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1 Simple Perturbation Model

This section analyzes the signal on the observation plane.
We model three sources of light in the image, shown in Fig. 1: a hemisphere

of external illumination of uniform brightness A; a wall of brightness B; and an
imaging subject of brightness C. The wall is assumed to be infinitely tall (relative
to the scale of the imaged region of the ground), and the height, width, and location
of the cylindrical subject are as shown in the figure. We assume that all surfaces
are Lambertian.

Figure 1: Simple model of a corner camera. We seek formulas for the image intensities at a point
(x, y) in the observation plane. We have a wall of brightness B, a subject of brightness C, and a
uniform background of brightness A.

While this model is quite simple, it allows us to examine the signal strength–the
change of ground brightness due to the presence of the subject–for many cases of
interest. We can calculate

• the signal as a function of a person’s (the subject’s) distance away from the
corner, and position relative to the corner;

• the signal as a function of position on the observation plane;

• the approximate effects of a sunlit subject, shaded subject, and cloudy or sunny
days.

• the effect of the wall’s brightness on the corner camera.

1.1 Photometric signal of the corner camera

We assume a moving subject. We want to calculate the ground plane intensities as
a function of position, both with and without the subject present. The difference in
the brightnesses observed on the ground plane will then tell us the requirements for
our photometric measurements to enable imaging from a corner camera.
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1.1.1 Intensity contributions of the wall of brightness B

Figure 2: Brightness contribution of one patch of the wall to the brightness of the ground plane
depends on the angle between the red arrow and the ground’s surface normal.

Consider a small patch on the wall at position x′, z′. To calculate its brightness
contribution to the brightness on the ground at position (x, y), we need to calculate
the normal vector from the ground position to the wall patch, N̂gw. The dot product
of that normal vector with the ground’s normal controls the brightness contribution
from the point (x′, z′).

But if the wall is Lambertian, and the angle at which we view it doesn’t change
its brightness, B, then we can just as easily, and more simply, perform the integra-
tion from the observation plane point (x, y). There we just have to integrate the
brightness B over all directions from (x, y) where we see the wall. Let θ be the angle
of a ray to the wall with respect to the ground plane normal, where the z-axis has
θ = π

2
. Let φ be the azimuthal angle to the point on the wall, where the y-axis

direction has φ = 0.
Then the brightness contribution from the entire wall, IB, is the following double-

integral

IB = B

∫ arctan(x
y
)

−π
2

dφ
∫ π

2

0

sin(θ)dθ (1)

= B

∫ arctan(x
y
)

−π
2

dφ (2)

= B

∫ arctan(x
y
)

−π
2

dφ (3)

= B

(
arctan

(
x

y

)
+
π

2

)
(4)

3



1.1.2 Intensity contributions of the non-wall environment of brightness A

Similarly, we want to integrate the background brightness A over all angles where we
see A and not B from the observation plane patch at (x, y). Calling this brightness
IA, this is the same integral as above, except we are integrating the constant A, not
B, and over the complement of the azimuthal angles as before. So the result is

IA = A(2π − (arctan(
x

y
) +

π

2
)) (5)

= A(
3

2
π − arctan(

x

y
)) (6)

(7)

1.2 Intensity contributions of the subject of brightness C

Figure 3: Calculation of the contribution to the brightness of the subject.

The geometry of the edge and the subject divides the observation plane into three
regions, with different intensity functions in each region. Let γ = arctan( y

x
). Let

γ0 = β − w
r
and γ1 = β + w

r
. Points of the observation plane for γ < γ0 (using

the small angle approximation for the angular extent of the cylinder) don’t see the
cylinder and form region 1 of the ground plane. Points where γ > γ1 see a full
view of the subject cylinder and form region 3 of the ground plane. Points (x, y) for
γ0 < γ(x, y) < γ1 form region 2 of the ground plane. We derive the formulas for the
intensities within each region.

