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Abstract—We propose a low complexity method for sign detec-
tion and text localization in natural images. This method is de-
signed for mobile applications (e.g., unmanned or handheld de-
vices) in which computational and energy resources are limited. No
prior assumption is made regarding the text size, font, language,
or character set. However, the text is assumed to be located on a
homogeneous background using a contrasting color. We have de-
ployed our method on a Nokia N800 cellular phone as part of a
system for automatic detection and translation of outdoor signs.
This handheld device is equipped with a 0.3-megapixel camera ca-
pable of acquiring images of outdoor signs that typically contain
enough details for the sign to be readable by a human viewer. Our
experiments show that the text of these images can be accurately
localized within the device in a fraction of a second.

Index Terms—Mobile devices, sign detection, text detection, text
localization, text segmentation.

I. INTRODUCTION

T HE automatic localization of text within a natural image is
an important problem in many applications. Once identi-

fied, the text can be analyzed, recognized, and interpreted. How-
ever, many objects in natural images, such as tree branches or
electrical wires, are easily confused for text by existing optical
character recognition (OCR) algorithms. For this reason, ap-
plying OCR on an unprocessed natural image is computation-
ally expensive and may produce erroneous results. Hence, ro-
bust and efficient methods are needed to identify the text-con-
taining regions within natural images before performing OCR.

Several approaches for automatic detection and localization
of text in images and videos have been proposed [1]–[6]. These
algorithms mainly focus on the features of the text itself, such
as edges [7], [8], corners [8], strokes [9], color [10], [11], and
texture distribution [12], [13]. Some algorithms also make use
of Gabor filters [12], [13], wavelets [14], and support vector
machines [12], [13]. However, text in an image can be written in
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different character sets, languages, and fonts. It can also change
size and style within the same region. Due to the large diversity
of text characteristics, determining features that can be used to
reliably detect text is difficult. Thus, existing methods based on
text features tend to be trained to identify text with a limited
character set and, typically, a restricted number of fonts.

Text localization methods are often designed for a specific
application such as detecting text in videos [11], license plates
[4], or signs [6], [15]. Our method focuses on the detection
and localization of text on signs. Sign text localization can be
useful for many applications including tourism, navigation for
the blind, robot guidance, and intelligent transportation systems.
In order to be easily seen from the road, most signs contain text
printed on a homogenous background. We take advantage of this
common feature of signs in searching for text by first finding the
text’s background region. Since our proposed algorithm relies
solely on the properties of a sign’s background, it is not depen-
dent on language, character set, skew, or tilt of the sign.

Our sign detection and text localization method is part of the
“Rosetta phone” [16] system, a handheld device (e.g., PDA or
mobile telephone) we are developing that is capable of acquiring
a picture of a sign, detecting the sign, localizing the text within
the sign, and producing both an audible and a visual English in-
terpretation of the text. Similar systems achieve this result by
having the user select the text [17]. However, automatic identi-
fication of the text’s location simplifies the system for the user.

Since the Rosetta phone is a low-power mobile device, the de-
tection and localization algorithm must be implementable with
a small number of relatively simple operations. An advantage
of our approach is that it uses a multiscale search technique to
quickly rule out large regions of the image that are not homoge-
nous, thereby dramatically reducing computation. Once the sign
is detected, our algorithm efficiently locates the text within it by
identifying text or figures that contrast against the sign’s back-
ground.

This paper is organized as follows. Section II presents a
survey of what has been done in the area of text detection. Our
method of sign detection and text localization is described in
detail in Section III. In Section IV, we present the experimental
results and the complexity analysis of our method. Finally, our
concluding remarks are given in Section V.

II. PREVIOUS WORK

Many text detection and localization approaches use features
related to text character properties. For example, edge detection
is a common first step in many such algorithms [15], [18]–[24].
Once detected, the edge regions are often grouped together
based on features such as size, color, and aspect ratio [19].
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Texture is another widely used feature for text detection and
localization [12], [13]. First a texture analysis method such as
Gabor filtering is used to extract the texture features. Then, a
classifier is used to identify a region as a text or not-text based
on these features. Support vector machines are used in [12],
[13] for this purpose. In [20], authors use LoG-Gabor filters to
obtain the stroke map and apply Harris corner detection to find
the seed points for the connected component analysis.

