CVPR
#141

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CVPR 2006 Submission #141. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Wide-Area Egomotion Estimation from Known 3D Structure

Anonymous CV PR submission

Paper 1D 141

Abstract

We describe an algorithm that takes as inputs a coarse
3D model of an environment, and a video sequenceacquired
within the environment, and produces as output an estimate
of the camera’s 6-DOF egomation expressed in the coor-
dinates of the 3D model. Our method has several novel
aspects: it performs line-based structure-from-motion; it
alignsthe local line constellation to the known model; and
it uses off-line visibility analysis to dramatically accelerate
the alignment process.

We present simulation results demonstrating the
method’s operation in a multi-room environment. \\e show
that the method can estimate metric egomotion accurately
and could be used for for many minutes of operation and
thousands of video frames.

1. Introduction

Robust, wide-area egomotion estimation is a longstand-
ing goal of computer vision. EXxisting methods typically
handle only short-duration, short-excursion sequences. We
wish to develop an egomotion estimation capability suit-
able for long-duration, long-excursion use, to track the 6-
DOF rigid body pose (attached to a user’s head, body, or
hand-held device) as it is moved within an extended envi-
ronment. Our design target is to estimate egomotion with
an accuracy of 2 centimeters and 0.1 degrees, over several
hours of walking-speed motion inside a building containing
hundreds of rooms.

1.1. Method Overview and Assumptions

We can frame egomotion estimation as an online 6-DOF
localization task alternating between two operating phases,
both of which occur after a one-time, off-line precomputa-
tion. All three steps are described briefly here:

e Initialization When the camera pose is known poorly
or not at all, e.g., at the start of processing, or after
“loss of lock,” determine a valid current camera pose
estimate;

Figure 1. 3D reconstruction from line correspondence between
three images. In blue: reconstructed camera positions; in black:
original 3D structure; in green: reconstructed structure; in pink:
the edges used for correspondence.

e Maintenance When an accurate camera pose estimate
is available for all but the most recently acquired im-
age, update the estimate to account for recent camera
motion; and

e Precomputation A visibility analysis of the environ-
ment that makes both Initialization and Maintenance
much more efficient.

Our approach makes assumptions about the information
available to the algorithm, and about the character of the
camera’s motion through the environment. The remainder
of this section describes these assumptions, and how our al-
gorithms and system depend upon them. We defer, to Sec-
tion 5, discussion of what happens when our assumptions
are not met in practice.

First, we assume that an approximately accurate geomet-
ric model of the environment’s “coarse structure” — which
we define as its walls, floors, ceilings, doors and windows
— is available. Such a model could be provided by the
building’s architects, or produced independently by a post-
construction modeling method. This enables us to frame

CVPR
#141

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

egomation estimation (i.e., 6-DOF localization) as a 3D
structure-to-structure matching problem with a long-term
drift-free solution, rather than as a generally divergent inte-
gration of many short-term visual odometry estimates as in
typical structure-from-motion approaches. We cannot, and
do not, assume that the environment model is completely
accurate, nor that it is comprehensive in its inclusion of de-
tail elements such as door jambs, window moldings, furni-
ture, etc. We have formulated our method to be robust in
the face of such “unmodeled clutter” (Section 3).

Second, we assume that the environment contains many
large, opaque surfaces, and that consequently the visibil-
ity is limited; i.e., that the number of environment surfaces
(and edges) visible to any observer will be a small fraction
of the total number of geometric primitives within the en-
vironment [7]. When the camera’s approximate location is
known, this visibility assumption greatly reduces the num-
ber of candidate environment features that may be matched
against features in the short-sequence SFM solution.

Third, we assume that the camera motion is smooth,
and that the camera never moves through an opaque (i.e.
impenetrable) surface. When these assumptions are met,
the input imagery will have “high overlap;” i.e., frames ac-
quired at nearly the same time will tend to observe common
environment geometry. Thus our system will usually op-
erate in its relatively computationally inexpensive mainte-
nance mode, and will only rarely have to initialize (or reini-
tialize) its pose estimate. Moreover, it is intuitively clear
that the smoother the motion, the higher the inter-frame
overlap, and thus the smaller the search space of candidate
pose updates will be.

Fourth, we assume that the camera is intrinsically cali-
brated, and that its motion path is such that the 3D edges
in the environment remain sufficiently numerous, visible,
and nearby to support accurate short-sequence metric SFM.
Section 4 gives a quantitative sufficiency criterion for each
of these conditions.

