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Abstract

We present an approach to pronunciation mod-
eling in which the evolution of multiple lin-
guistic feature streams is explicitly represented.
This differs from phone-based models in that
pronunciation variation is viewed as the result
of feature asynchrony and changes in feature
values, rather than phone substitutions, inser-
tions, and deletions. We have implemented a
flexible feature-based pronunciation model us-
ing dynamic Bayesian networks. In this paper,
we describe our approach and report on a pilot
experiment using phonetic transcriptions of ut-
terances from the Switchboard corpus. The ex-
perimental results, as well as the model’s quali-
tative behavior, suggest that this is a promising
way of accounting for the types of pronuncia-
tion variation often seen in spontaneous speech.

1 Introduction

Pronunciation variation in spontaneous speech has been
cited as a serious obstacle for automatic speech recog-
nition (McAllester et al., 1998). Typical pronunciation
models approach this problem by augmenting a phone-
mic dictionary with additional pronunciations, often re-
sulting from the application of phone substitution, inser-
tion, and deletion rules. By carefully constructing a rule
set (Hazen et al., 2002), or by deriving rules or variants
from data (Riley and Ljolje, 1996), many phenomena can
be accounted for. However, the recognition improvement
over a phonemic dictionary is typically modest, and some
types of variation remain awkward to represent.

These observations have motivated approaches to
speech recognition based on multiple streams of linguis-
tic features rather than a single stream of phones (e.g.,
King et al. (1998); Metze and Waibel (2002); Livescu et
al. (2003)). Most of this work, however, has focused on
acoustic modeling, i.e. the mapping between the features
and acoustic observations. The pronunciation model is

typically still phone-based, limiting the feature values to
the target configurations of phones and forcing them to
behave as a synchronous “bundle”. Some approaches
have begun to relax these constraints. For example, Deng
et al. (1997) and Richardson et al. (2000) model asyn-
chronous feature trajectories using hidden Markov mod-
els (HMMs), with each state corresponding to a vector
of feature values. This approach is powerful, but it can-
not represent independencies between features. Kirch-
hoff (1996), in contrast, models the feature streams as
independent, except for a requirement that they synchro-
nize at syllable boundaries. As pointed out by Osten-
dorf (2000), such independence assumptions may allow
for too much variability.

In this paper, we propose a feature-based pronunci-
ation model implemented using dynamic Bayesian net-
works (Dean and Kanazawa, 1989), which allow us
to take advantage of inter-feature independencies while
avoiding overly strong independence assumptions. In the
following sections, we describe the model and present
proof-of-concept experiments using phonetic transcrip-
tions of utterances from the Switchboard conversational
speech corpus (Greenberg et al., 1996).

2 Serval [sic] examples
To help ground the discussion, we first present several
examples of pronunciation variation. One common phe-
nomenon is the nasalization of vowels preceding nasal
consonants. This is a result of asynchrony: The velum is
lowered before the oral closure is made. In more extreme
cases, the nasal consonant is entirely absent, leaving only
a nasalized vowel, as in can’t → [ k ae n t ] 1. All of
the underlying features are still correct, although phonet-
ically, this would be described as a deletion.

Another example, taken from the Switchboard corpus,
is several → [s eh r v ax l]. In this case, the tongue
and lips have desynchronized to the point that the tongue
retroflexion for [r] starts and ends before the lip narrow-

1Here and throughout, we use the ARPAbet phonetic symbol
set with additional diacritics, such as “ n” for nasalization.



ing gesture for [v]. Again, all of the feature streams
are produced correctly, but there is an apparent exchange
of two phones, which cannot be represented via single-
phone confusions conditioned on phonemic context.

A final example from Switchboard is everybody → [eh
r uw ay]. It is difficult to imagine a set of phonetic trans-
formations that would predict this pronunciation without
allowing a host of other impossible pronunciations. How-
ever, when viewed in terms of features, the transforma-
tion from [eh v r iy bcl b ah dx iy] to [eh r uw ay] is
fairly simple. The tongue and lips desynchronize, caus-
ing the lips to start to close for the [bcl] during the previ-
ous vowel. In addition, the lip constrictions for [bcl] and
[v], and the tongue tip gesture for [dx], are reduced. We
will return to this example in the sections below.

3 Approach
We define a feature-based pronunciation model as a
model that maps from each word in a given vocabulary
to all sequences of linguistic feature vectors that are al-
lowed realizations of that word, and that does so by ex-
plicitly modeling each feature stream’s evolution. Such
a model should produce, for any word and any matrix of
feature values (one vector of feature values per frame of
speech, over a number of frames), a probability or cost of
the word being realized as that feature matrix.