Some approaches assume that the text is written in the hori-
zontal or vertical direction [7], [8]. For example, the method in
[8] localizes text on road signs in video based on the assump-
tion that text on road signs occur in a vertical plane with respect
to the camera motion and the optical axis of the camera. How-
ever, this constraint is not practical due to the possible tilt of the
camera. Therefore, an affine rectification step is usually added
to improve the results [15].

Text that appears on video frames is an important cue for
content analysis and indexing of the video. Thus, several ap-
proaches have been proposed for the detection and tracking of
text in videos [11], [20], [25], [26]. Some of these methods are
used to detect the artificial text added to the video [11], [26],
which is based on the fact that this type of text has a homo-
geneous color as opposed to the complex color distribution of
the scene. Other approaches aim at detecting any type of text
appearing in the video scene, which captures a more general
scenario [20], [25]. Most of the latter approaches can also be
applied for text detection in natural images. For example, the
method in [25] finds candidate text regions in an image or video
frame using Fourier-Laplacian filtering followed by k-means
clustering. Then, the skeleton of each connected component is
used to segment the candidate text strings. Finally, straightness
and edge density criteria is applied to discard the false positives.
As we show in Section IV-A3, our method runs much more ef-
ficiently compared to [25] when used on still images.

Another method that we compare our approach to is the mul-
tiscale-COS/CCC segmentation method recently proposed in
[27]. This multiscale-COS/CCC segmentation method is de-
signed to detect and segment text regions in an image for the
purpose of document compression. In this method, the authors
detect the text by applying two segmentation steps in a multi-
scale fashion: cost optimized segmentation and connected com-
ponent classification.

A number of methods focus on identifying text so that the
text can be extracted and interpreted. Chen and Yuile [28] pro-
posed a method for text detection in images of city scenes to
aid the blind. In this approach, the AdaBoost machine learning
algorithm was employed to train a strong classifier based on a
number of initial weak classifiers. After the Adaboost learning
process, a cascade of four strong classifiers using 79 features is
obtained. As we show in Section IV-A3, our method runs 6.4
times faster compared to this method.

Chen et al. [15] also proposed a method to extract text in
signs for further processing. This system is designed to auto-
matically detect signs in natural images and translate foreign
text into English. This system combines multiscale edge detec-
tion, adaptive searching, color modeling, and affine rectification
in a hierarchical framework to detect the signs. Due to the sim-
ilarity of the application of this system to ours, we will give a

Fig. 1. Schematic representation of our method for finding text regions within
natural images.

more detailed complexity comparison between the two systems
in Section IV-A4.

III. APPROACH

A schematic representation of our proposed method of sign
detection and text localization in natural images is shown in
Fig. 1.

In order to identify text containing regions, we first isolate
areas within the image where luminance is homogeneous. We
do this by calculating the homogeneity of equal sized blocks
within the image and then identifying the homogenous blocks.
The pixels in these homogenous blocks are the seed points used
by a region growing algorithm to identify homogenous regions.
Once regions containing homogenous blocks have been identi-
fied, we search the hull of each homogenous region for holes
that potentially contain text. In order for these holes to be la-
beled as text, they must be a minimum size and have an average
intensity that contrasts against the corresponding detected back-
ground region.

If no text region is found, the image is divided again into
smaller blocks and the above steps are repeated. If no text region
is found after the smallest block size is used, a relaxed search
is performed. In the relaxed search, the threshold for the min-
imum size of a character is reduced and the hull of all previous
homogenous regions are once again searched for text. This final
search is designed to find text areas that contain small charac-
ters. We now describe each step of the procedure in more detail.

A. Seed Point Detection

In order to identify signs, we begin by locating seed points in
areas with homogeneous luminance. In order do this, the image
is first divided into a grid of size non-overlapping blocks
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Fig. 2. Input image divided into a grid of���-pixel blocks. Each pixel block
is tested for homogeneity to determine if it is part of the background of a sign.

Fig. 3. Graphical representation of the� � � weight matrices used to quan-
tify homogeneity for each � � � block in the image. The colors white and
black are used to represent �� and��, respectively, in each� �� region.

where is a power of two (see Fig. 2). The homogeneity of each
block is calculated, and blocks which meet a given threshold are
labeled as homogenous. The set of pixels from these homoge-
nous blocks are then used as seed points. We determine the ho-
mogeneity of a block as follows.