1.2.1 IC1, for ground plane region 1

Points on the ground plane in region 1 never see the subject and so their intensities
are governed by the function IC1(x, y) = I(x, y) = IA(x, y) + IB(x, y).
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1.2.2 IC3, for ground plane region 3

Points in region 3 have a full view of the subject, not clipped by the wall edge.
The subject has brightness C over its cross-section, and occludes the background
brightness A over the same cross-section. So its brightness contribution, IC , will
be the brightness difference C −A, integrated over the cross-section of the subject.
Then the total brightness at the point (x, y), with the subject in the scene, IT (x, y),
will be

IT (x, y) = IA + IB + IC3 (8)

Then the total brightness at the point (x, y), without the subject present, I(x, y),
will be

I(x, y) = IA + IB (9)

Since it is also assumed to be Lambertian, it will be easier to perform this inte-
gration from the point of view of the ground plane patch at (x, y). We first want to
calculate the distance, d, from the ground plane patch at (x, y) to the subject.

The x-coordinate difference from the subject to the patch, dx is

dx = r cos(β) + x (10)

The y-coordinate difference from the subject to the patch, dy is

dy = r sin(β) + y (11)

Then we have, for the distance d from the subject to the patch,

d =
√
d2x + d2y (12)

=
√

(r cos(β) + x)2 + (r sin(β) + y)2 (13)

Now, we integrate the brightness difference, C−A, over the cylinder of width and
height w and h at a distance d from the patch at (x, y). We simplify the cylinder
to be a w by h rectangle, as seen from the patch at (x, y). If we assume the ground
plane is Lambertian, then intensities arriving at the patch are modulated by a factor
of sin(θ):

IC3 = (C − A)
∫ arctan(h

d
)

0

sin(θ)dθ
∫ k+w

d

k

dφ (14)

= (C − A)w
d
(1− cos(arctan(

h

d
))) (15)

= (C − A)w
d
(1− d√

d2 + h2
) (16)

where, for simplicity in the integration limit for φ, we assume that w � d, and k an
offset in φ that doesn’t matter in the result. And we used cos(arctan(x)) = 1√

1+x2
.

1.2.3 IC2, for ground plane region 2

Points in region 2 only see a partial image of the subject. The integral over φ in
Eq. (16) has a different bottom limit depending on the point’s angular position
within region 2.

The partial view of the subject will lead to this simple behavior of the intensities
in region 2: at a constant radius away from the edge (and therefore a constant
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distance d from the subject), the intensities in region 2 will lineaerly interpolate
between the intensity values at the boundaries with regions 1 and 3.

For a given (x,y) in region 2:

1. Find γ(x, y).

2. Find ρ(x, y) =
√
x2 + y2

3. Use IC2(γ, ρ) = αIC2(γ0, ρ) + (1− α)IC2(γ1, ρ), where

4. α = γ−γ0
γ1−γ0

The linear behavior of the limits of integration over φ in Eq. (16) allow this linear
interpolation to hold.

1.3 Final Model

Brightness at (x,y) with subject present in scene, IT (x, y)

IT = IA + IB + IC (17)

= A(
3

2
π − arctan(

x

y
)) + (18)

B(arctan(
x

y
) +

π

2
) + (19)

IC(x, y) (20)

Brightness at (x,y) with no subject in scene, I(x, y)

I = IA + IB (21)

= A(
3

2
π − arctan(

x

y
)) + (22)

B(arctan(
x

y
) +

π

2
) (23)

Fractional difference in brightness at (x,y) due to subject, IT (x,y)
IT (x,y)

IT (x, y)

I(x, y)
=

IA + IB + IC
IA + IB

(24)

(25)

1.4 Examples

1.4.1 Typical brightness change induced by a person 10 feet from corner

Let’s examine values we consider to be typical for an outdoor, cloudy day scene. Let’s
say the surroundings have brightness A = 300, the wall has brightness B = 100, and
the person has brightness C = 150 (arbitrary units, but roughly mapping to pixel
intensities from a photograph). The person is h = 5.5 feet tall, and w = 1.5 feet
wide, positioned at angle β = π

4
, and at distance from the corner r = 10 feet.