We begin with the usual assumption that each word
has one or more target phonemic pronunciations. Each
phonemic pronunciation is converted to a matrix of un-
derlying feature values. Table 1 shows what part of this
matrix might look like for the word everybody. The ma-
trix may include ‘unspecified’ values (‘*’ in the table).
More generally, each matrix entry can be a distribution
over the range of feature values. For now, we assume
that all of the features go through the same sequence of
indices (and therefore the same number of targets) in a
given word; e.g., in Table 1, LIP-OPEN goes through
the same indices as TT-LOC, although it has the same
target value for indices 2 and 3. This assumption makes it
easy to model asynchrony by referring to feature indices,
although its accuracy merits further consideration.

The actual (surface) feature values can stray from the
target pronunciation in two ways: substitution, in which
a feature’s surface value at a given time differs from its
underlying value, typically because of articulatory iner-
tia; and asynchrony, in which different features proceed
through their sequences of values at different rates. The
degree of asynchrony is not completely free: We assume
that it has an upper bound, and within this bound, more
“synchronous” configurations are preferred. The syn-
chronization requirements are expressed as constraints on
the average index of one subset of the features relative to
the average index of another subset.

A natural framework for such a model is provided by

index 0 1 2 3 ...
phoneme eh v r iy ...
LIP-OPEN wide critical wide wide ...
TT-LOC alv. * ret. alv. ...
... ... ... ... ... ...

Table 1: Part of a target pronunciation for everybody.
In this feature set, LIP-OPEN is the lip opening degree;
TT-LOC is the location along the palate to which the
tongue tip is closest (alv. = alveolar; ret. = retroflex).
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Figure 1: One frame of a DBN for recognition with
a feature-based pronunciation model. Nodes represent
variables; shaded nodes are observed. Edges repre-
sent dependencies between variables. Edges without par-
ents/children point from/to adjacent frames.

dynamic Bayesian networks (DBNs), because of their
ability to efficiently implement factored state representa-
tions. Figure 1 shows one frame of the type of DBN used
in our model (simplified somewhat for clarity of presen-
tation). This example DBN assumes a feature set with
three features. The variables at time frame t, and their
associated conditional distributions, are as follows:

lexEntryt – entry in the lexicon corresponding to the cur-
rent word and pronunciation variant. Words with
multiple baseforms have one entry per baseform.

indj
t – index of feature j into the underlying pronun-

ciation, as in Table 1. indj
0 = 0; in subsequent

frames indj
t is conditioned on lexEntryt−1, indj

t−1,
and wdTrt−1 (see below).

Uj
t – underlying value of feature j. Its distribution

p(U j
t |lexEntryt, ind

j
t ) is determined by the target

feature matrix of lexEntryt.

Sj
t – observed surface value of feature j. p(Sj

t |U
j
t ) en-

codes allowed feature substitutions.

wdTrt – binary variable indicating whether this is the last
frame of the current word.

syncA;B
t – binary variable that enforces a synchrony con-
straint between subsets A and B of the feature set.
It is observed with value 1; its distribution is con-
structed in such a way as to force its parent ind vari-
ables to obey the desired constraint. For example,



to enforce a constraint between the average index of
features 1 and 2 and the index of feature 3, we would
have P (sync

1,2;3
t = 1|ind1

t , ind2
t , ind3

t ) = 0 when-
ever ind1

t , ind2
t , ind3

t violate the constraint.

In an end-to-end recognizer, the acoustic observations
would depend on the Sj

t , which would be unobserved.
However, to facilitate quick experimentation and isolate
the pronunciation model, we begin by testing how well
we can do when given observed surface feature values.

4 Experiments

We have performed a pilot experiment using the follow-
ing feature set, based on the vocal tract variables of artic-
ulatory phonology (Browman and Goldstein, 1992): de-
gree of lip opening; tongue tip location and opening de-
gree; tongue body location and opening degree; velum
state; and glottal (voicing) state. We imposed the follow-
ing synchrony constraints: (1) All four tongue features
are completely synchronized; (2) the lips can desynchro-
nize from the tongue by up to one index; and (3) the glot-
tis and velum are synchronized, and their index must be
within 2 of the mean index of the tongue and lips.

We used the Graphical Models Toolkit (Bilmes and
Zweig, 2002) to implement the model. The distri-
butions p(Sj

t |U
j
t ) were constructed by hand based on

linguistic considerations, e.g. that features tend to go
from more “constricted” values to less constricted ones,
but not vice versa. p(U j

t |lexEntryt, ind
j
t ) was de-

rived from manually-constructed phoneme-to-feature-
probability mappings. For these experiments, no param-
eter learning has been done.

The task was to recognize an isolated word, given a
matrix of observed surface feature values Sj

t . To create
the observations, we used the detailed phonetic transcrip-
tions created at ICSI for the Switchboard corpus (Green-
berg et al., 1996). For each word, we converted its tran-
scription to a sequence of feature vectors, one vector per
10 ms frame. For this purpose, we divided diphthongs
and stops into pairs of feature configurations. Given the
input feature matrix, we computed a Viterbi score for
each lexical entry in a 3000+-word (5500+-lexEntry) vo-
cabulary, by “observing” the lexEntry variable and find-
ing the most likely settings of all remaining variables.
The most likely variable settings can be thought of as a
multistream alignment between the surface and underly-
ing feature streams. Finally, we output the word corre-
sponding to the highest-scoring lexical entry.