For each block, let be the vector of dimension
containing the luminance values for the block. We compute
homogeneity features for each block given by

(1)

where for is a weight vector with binary en-
tries (i.e., each entry is ) that sum to zero. With this scaling,

falls into the same range as the pixels. Since the maximum
intensity difference in an individual pixel is 255, the average
difference in pixel intensity, , is then a value in the range
of 0 to 255. We use features corresponding to the three
binary weight vectors shown in Fig. 3. Notice that each of the
three features quantify the variation of pixels values within a
block, with a smaller value of signifying a more homoge-
nous texture.

After all values have been computed, we classify
a block as homogenous if the norm of the vector

is less than a chosen threshold, ,
and at least one of its four neighboring blocks also meets the
same condition. Seed points are exactly the set of all pixels
in the homogenous blocks. A schematic representation of our
proposed method of homogenous block selection is shown in
Fig. 4.

Fig. 4. Schematic representation of our method for finding homogenous blocks
within the image.

Smaller block sizes have the advantage of identifying smaller
homogeneous regions, while larger blocks are less susceptible
to noise. Fig. 5 shows the homogeneous blocks identified for
equal to 32, 16, and 8. Homogeneous blocks in the image are
illustrated as white areas. Notice that homogeneous blocks are
generally not located in areas where edges reside.

It is possible that the weight matrices used to quantify homo-
geneity would identify a textured block, such as a chess board,
as being homogeneous. In this case, these seed pixels will gen-
erally be eliminated in the next stage of the algorithm.

B. Homogenous Region Detection

Once seed points have been identified, we expand them in
order to form homogeneous regions. In order to do this, a region
growing method is used that produces connected pixel sets.

Denote the set of 2-D lattice points making up the image as
, and the individual locations of pixels in the image as

where . The neighborhood, , of a lattice point,
, is the set of pixels surrounding . Here, we use a four point

neighborhood defined as follows:

(2)

A free boundary is also used so that pixels along the edge of
an image have less than four neighbors each. Two neighboring
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Fig. 5. Homogeneous block selection for the image in Fig. 2 using various block sizes, � � ��, 16, 8 (left to right). Homogeneous regions are shown as white
areas. As � decreases, more homogeneous blocks are detected.

Fig. 6. Schematic representation of homogenous block growing algorithm.

pixels are considered connected if the difference between their
luminance values is less than a fixed threshold, . Let

be the subset of neighbors which are connected to :

(3)

Two pixels in , and , are connected if there is a path of
connected neighbors from to .

Growing homogenous blocks into homogenous regions
is performed as follows. By beginning at any seed point
within the detected homogenous blocks, ’s connected set is
determined. Once this has been done, we label all the pixels
in the connected set, , as one region. We then select a
new seed point in a homogenous block which is not in
and determine its connected set. This process is repeated until
every pixel contained in the image’s homogenous blocks maps
to a connected set. A schematic illustrating our region growing
method is shown in Fig. 6.

All connected sets which contain more than a minimum
number of pixels, , are classified as homogenous regions.

is a function of the size of the image, , and the block size,
pixels. The value of was obtained

based on our observation of the minimum size of a readable
sign in images taken by cameras with different resolutions.
Since the threshold is a linear function of , as decreases,
so does . Fig. 7 illustrates the effect of this thresholding
procedure. Note that, although for and 16 the sky
in the upper right-hand corner of the image is identified as
containing a homogeneous block, the connected set is not large
enough to include it as a region until . Fig. 7 shows the
homogenous regions in an image after the homogenous blocks
have been grown for a block size of 32, 16, and 8.

C. Sign Background Region Detection

Once the homogenous regions of an image are identified, each
region is examined to determine if it is a sign background region.
Two conditions must be met in order for the region to be iden-
tified as a sign background region: 1) the homogenous region
must contain at least one hole of sufficient size, and 2) the hole’s
intensity must contrast against the intensity of its background.

1) Holes: In order to identify holes, we employ connected
components analysis. First, each potential background region is
isolated from the rest of the image in its own sub-image. In order
to do so, we assign all pixels belonging to a given homogenous
region the value 1 (white), and all the remaining pixels the value
0 (black). Then, a minimum rectangular bounding box is defined
around the region that contains all the white pixels. The area
inside the bounding box is defined as the sub-image. A row of
black pixels is added to the top and bottom of the sub-image,
and a column of black pixels is added to the left and right. This
padding is added so that the white region is surrounded on all
sides by black. Fig. 8 shows how an image containing different
regions is broken into sub-images. The bounding box has two
purposes: to decrease computation and to assist in the next step
of the process.