Let’s gaze upon the observation plane a distance ρ =
√
x2 + y2 from the corner.

At the boundary between ground plane regions 1 and 2, we have, for the ground
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plane image intensity,

IC1(ρ, γ0) = IA(x, y) + IB(x, y) (26)

= A(
3

2
π − arctan(

x

y
)) +B(arctan(

x

y
) +

π

2
) (27)

= 300(
3

2
π − (π − γ0)) + 100((π − γ0) +

π

2
) (28)

= 300(
π

2
+ γ0) + 100(

3π

2
− γ0) (29)

(30)

Note this intensity doesn’t depend on the distance away from the wall, at a
constant angle γ = γ0. The wall subtends a constant solid angle for all ground plane
points along this straightline from the corner. Note that arctan(x

y
) = π − γ0.

Now let’s examine the brightness at the region 2/region 3 boundary, at γ = γ1.
There we have

IT = IA(x, y) + IB(x, y) + IC3(x, y) (31)
= IC1(ρ, γ0) + IC3(x, y) (32)

= 300(
π

2
+ γ0) + 100(

3π

2
− γ0) + (33)

= (C − A)w
d
(1− d√

d2 + h2
) (34)

Remembering that γ0 = π
4
− w

r
and w = 1.5, h = 5.5, r = 10, C = 150, B = 100,

A = 300, we have

IT = 300(
π

2
+
π

4
− 1.5

10
) + (35)

100(
3π

2
− (

π

4
− 1.5

10
)) + (36)

(−150)1.5
d
(1− d√

d2 + 5.52
) (37)

Remember d is the distance from (x, y) to the cylinder, or 10+
√
x2 + y2. Let’s look

at d = 12. For this distance, we have

IT = 300(2.356− 0.15) + (38)
100(4.7124− 0.6354) + (39)

(−150)1.5
12

(1− 12√
122 + 5.52

) (40)

= 662 + (41)
408 + (42)
−1.7 (43)

That’s in the right ballpark: The signal without the subject has brightness 1070.
The signal with the subject has brightness 1068.3 requiring a measurement dynamic
range of 1.7

1070
. Thus, we seek a signal change that is 0.16% of the DC signal. This is

consistent (within a factor of two) with what we find to be typical for real images,
1

1000
,
Looking at the subject’s signal as a function of ground plane distance away from

the edge, ρ, we have IC3(ρ) =
412.5

(10+ρ)
√

(10+ρ)2+5.52
. For ρ = 0, we have IC3(ρ) = 3.6

(a higher subject signal). For ρ = 4, we have IC3(ρ) = 1.96 (a lower subject signal).
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1.5 Rate of decay of the signal as the person moves away from the
corner: 1

d4

As the person walks away from the corner, we lose signal strength for two indepen-
dent, reinforcing reasons. One, from perspective projection, they subtend a smaller
solid angle, with linear dimensions going as 1

d
and areal dimensions contributing to

brightness going down as 1
d2
, where d is the distance from the corner. Second, as the

person moves away from the corner, the light from the person comes in at a shal-
lower and shallower angle, further reducing the signal intensity. The grazing angle
to the horizontal will scale as 1

d
, but the brightness contribution will be 1− cos(θ),

which scales as 1
d2
. Thus, the delta in brightness, from a person walking away from

the corner, scales as 1
d4
.

This is also apparent from applying a 2nd order Taylor series expansion to the
square roots with d in them in Eq. (37).
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Figure 4: This figure shows the setup for the toy problem of interest. The scene consists of a single
bright object, whose angular position θ we want to learn.

2 Corner Location Errors

One important source of error in the edge camera idea is the corner location error.
When studying a movie of the observation plane, it’s important to know where the
corner of the wall is in order to make an accurate reconstruction. Corner location
errors occur when the corner of the wall is erroneously chosen to be the wrong place.
They introduce systematic error into the scene’s reconstruction.