We performed this procedure on a development set of
165 word transcriptions, which was used to tune param-
eters, and a test set of 236 transcriptions 2. We com-

2We required that words in the development and test sets
have phonemic pronunciations with at least 4 phonemes, so as
to limit context effects from adjacent words.

pared the performance of several models, measured in
terms of word error rate (WER) and failure rate (FR), the
percentage of inputs that had no Viterbi alignment with
the correct word. To get a sense of the effect of fea-
ture asynchrony, we compared our asynchronous model
with a version in which all features are forced to be syn-
chronized, so that only feature substitution is allowed.
This uses the same DBN, but with degenerate distribu-
tions for the synchronization variables. Also, since the
Sj values are derived from phonetic transcriptions, and
are therefore constant over several frames at a time, we
also built a variant of the DBN in which Sj is allowed
to change value with non-zero probability only when
indj changes (by adding parents indj

t , indj
t−1, Sj

t−1 to
Sj

t ); we refer to this DBN as “segment-based”, and to
the original as “frame-based”. We compared four vari-
ants, differing along the “synchronous vs. asynchronous”
and “frame-based vs. segment-based” dimensions. The
variant which is both synchronous and segment-based is
similar to a phone-based pronunciation model with only
context-independent phone substitutions.

dev set test set
model WER FR WER FR
baseforms only 63.6 61.2 69.5 66.9
phonological rules 50.3 47.9 59.7 55.5
sync. seg.-based 38.2 24.8 43.2 35.2
sync. fr.-based 35.2 23.0 46.2 31.4
async. seg.-based 32.7 19.4 41.1 31.4
async. fr.-based 29.7 16.4 42.7 26.3

Table 2: Results of Switchboard ranking experiment.

Table 2 shows the performance of these four models,
as well as of two “baseline” models: one allowing only
the baseform pronunciations (on average 1.7 per word),
and another including all pronunciations produced by
an extensive set of context-dependent phonological rules
(about 4 per word), with no feature substitutions or asyn-
chrony in either case. The phonological rules are the “full
rule set” described in Hazen et al. (2002). We note that
they were not designed with Switchboard in mind.

The models that allow asynchrony outperform the ones
that do not, in terms of both WER and FR. Looking more
closely at the performance on the development set, the
inputs on which the synchronous models failed but the
asynchronous models succeeded were in fact the kinds of
pronunciations that we expect to arise from feature asyn-
chrony, including: nasals replaced by nasalization on a
preceding vowel; a /t r/ sequence realized as /ch/; and
everybody → [eh r uw ay]. The relative merits of the
frame-based and segment-based models is less clear, as
they have opposite relative performance on the develop-
ment and test sets. For 27 (16.4%) development utter-
ances, none of the models was able to find an alignment



with the correct word. Most of these were due to apparent
gesture deletions and context-dependent feature changes,
which are not yet included in the model.

Figure 2 shows a part of the Viterbi alignment of ev-
erybody with [eh r uw ay], produced by the segment-
based, asynchronous model. Using this model, everybody
was the top-ranked word. As expected, the asynchrony is
manifested in the [uw] region, and the lips do not close
but reach only a narrow (glide-like) configuration.

Figure 2: Spectrogram, transcription, and partial Viterbi
alignment, including the lip opening and tongue tip loca-
tion variables. Indices are relative to the underlying pro-
nunciation /eh v r iy bcl b ah dx iy/. Adjacent frames with
equal values have been merged for easier viewing. WI =
wide; NA = narrow; CR = critical; CL = closed; ALV
= alveolar; P-A = palato-alveolar; RET = retroflex.

5 Discussion

We have motivated our pronunciation model as part of
an overall strategy of feature-based speech recognition.
One way in which this model could fit into a complete
recognizer is, as mentioned above, by adding a variable
A representing the acoustic observations, with the Sj as
its parents. The modeling of p(A|S1, . . . , SM ) (where M

is the number of features) is a significant problem in its
own right. Alternatively, as this study suggests, there may
be some benefit to this type of model even if the acoustic
model is phone-based. One possible setup would be to
use a phonetic recognizer to produce a phone lattice, then
convert the phones into features and proceed as in our
Switchboard experiments.

Thus far we have not trained the variable distribu-
tions. With the exception of the sync variables, these
can be trained from feature transcriptions (i.e. Sj obser-
vations) using the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977). In the absence of actual
feature transcriptions, they can be approximated by con-
verting detailed phonetic transcriptions, as we have done
in our decoding experiments above. The sync distribu-
tions cannot be trained via EM, since they are always

observed with value 1. They can either be treated as ex-
perimental parameters or trained discriminatively. We are
currently working on a new formulation in which the syn-
chronization constraints can be trained via EM.

In addition, we are currently investigating extensions
to the model, including context-dependent feature substi-
tutions. We also plan to extend this study to a larger data
set and to multi-word utterances.
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