We emphasize that we do not make assumptions about
built structure that form the foundation of other vision-
based localization systems. For example, we do not assume
the presence of vertical lines, horizontal lines [4], vanishing
points [2], or right angles [1]. We do not assume any knowl-
edge of surface color or reflectance attributes in the environ-
ment, or indeed any “appearance” information beyond the
environment geometry. Finally, we do not assume a static
environment, i.e. one free of time-dependent attributes, such
as changing lighting or transient or moving objects.

1.2. Paper Overview

After this introduction, and a description of related work
(§2), the bulk of the paper consists of descriptions of several
technical components of our method:

e An image-space edge tracker based on nearest-
neighbor search (§3.3);

e A short-sequence projective structure from motion
(SFM) algorithm using trifocal tensor minimization
[9] constrained by three-frame line correspondences
(§3.5.1);

e A stratified reconstruction algorithm [6] to transform
the projective SFM solution into a metric reconstruc-
tion up to an unknown scale factor (§3.5.1);

e A visual odometry estimator and online baseline selec-
tion method for more stable trifocal tensor geometry;

e A 3D-to-3D matching method that registers the met-
ric SFM solution (and thus the current egomotion esti-
mate) to the environment model (§3.6);

e A precomputation phase that determines the 3D edges
visible from each of a set of sample camera positions.

The paper then continues with empirical studies of the
algorithm’s performance for a variety of synthetic datasets
4, a discussion of the algorithm’s failure modes (§5), and a
conclusion (§6).

2. Related Work

Existing methods for vision-based localization basically
split into two categories: those using geometric features
such as lines, points and SIFT features, and those using a
machine-learning approach. In the latter, observations are
statistically matched against a database of images collected
during a training phase. In the former, geometric constraints
are extracted from observations in the hope of finding a
unique solution for the camera pose.

Optical flow and feature tracking [11] can both be used
for egomotion estimation, but unavoidably exhibit drift, i.e.
egomotion estimates that diverge from ground truth over
time.

Yagi et al. estimated the azimuth of edges extracted
from a conic image sensor to refine robot odometry esti-
mates [15]. Antone and Teller demonstrated extrinsic cam-
era refinement from many intrinsically calibrated real-world
images, assuming sufficiently many vanishing points [1].
Bosse et al. used vanishing points coupled with an efficient
3D line tracker to estimate camera motion from an omnidi-
rectional video sequence [2].

Mouaddib and Marhic presented a geometric-based ap-
proach in which vertical lines are detected using a gonio-
metric sensor and matched against a map designed dur-
ing an off-line process [14]. Se, Lowe and Little intro-
duced 3D SIFT landmarks and RANSAC matching for
robot localization [16]. Cauchois demonstrated real-world

panoramic image matching against a set of synthetic im-
ages generated from a 3D model of the environment [5].
Jogan and Leonardis defined the problem of localization as
the recognition of a panoramic view among a dataset of
known panoramic views. Using an image sampling with
60cm spacing, they achieve localization accuracy of 60cm
in an occlusion-free environment [12]. Matsumoto et al.
used a similar approach in [13]. Winters et al. demon-
strated localization is performed using topological maps
[17] by matching omni-directional images against a PCA-
compressed database of images collected during a training
phase. These methods require a substantial learning phase,
and do not scale well with the size of the environment.

3. Our Method
3.1. Preliminaries

We denote 3D points and lines as upper case italics (e.g.
X), 2D points and edges as lower case italics (e.g. =), and
matrices in bold (e.g.K). We denote indices with subscripts
(eg.z = (z1,z2,23)). We represent each projective cam-
eraas a3 x 4 matrix P equal to [9]:

P=K [R —-Ri @

where R is a 3 x 3 rotation matrix, ¢ a 3 x 1 translation
vector, and K the 3 x 3 camera calibration matrix

a, 0 x
K= 0 ay % 2
0 0 1

where o, and o, represent the focal length in pixels and
2o and yo describe the principal point in pixels. We assume
that the skew factor is zero.

With this model, any 3D point X can be projected onto
a camera P using the formula z = PX. If an inverse
projection matrix P! is known, the image point can be
back-projected into a 3D ray X = P~!z. Note that an
inverse projection matrix is a 4x3 matrix satisfying the rela-
tion P - P~! = I3 where I is the 3 x 3 identity matrix.

Finally, we use a standard radial polynomial to correct
radial distortion [10].

3.1.1 Environment Model

The 3D environment is represented as a set of 3D vertices,
edges and faces. For simplicity of processing, we subdi-
vide all input faces into triangles or quadrilaterals. No other
appearance information (e.g., color, material, texture, trans-
parency) is stored in the model or used by our system.

