual design via iterative design refinement,
representing and reasoning about how experiential qualities are manifested
in physical form.  Its hierarchy of design characteristics provides a means for
operationalizing abstract qualities. Its dependency-directed redesign
mechanism provides a means for exploring a design space using abstract
qualities.  Its use in finding plausible solutions to a real architectural design
problem demonstrates the real-world potential of these ideas.
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