All of the connected sets are then extracted from the binary
sub-image. Since each sub-image is always surrounded on all
sides by black pixels, there will always be at least two connected
sets: the bounding region and the homogenous region. If a re-
gion’s binary sub-image has more than two connected sets, the
homogenous region has at least one hole.

Noise or dirt may cause small holes to be enclosed by the
homogenous region. Therefore, a constraint is placed on the
size of a connected set in order for a hole to be considered a
text hole. Connected sets that have an area less than or equal to

pixels are discarded from the list of connected
sets, where is the size of the homogenous region. The
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Fig. 7. Segmented potential sign backgrounds found at various block sizes,� � ��, 16, 8 (left to right). Non-black regions are considered homogeneous. Each
shade of gray corresponds to one region.

Fig. 8. Isolating regions of an image. (Top) Regions of an image. (Bottom) Iso-
lated regions of the image enclosed by exaggerated bounding regions. Potential
sign background regions are white and background regions are black.

bounding region and the homogenous region are always defined
and never discarded from the list of connected sets. Defining

as a function of region size allows small signs to contain
smaller text holes, while requiring larger signs to contain larger
text holes. Ideally, each character or figure within a sign is de-
fined as a hole.

Remaining connected sets that are neither the bounding
region nor the homogenous region are considered text holes.
Therefore, if a region’s binary sub-image has more than two
connected sets remaining, the homogenous region encloses at
least one text hole.

2) Intensity Contrast: In order to be seen easily, text must
contrast against the background on which it is printed. In order
for a hole region, , on a background region, , to be consid-
ered a text hole

(4)

must hold true, where and are the average luminance
value of the pixels in and , respectively, and is a fixed
threshold.

Many characters contain holes. However, when determining
the average luminance of a text hole, the luminance of holes

Fig. 9. (Left) Original image. (Middle) Text hole region after connected com-
ponent analysis. (Right) Text hole region after discarding pixels similar to sur-
rounding background.

within characters should not be calculated into the average lu-
minance of the text hole. Therefore, if the luminance of a pixel
contained in the text hole is less than standard deviations from
the average luminance of the homogenous region, , it is con-
sidered to be part of the homogenous region and discarded from
the text hole’s set of pixels. Fig. 9 shows how a character’s re-
gion is more accurately determined after discarding pixels sim-
ilar to the character’s background. If the text hole still meets the
size constraint, and holds true, the text hole is
labeled as containing text.

Any hole that does not meet this criterion is removed from
the total number of text holes for the given homogenous region
being examined. If there still remains at least one text hole, the
region contains text, and the homogenous region is classified as
a sign background region. A schematic representation of how
each homogenous region is examined to determine if it contains
text can be seen in Fig. 10.

The image of these text holes is then passed as an output of
the algorithm. Fig. 11 shows the text holes outputted by our
proposed algorithm for the image shown in Fig. 2. This output
could then be passed to a binarization algorithm for finer text-
background classification before applying OCR.

D. Multiscale Search Strategy

If no regions have been identified that contain holes meeting
the given criteria, the block size is reduced by half and the
process is repeated until a region is identified. Repeating the
process at a smaller block size typically results in new homoge-
nous regions and may also identify homogenous regions found
at previous steps. Only the newly discovered homogenous re-
gions need to be tested to determine if they are background sign
regions. This reduces the computation of the algorithm. If no
region has been identified by the end of the procedure for the
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Fig. 10. Schematic representation of how each homogenous region is examined and classified as a sign background region or not a sign background region.

Fig. 11. Final output of text holes from our proposed algorithm. The white
regions are identified as text characters.

smallest possible block size, , then the homogenous re-
gion with the largest text hole is defined as a background sign
region if the size of the text hole is greater than the size of a de-
cipherable character, .

IV. RESULTS

In this section, we compare the results of our proposed sign
detection and text localization method with the results of the
multiscale-COS/CCC segmentation approach proposed in [27].
We chose to compare to the multiscale-COS/CCC algorithm be-
cause of its similarity to our proposed algorithm. Indeed, al-
though the multiscale-COS/CCC algorithm was designed to be
used on scanned documents, it does not assume any features

of text specific to documents. Therefore, the algorithm is ca-
pable of locating the text found on signs. Both our proposed
algorithm and the multiscale-COS/CCC segmentation method
are able to identify text written in different fonts, colors, and
languages as well as text that is tilted or skewed in the plane
of the image. Additionally, both algorithms do not differentiate
between alphanumeric text and simple line graphics. Therefore,
in our analysis of the performance of each method, both simple
line graphics and alphanumeric characters are classified as text
characters. The authors of the multiscale-COS/CCC segmenta-
tion algorithm have made their source code available for testing
online.