2.1 Edge Camera

Exactly how bad are corner location errors? To answer this question, we consider
the situation shown in Fig. 4. Imagine a dark scene with a single bright object. We
want to find the angular position of the bright object in the scene. We can do this
by measuring θ: the angle of the shadow it casts against the wall. When we find the
angle at which the observation plane goes from light to dark, we will know what θ
is.

This story is simple in the case when there is no corner location error. But what
about the case where there is such an error?

Fig. 5 shows this scenario. We can “sweep” the angle φ across the observation
plane, and at the point where φ is midway between dark and light, we can presume
that that will be the most likely inferred angular position of the object from the
reconstructed space-time image. When there is no corner location error, we will
naturally get θ = φ, but when there is a corner location error, φ will not equal θ,
but will depend on θ and other parameters.

Fig. 6 plots intensity against the sweeping angle φ, both with and without a
corner location error. Note that in the case where there is a corner location error,
the maximum intensity value no longer takes on a maximum value of 1, but a value
below 1. In the analysis that follows, we will call that value lmax, and we will use
max/2 as the “transition point” between light and dark. In other words, we will
choose the φ that gives an intensity of max/2 as our estimate for θ.
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Figure 5: This figure shows the impact of a corner location error. In the error-free case, we would
sweep φ across the observation plane (shown in green) hinging around the corner (the solid black
line). But if made a corner location error, we would instead try to sweep φ across the observation
plane erroneously (shown in blue) hinging around the false corner (shown with a dotted line).

Figure 6: This plot shows how the observed intensity values vary with φ, in the case of correct
corner location (in blue) and a corner location error ((dx, dy) = (0.1, 0.2), in red). Note that in the
case of a corner location error, the maximum value of the intensity does not reach 1. Note also
that dx and dy are as a fraction of the radius of the observation plane, r, which here is taken to
be 1.

10



Figure 7: This plot is intended as a reference for the meanings of each of the variables used in the
calculations of φ as a function of θ.

Fig. 7 is a detailed illustration of the situation, showing the names for the variables
that we’ll use in our analysis. As the figure shows, we are presuming a corner
location error of (dx, dy) and a observation plane radius of r. We want to find what
our estimate θ, φ, will be as a function of θ and in terms of dx, dy, and r.

Using Fig. 7 as a reference, we can make the following observations:

β = tan−1
(
dx
dy

)
lmax = r − dy tan(θ) + dx

f = r − lmax

2

α = sin−1

(√
d2x + d2y sin(θ − β)

f

)
γ = π − α− θ + β

φ = π − γ + β

This is how φ is expressed in terms of the parameters of the problem (θ, dx, dy, r).
What sort of error does this introduce? In order to study this question, we

assumed that dx and dy were normally distributed with means of 0 and small (relative
to r2) variances σ2

x and σ2
y. We generated many sample (θ, φ) pairs for each θ

between 0 and π/2. We then measured the empirical means and variances of these
pairs. Fig 8 shows a few of our results.

Here were a few of our empirical findings:

1. The mean error was always 0 for all values of θ, σx and σy.
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Figure 8: This plot shows the empirical mean (in blue) plus or minus one standard deviation (in
red) of the error as a function of θ. Here, σx = 10−4 and σy = 10−3.

2. When σx = σy, the standard deviation of the error σε was 2σx for all values of
θ.

3. When σx 6= σy, the standard deviation of the error σε varied between 2σx (for
θ = 0) and 2σy (for θ = π/2).

2.2 Stereo Camera

Another situation in which it makes sense to study corner location errors is the case
where there is a doorway just before the hidden scene, in which case we can use
stereo vision to locate a moving object in two dimensions. We would like to know:
what effect do corner location errors have on depth estimates, which are generally
quite sensitive to noise? To be more precise, suppose that we call the axis along
which the doorway lies the “x-axis,” and suppose we call the perpendicular axis (of
depth into the room) the “z-axis.” Then, how much noise in the z dimension will a
corner location error cause?

