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Figure 1: We present a method for estimating material properties of an object by examining small motions in video. (A) We record video of different
fabrics and clamped rods exposed to small forces such as sound or natural air currents in a room. (B) We show fabrics (top) color-coded and ordered by
area weight, and rods (bottom) similarly ordered by their ratio of elastic modulus to density. (C) Local motion signals are extracted from captured videos
and used to compute a temporal power spectrum for each object. These motion spectra contain information that is predictive of each object’s material
properties. For instance, observe the trends in the spectra for fabrics and rods as they increase in area weight and elasticity/density, resp (blue to red). By
examining these spectra, we can make inferences about the material properties of objects.

The estimation of material properties is important for scene understand-
ing, with many applications in vision, robotics, and structural engineering.
This work connects fundamentals of vibration mechanics with computer vi-
sion techniques in order to infer material properties from small, often imper-
ceptible motion in video. Objects tend to vibrate in a set of preferred modes.
The shapes and frequencies of these modes depend on the structure and ma-
terial properties of an object [6]. Focusing on the case where geometry is
known or fixed, we show how information about an object’s modes of vi-
bration can be extracted from video and used to make inferences about that
object’s material properties. We demonstrate our approach by estimating
material properties for a variety of rods and fabrics by passively observing
their motion in high-speed and regular-framerate video [5].

Understanding a scene involves more than just recognizing object cat-
egories or 3D shape. The physical properties of objects, such as the way
they move and bend, can be critical for applications that involve assessing
or interacting with the world. In the field of non-destructive testing, an ob-
ject’s physical properties are often studied through the measurement of its
vibrations using contact sensors or expensive laser vibrometers [2, 7]. In
both cases, measurements are often limited to a small set of discrete points.
In contrast, we leverage the ubiquity and high spatial resolution of video
cameras to extract physical properties from video. In recent work, Chen et
al. [3] used videos to quantify the vibration modes of cantilever beams. We
extend similar ideas to automatically extract physical properties from video
and make inferences about an object’s underlying material properties. We
are inspired by recent work in computer vision, but seek to bridge the gap
with engineering techniques and focus on fundamentals of vibration analy-
sis.

Objects tend to vibrate in a set of preferred modes. These vibrations
occur in most materials, but often happen at scales and frequencies outside
the range of human visual perception. Bells, for instance, vibrate at distinct
audible frequencies when struck. We cannot usually see these vibrations
because their amplitudes are too small and their frequencies are too high -
but we hear them. Intuitively we know that large bells tend to sound deeper
than small ones, or that a bell made of wood will sound muted compared
to one made of silver. This is because an object’s modes of vibration are
closely related to its geometry and material properties. In this work, we

show how this connection can be used to estimate the material properties of
an object with fixed or known geometry from video.

We connect established theory of modal vibrations to features that can
be extracted from video. We then show how these features can be used to
estimate the material properties of objects with fixed or known geometry.
We demonstrate this on two sets of objects: clamped rods and hanging fab-
rics. With each set of objects we explore a different method to resolve the
ambiguous contribution of structure (geometry) and material properties to
an object’s vibrations. Our rod experiments accomplish this with careful
measurements in a setting that resembles typical engineering applications.
Our fabric experiments instead explore the potential of a learning approach
with more direct applications in computer vision.

We use small local motions in video to reason about the modes of
recorded objects. For each spatial point in a video, we compute the local
motion around that point over time [4]. Our analysis relates the spectra of
these motion signals to mode shapes Ai and frequencies ωi. By examin-
ing the temporal power spectra (Figure 1(C)), we can estimate the material
properties of a previously unseen, fixed or known geometry object.

1 Estimating Properties of Materials with Known
Geometry: Rods

In our first experiments we estimate the material properties of various rods
by extracting their resonant frequencies from video. The simple geometry
of a clamped rod makes it easy to solve for vibration modes analytically as a
function of length, diameter, density, and an elastic modulus. While length,
diameter, and density can all be measured with a simple ruler and scale,
the elastic modulus is usually measured with a tensile test, which requires
expensive equipment and usually damages the object being tested. In these
experiments we show how this elastic modulus can instead be measured with
a speaker and high-speed camera.