To measure the text localization accuracy of each algorithm,
we used a set of 0.3-megapixel images along with corresponding
ground truth segmentations. First, 241 images of road signs,
flyers, and posters were taken using a VGA camera on a Nokia
N800, a handheld mobile device.1 These images were then sep-
arated into 81 training images and 160 testing images. Two bi-
nary ground truth images were manually created for each image.
These images were used to objectively measure the number of
false positives and false negatives found in each output image.
In the first ground truth image, GT1, each character in the tar-
geted sign region was manually segmented from the rest of the
image. The most prominent sign region in the image was manu-
ally chosen as the targeted sign region. In GT1, each character is
a single connected component region separated from any other
character’s connected component region. In the second ground

1This dataset is available at http://cobweb.ecn.purdue.edu/~ace/kbsigns/.
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Fig. 12. Image (a) and its corresponding ground truth images, (b) GT1, and (c) GT2.

truth image, GT2, each sign region was manually segmented
from the rest of the image. In GT2 all regions are identified, not
just the targeted sign region. Fig. 12 shows an example of a test
image and its two corresponding ground truth images.

1) Training: The threshold values, , , , and weighting
coefficients, and , were found by minimizing the weighted
error between results of training images and corresponding
ground truth segmentations, GT1 and GT2. The weighted error
criteria that we minimized is given by

(5)

is the fractional percentage of signs that have been
correctly identified given at least of the characters in the tar-
geted region are identified. The error criteria in (5) is defined
in such a way that by minimizing the epsilon, the number of
images with a large percentage of correctly identified charac-
ters ( , , and ) is maximized. We chose to de-
fine in this way because in our application, the Rosetta phone
system, it is important that all the characters of a sign are lo-
cated. Locating only some of the characters may result in a false
interpretation. Thus, the percentage of images with all charac-
ters correctly identified is most highly weighted. Then
the images with and of correctly identified charac-
ters have the second and third highest weights. The values of the
weight are chosen empirically and are normalized to sum to 1.

is computed in the following manner. The text in ground
truth images GT1 was manually segmented to produce
connected components. Each of these connected components
corresponds to a character in the targeted sign region. A char-
acter is correctly identified if at least 80% of the pixels in its
connected component region in GT1 were identified by the text
localization algorithm. If the total number of correctly detected
components is , then we define the fractional percentage of
signs that have been correctly identified as

(6)

where is the number of images used for training and

(7)

for the th image. is the average number of false detections
in each image. is calculated by first counting the number of

TABLE I
SELECTED VALUES OF THRESHOLDS AND COEFFICIENTS

BASED UPON TRAINING ON 81 0.3-MEGAPIXEL IMAGES

connected component regions identified by the text localization
algorithm that are larger than the smallest size of a decipherable
letter, . Then, each connected component region is classified
as being contained within a sign region or being a false detec-
tion. A connected component is considered a false detection if
less than 80% of the pixels are identified in the corresponding
GT2 segmented image. The number of false detections in each
image is counted and assigned to . is found by com-
puting the average value of for the images used in training.
For our application, missed detections are generally more se-
rious than false detections, so we more heavily weight missed
detections in our equation of .

We ran our algorithm on our 81 0.3-megapixel training im-
ages of signs, flyers, and posters with 1200 different combina-
tions of thresholds and weighting coefficients. By calculating
for each combination of thresholds, we were able to pick the
threshold with the best performance on our set of training im-
ages. Our selected threshold and coefficient values can be seen
in Table I. Plots showing the effect of varying values of indi-
vidual thresholds around the optimum threshold combination
are shown in Fig. 13. Note that and must take on a discrete
value in the range of while , , and are selected from
a continuous range of values.

2) Experimental Results: We tested the performance of our
algorithm against the results of the multiscale-COS/CCC seg-
mentation approach proposed in [27] on a database of 160 0.3-
megapixel images of signs, flyers, and posters. To measure the
text localization accuracy of each algorithm, we compared the
results of each method with the corresponding ground truth im-
ages, GT1 and GT2. A sample of results from the two algorithms
can be seen in Fig. 14.