To give an approximate sense of how much error results in the recovered z posi-
tion, we show the mean +/- one standard deviation in the z dimension as a function
of the true x-position of the object in Fig. 9

Note that the empirical means are centered at the true depths of the objects.
This does not mean that any single corner location error won’t cause the depth of
the reconstruction to be off systematically; it only means that on average, corner
location errors that are normally distributed around the corners in question will
push the reconstructed depths away as much as they pull them closer.

To see this systematic bias on its own, we can also study how a single corner error
introduces systematic error in our reconstructions—after all, for a single experiment,
we are likely to make a single corner error, and the resulting error in the depth
calculations will extend across many x-coordinates as the subject of the experiment
walks back and forth in the hidden scene. Figs. 10 and 11 show the systematic bias
for two distinct specific corner location errors.
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Figure 9: The empirical means plus or minus one standard deviation of the estimated Pz as a
function of its x-coordinate, assuming true Pz of 20, 40, 60, and 80. Here, the two corner location
errors at each of the boundaries of the doorway are independent and subject to σ2

∆x = σ2
∆z = 0.04.

We sample from a set of 1000 corner errors to approximate the mean and standard deviations
empirically.

Figure 10: The reconstructed depths of objects at depths 1, 2, 3, and 4, given a corner error of
∆y1 = ∆y2 = 0.02.
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Figure 11: The reconstructed depths of objects at depths 1, 2, 3, and 4, given a corner error of
∆y1 = −0.02, ∆y2 = 0.02. Note that because of the different corner errors for each corner, there
is the possibility of asymmetric behavior on either side of the doorway.
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3 Temporal Smoothing

In addition to spatial smoothness we can also reduce noise temporally by impos-
ing smoothness on our MAP estimate. x̂(t), or averaging adjacent frames in time.
This helps to reduce noise, at the cost of some temporal blurring. However, to em-
phasis the coherence among results, we did not previously impose this additional
constraint. Each 1-D image, x, that we showed in the main paper was independently
computed. In Figure 12 we show some results obtained with temporal smoothing.
We either computed the 1-D video on averaged video frames, or applied Kalman
Filtering/Smoothing to temporally smooth the result. Note that the Kalman Fil-
tering/Smoothing causes the noise to blur out into vertical lines. Frame averaging
results appear noiser only because there are less 1D reconstructed frames being
shown.

Hidden	Scene

tim
e

Video	FrameSetup

�

20	Frames	Averaged
Before	Processing

10	Frames	Averaged
Before	Processing

Kalman
Filtering/Smoothing
Process	Noise	Standard	Deviation	of	1e-5

No	Averaging	- Each	
Frame	Processed
Independently

Figure 12: The result of imposing temporal smoothness or averaging adjacent frames in time to
help in reducing noise.

3.0.1 Kalman Filtering/Smoothing

We model our scene as a linear dynamic system.

xt = Fxt−1 + wk (44)
yt = Axt + nt (45)
wk ∼ N (0, R) (46)
nt ∼ N (0, λI) (47)

The matrix F can be set as the identity matrix so changes over time are penalized.
The marginals p(xt|y1, ..., yn) of this HMM can then be solved using the forward
backward algorithm - or equivalently Kalman Filtering and Smoothing.
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4 Inferred Position from Stereo Edge Cameras

In the submitted paper, the tracks in the lower left of Figure 9 were cut off due to
space constraints. Here we show a larger version of the diagram, with more complete
tracks.
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Figure 13: The results of our stereo experiments in a natural setting. Each sequence consists of a
single person walking in a roughly circular pattern behind a doorway. The 2-D inferred locations
over time are shown as a line from blue to red. Error bars indicating one standard deviation of error
have been drawn around a subset of the points. Our inferred depths capture the hidden subject’s
cyclic motion, but are currently subject to large error. A subset of B’s inferred 2-D locations have
been cut out of this figure, but can be seen in full in the supplemental material.
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