Sound from a loudspeaker is used to induce tiny motions in the rods. We
then extract these motions and find the rod’s resonant frequencies in the mo-
tion’s power spectrum. Under fixed but unknown geometry, the recovered
fundamental frequencies provide a value proportional to

√
E
ρ

[6]. We use
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Figure 2: Finding vibration modes of a clamped brass rod: (Left) We recover a motion spectrum from 2.5 kHz video of a 22 inch clamped aluminum rod. Resonant frequencies are labeled. To
distinguish resonant frequencies from other spikes in the spectrum, we look for energy at frequencies with ratios derived from the known geometry of the rod. (Middle) A sample frame from the
80×2016 pixel input video. (Right) Visualizations of the first four recovered mode shapes are shown next to the corresponding shapes predicted by theory.

this information along with the lengths and densities measured by a scale
and measuring tape to compute the modulus of each rod. Figure 3 shows
a plot of Young’s moduli reported by the manufacturer against the values
estimated using our technique. Error bars are calculated for each moduli by
propagating error bounds for length, diameter, and density.

For each rod, we can further verify recovered modes by visualizing the
recovered shapes corresponding to estimated resonant frequencies (see Fig-
ure 2). In practice we see the predicted shapes of multiple modes in the data
recovered for each rod.

2 Learning Properties of Materials with Unknown
Geometry: Fabrics

The inference described in the previous section relies on knowing the ratios
between resonant frequencies. These ratios are simple to derive in clamped
rods, but can be prohibitively difficult to compute in more general structures.
As a result, many applications of vibrometry are limited to simple geome-
tries that can be precisely measured (as is the case with rods) or man-made
structures (airplanes, buildings, cars, etc) with resonant frequencies that can
be derived from detailed CAD models through FEM analysis. The ubiquity
and passive nature of video offers the potential to address this limitation by
providing sufficient data to learn relationships between motion spectra and
the material properties of objects. We have explored that potential by using a
learning approach to estimate the material properties of hanging fabrics from
video. In this work we have used a dataset of 30 fabrics along with ground
truth measurements of stiffness and area weight collected by Bouman, et
al. [1].

Motion in the fabrics is either induced using sound from a loudspeaker
or purely from ambient forces in the room. After extracting the tiny mo-
tion, we learn a regression model that maps the motion spectra to the log of
ground truth stiffness or area weight measurements provided in [1].Due to
the small number of fabrics in the dataset, we use a leave-one-out method
for training and testing. Precisely, all data corresponding to a fabric are re-
moved from training of the regression parameters when predicting the ma-
terial properties of that fabric. Using this method, we estimate the perfor-
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Figure 3: Estimating the elastic modulus of clamped rods: Young’s moduli reported by the
manufacturer are plotted against values estimated using our technique for aluminum, brass, cop-
per, and steel. Estimated values are close to those reported by the manufacturer.

STIFFNESS AREA WEIGHT

A
M

B
IE

N
T

S
O

U
N

D

Figure 4: Comparisons between ground truth and model predictions on material properties
estimated from videos of fabric excited by ambient forces and acoustic waves. Each circle in
the plots represents the estimated properties from a single video. Identical colors correspond to
the same fabric. The Pearson product-moment correlation coefficient (R-value) averaged across
video samples containing the same fabric is displayed.

mance of our model on predicting the material properties of a previously
unseen fabric.

Our estimates of material properties are well correlated with the ground
truth measurements. Figure 4 contains correlation plots that compare our al-
gorithm’s predicted measurements of stiffness and area weight to the log of
ground truth measurements when models were trained and tested on videos
of fabrics excited by ambient forces and acoustic waves separately. In all
cases, even when testing under conditions with different viewpoints and ex-
citation forces from the training data, our estimates outperform the current
state of the art algorithm [1] in predicting both stiffness and area weight.
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