To evaluate the text localization accuracy, we first measured
the percentage of signs that were correctly identified for both
methods, , for , 20, 30, 40, 50, 60, 70, 80, 90, and
100. is the fractional percentage of signs that have been
correctly identified given at least of the characters in the
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Fig. 13. Effect of varying values of individual thresholds or coefficients around the optimum threshold combination (� � �, � � �, � � ��, � � ����, and
� � �) on the value of �.

TABLE II
TRUE POSITIVE AND FALSE NEGATIVE COMPARISON OF OUR PROPOSED

METHOD VERSUS THE MULTISCALE-COS/CCC SEGMENTATION ALGORITHM

targeted sign region were identified. A more detailed explana-
tion of how to compute is given in the training subsection
above. The results of this evaluation can be seen in Fig. 15.

This plot shows that the multiscale-COS/CCC segmentation
algorithm locates a higher percentage of signs than our proposed
method does when no more than 80% of the characters in the tar-
geted sign region must be identified in order for the sign to be
located. However, our proposed algorithm outperforms the mul-
tiscale-COS/CCC segmentation algorithm when at least 90%
or 100% of the characters must be located in the targeted sign
region. Therefore, although the mutliscale-COS/CCC segmen-
tation algorithm has a higher probability of locating some of
the characters within the targeted sign region, our algorithm is
more likely to be able to identify the entire message. Locating
all characters within the targeted region is very important if the
text is then to be interpreted, as is being done in the Rosetta
phone system. If characters or entire words of the message are
lost in the text localization phase, it can be very difficult to re-
cover the original message. The average number of correctly
detected characters, , and the average number of mis-de-
tections, , in each image for both systems are shown in
Table II.

We also compared our proposed algorithm with the multi-
scale-COS/CCC segmentation algorithm by measuring the av-
erage number of false detections, . The value of is

TABLE III
FALSE DETECTION COMPARISON OF OUR PROPOSED METHOD VERSUS THE

MULTISCALE-COS/CCC SEGMENTATION ALGORITHM

computed as described in the training subsection above. Addi-
tionally, the average number of pixels in each false detection

is computed by summing the number of pixels in all of
the false detections and then dividing by the number of false de-
tections, . More specifically

(8)

where is the number of pixels in the th false detection.
The values of and for both our proposed algorithm
and the multiscale-COS/CCC segmentation algorithm can be
seen in Table III. As shown in the table, our proposed algo-
rithm identified fewer false positives on average than the mul-
tiscale-COS/CCC segmentation algorithm for our database of
160 testing images. Additionally, the average size of a false
positive in our algorithm is smaller than the average size of a
false positive in the multiscale-COS/CCC segmentation algo-
rithm. By identifying fewer false positives at the text localiza-
tion phase, less computation is needed later on to filter out false
positives before or during OCR.

The precision and recall of the two methods are shown in
Table IV. The standard equations of precision and recall were
used in order to compute these values. As shown in the table,
our method and the multiscale-COS/CCC have a comparable
recall value. However, our method produces a higher precision
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Fig. 14. Sample of experimental results of text localization run on images of signs. Image (a) is the original image. Image (b) is the corresponding GT1. Image
(c) is the resultant output of our proposed text localization algorithm. Image (d) is the resultant output of the multiscale-COS/CCC segmentation algorithm. White
regions are identified as text characters. The varying characteristics of signs in this sample of images shows that our algorithm works on 1) simple line graphics, 2)
skewed signs, 3) signs of different shapes, 4) signs with darker backgrounds and lighter text, 5) signs with text of different sizes, and 6) signs written in different
languages.

TABLE IV
PRECISION AND RECALL COMPARISON OF OUR PROPOSED METHOD VERSUS

THE MULTISCALE-COS/CCC SEGMENTATION ALGORITHM

value than the multiscale-COS/CCC method. This once again
shows that although both methods identify a similar percentage
of text characters in the images, our method returns less false
positives than the multiscale-COS/CCC method.

3) Time Comparison: Since our segmentation approach was
developed to run on a handheld device, it was designed to be
simple and computationally inexpensive. To evaluate the com-
putational complexity of our proposed method, we compared
the average computation time of our method and the multi-
scale-COS/CCC segmentation algorithm. The computation time
of sign detection and text localization was measured for both al-
gorithms on a database of 241 0.3-megapixel images of signs,
flyers, and posters on a PC (CPU 2.80 GHZ, 1 GB RAM). The
results of the time comparison can be seen in Table V. As can
be seen in the table, our proposed method processes an image

in much less time than the multiscale-COS/CCC segmentation
algorithm.

We also measured the average computation time of our
method on a handheld mobile device. Our text detection
method processes a 0.3-megapixel image of a sign and returns
the correct output on the Nokia N800 device (CPU 330 MHz,
128 MB RAM) in approximately 0.766 s (standard deviation of
0.678 s). Images containing text regions that are not correctly
identified by the algorithm take a longer time to process. Pro-
cessing these images takes an average of 6.53 s on the N800.

To additionally test the computational complexity, we ran our
method on a database of 144 images used in the ICDAR 2005
competition on locating text in camera captured scenes. The
average time that it took to run the algorithm was then com-
pared to the average times of the competition’s submitted al-
gorithms presented in [29]. Each of the times reported is the
average time it took an algorithm to run on an image from the
ICDAR 2005 dataset using a 2.4-GHz PC running either Win-
dows XP or Linux. Although we are unable to run our algorithm
on the “exact” same hardware, we used a 2.4-GHz dual core pro-
cessor running Linux and single threaded code for measuring
the execution time of our algorithm on the same dataset. Our
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Fig. 15. Value of � for varying values of � for our proposed algorithm and the multiscale-COS/CCC segmentation algorithm.

TABLE V
TIME COMPARISON OF OUR PROPOSED METHOD VERSUS THE MULTISCALE-COS/CCC SEGMENTATION ALGORITHM

TABLE VI
AVERAGE TIME (IN SECONDS) TO LOCATE TEXT IN THE ICDAR 2005

DATABASE IMAGES ON A 2.4-GHZ PROCESSOR DEVICE

system proved to be very computationally inexpensive, running
over six times faster than the fastest system submitted to the
ICDAR 2005 competition. Table VI contains the average time
in seconds to process an image for each system on a 2.4-GHz
processor. Descriptions of the five algorithms submitted to the
ICDAR 2005 Competition can be found at [28]–[32].

The run time of our proposed approach was also compared
to the recent work by Shivakumara et al. [25]. This paper tested
their method on their own 960 images as well as 251 images
from ICDAR 2003 and 45 images from Microsoft Research data

set. Before processing, they resized all images to 256 by 256
pixels to save computational costs. The processing time of their
algorithm for 256 by 256 images on Core 2 Duo 2.0-GHz ma-
chine is reported to be 7.8 s for horizontal text and 10.3 s for
non-horizontal text, whereas our proposed method can process
images of size 480 by 640 on a PC with a CPU of 2.8 GHz in
0.1187 s regardless of the orientation of the text line. We be-
lieve that even given the differences in the processor speeds and
image sizes, this comparison shows that our method is still con-
siderably faster than the work reported in [25].

4) Complexity Comparison: To put the cost of our method
in perspective, we compare it to the system proposed in [15],
which we refer to as System CYZW. This system is also de-
signed to detect signs in natural images. Below we compare
the complexity of our approach against System CYZW’s algo-
rithm. A schematic representation of System CYZW’s proposed
method of sign detection in natural images is shown in Fig. 16.

Both our system and System CYZW begin by applying a set
of filters that identify homogenous regions or edges, respec-
tively. In our system, a set of three binary filters is applied to
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Fig. 16. Schematic representation of System CYZW’s method for finding text
regions within natural images.

non-overlapping blocks in the image. These three binary filters
enable us to identify the homogenous regions in an image

and ignore areas containing edges. System CYZW relies on
a multi-scale Laplacian of Gaussian (LOG) filter in order to
identify edges within the image. Both algorithms threshold the
resultant filtered image to identify uniform or edge regions.
Binary filtering used in our system is a low complexity process
that involves only the summation and subtraction of pixel
values, performed on non-overlapping blocks. In contrast,
System CYZW’s LOG edge detector obtains the edge set by
passing over every pixel in the image and computing the values
by performing float multiplication and summation. Although a
LOG edge detector identifies the edges in an image in a precise
manner, binary filters provide a simple and low-complexity
alternative with similar results.

The next step in both our method and System CYZW’s
method is to discard areas in the image that were identified in
the previous step as being uniform or edge-containing, respec-
tively. In our method, homogenous blocks that are not adjacent
to at least one other homogenous blocks are removed from the
list of homogenous blocks. This places a size constraint on
the homogenous region being identified. In System CYZW’s
method, the set of all edges in the image are clustered into edge
patches. Once this is complete, some edge patches are excluded
from further consideration based upon criteria applied to the
size, intensity, mean, and variance of a rectangle surrounding
each edge patch. After each method has identified its candidate
areas of the image, these blocks are grown and merged to
form entire regions within the image. In our method, a region
growing method is used to expand the homogenous blocks into
homogenous regions. The region growing method compares
adjacent pixels and connects them if the difference between
their intensity values is below a given threshold. Applying CC
to the entire image requires at most two passes of the image. In
each pass, every pixel is compared to its top and left neighbors.
Since only homogenous blocks are expanded, usually less than
two full passes over the image are necessary to fully grow
the homogenous blocks. System CYZW’s method grows edge
patches by merging a patch with adjoining edges that have sim-
ilar properties. Once multiple edge patches have been merged,
the edge patches are evaluated again to determine if each edge
patch should continue to the next step or be discarded. This
recursive procedure is repeated until no more updates can be
made to the edge patches.

Color is an important feature for verifying the text localiza-
tion results and identifying the outliers. Regions that contain
text and its background pixels tend to have a distinctive bino-
mial distribution in one of the color subspaces. Both methods
test this property for the candidate regions. In our method, the
intensity of the background region and the holes within them
are averaged separately, and the difference between the means
is compared against a threshold. This simple step allows us to
determine whether a candidate region is certified as a text area.
In System CYZW’s method, the color distribution of the can-
didate regions are modeled in five subspaces of Red, Green,
Blue, Hue, and Intensity, by Gaussian mixture models (GMMs).
The EM algorithm is used to estimate the parameters of the
GMMs. The subspace with larger difference between the means
and with smaller variances is selected for the future steps in the
system. This color modeling process increases the complexity
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of the system. Although color modeling in different subspaces
to find the one with higher confidence is useful in applications
where the text is engraved in a material or where there is a high-
light in the text [15], the additional complexity is rarely neces-
sary in applications such as sign text localization. In our pro-
posed method, we chose to work with only the grayscale image
during processing. This was done for two reasons. First, using
the grayscale image over a color image reduces the complexity
of methods during processing. Second, many handheld mobile
devices contain low-quality cameras that often generate color
noise in their images. Converting the image to grayscale helps to
reduce the effect of color noise while processing the image. Al-
though it is possible that the text of a grayscale image would not
contrast with its background, this is rarely a problem in the case
of text on signs. In fact, road signs are made to contrast in in-
tensity in order to be easily seen by colorblind individuals [33].

At this point, our system has identified the sign background
regions in the image. If there are not detected sign background
regions, the process is repeated with a smaller block size.
System CYZW’s method moves to next steps which are the
layout analysis and affine rectification. These steps are required
in the text localization process since the method relies on the
direction of the edges in the text. Thus, the skewness, caused
by non-vertical view of the camera with respect to the text,
may result in missing some of the text regions. The layout
analysis in this system aims to align the characters and group
the ones that are in the same context. The neighboring candidate
regions are clustered together based on their color attributes.
A Hough transform is used to find the line that fits the center
of the cluster regions in a layout. For each layout region, that
contains multiple characters, the affine parameters are obtained
separately. Two pairs of parallel lines in the sign are required
for this purpose. These lines can be either the boundary lines of
the sign, if the sign is rectangular, or the lines of the characters
in the layout. The assumption of existence of parallel lines in
the text does not hold for every language (e.g., Arabic). Once
the affine parameters are obtained, the text regions are warped
using these parameters. A B-spline interpolation is used to fill
out the transformed regions. After affine rectification for each
candidate region, the text detection process is repeated to refine
the results.

V. CONCLUSIONS

We have presented a method for locating text within nat-
ural images. The algorithm relies on a fundamental feature of
text: text is usually surrounded by a contrasting, uniform back-
ground. Our proposed method of text segmentation searches for
the text’s background rather than the actual text. This allows
for a large variation in the distribution of text features while
requiring little computation. The algorithm has proved to have
a high performance while also being computationally inexpen-
sive.
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