3.1.2 Geometric Distance

We use the Euclidean distance metric | - | for points in
space. For line segments, we define two distance met-

rics. The first metric, d,, captures the fractional degree
of overlap between two line segments I; = (211, z12) and
lo = (x21,292). If dpy, is the shortest distance between a
point and a line segment, then:

do(l1,1l2) = min(dpr(z11,l2) + dpr(zi2 - l2),
dpr(x21,l1) +dpr (w2 - 11)).

The second distance, d,, captures the angular alignment be-
tween the segments. If m; is the midpoint of /; and m, the
midpoint of /5, then:

da(l1,1l2) = |ma —mq| - (1 + |sin(angle(li,12))]). (3)

3.1.3 Frames and Images

We define a frame as a collection of ordinary images taken
from the same 3D location, but with different camera ori-
entations. Below, we refer to the “frames” collected by an
omnidirectional video camera that integrates six standard
cameras in a rigid mechanical structure.

3.2. Main ldea

The main idea of our system is to use short-sequence
SFM to build a “submap” of the structure near the mov-
ing camera, then align this submap with the known 3D
model. The pose estimation system has two major modes:
initialization and maintenance. Initialization mode is en-
tered whenever the system has a poor estimate of the cam-
era location, such as at the start of processing or after loss
of lock. Maintenance mode is entered when an approximate
pose estimate is available, the inaccuracy of which is due to
short-term camera motion since the most recent successful
localization. Figure 2 depicts the system’s processing archi-
tecture.

TK’SK

3D Modell—*L(M,SK)

M
|Approximate Camera Pose|
LR
L(M,P,)
P,

w

IPrecise Camera Pose|

Figure 2. System Overview

The initialization phase takes as input a 3D model M
and a short-sequence SFM solution (Pgr,Sg) where Pg

represents the camera pose and Sg the recovered 3D struc-
ture. The index g is used to refer to a relative coordinate
frame. The output is an approximate camera pose Py -
where the index yy is used to refer to a global (or world) co-
ordinate frame. The maintainance phase takes as input the
approximate camera pose Py, the model M and the SFM
solution (Pg,Sg). The output is an accurate camera pose
estimate Py in the global coordinate frame.

The system makes use of an alignment operation £ that
takes a model model M and a submap S and returns one or
more locations within M where S exists as a sub-structure.
The system also makes use of a visibility computation and
store that takes a model M and an approximate camera pose
P and returns the visible sub-structure S visible from P
within M.

3.3. Edge Tracker

Each frame of the video sequence is passed through a
simple line detector based on a Hough transform. Edges
shorter than a threshold ¢ (in pixels) are discarded. The re-
maining line segments are matched against each other be-
tween consecutive frames using the distance d,, as defined
in section 3.1. A dynamic queue of N correspondences is
maintained as new frames are processed. For the first frame,
the IV longest segments are inserted into the queue. Then,
for each new frame, a matching edge is sought for each edge
on the queue. If a match is found, the queue element is up-
dated. If no match is found, the element remains in the
queue. If no match is found within p;;,,. frames, the ele-
ment is removed from the queue. Finally, if the queue is not
full, each newly appearing (i.e., unmatched) segment causes
creation of a new queue element. Figure 3 summarizes our
edge tracker algorithm.

1. First frame: Select the N longest line segments and put
them into the queue Q.

2. for each new frame F; do

3: for each element E; in queue @) do

4 Search for a match to E; in Fj:

5 If no match found: increment counter ¢ in £}

6 If a match found: update @ and reset c to zero

7. Cleanup: remove all elements of @ for which ¢ >
DPtime-

8 New elements: if size(Q) < N, pick the longest un-
matched segment in F; and insert it into the queue.

Figure 3. Edge Tracker Algorithm

3.4. Visibility Precomputation

We wish to handle environments of arbitrary spatial ex-
tent and geometric complexity. In many architectural en-
vironments, visibility is limited; that is, only a small frac-

tion of the environment geometry is visible from any point
within the model. We perform a visibility precomputa-
tion that discretizes the space of viewpoints, and associates
with each sampled viewpoint an approximation of the set of
model edges visible from that point. We reason that, if the
space of viewpoints is sampled sufficiently densely, a cam-
era moving near any sample viewpoint S should observe
very nearly the same model edges as those visible from S.
(The camera may observe fewer edges, due to occlusion by
unmodeled clutter, image aliasing, or feature detection fail-
ure. The camera may observe either fewer or more edges
due to errors in the geometric model itself, i.e., inconsis-
tencies between the actual environment and the geometric
model of the environment.)

The precise set of polygons (and thus edges) visible from
a varying viewpoint is a spatially complex function, and
combinatorially expensive to compute [8]. We sidestep
these difficulties both by replacing the exact computation
with a discrete (sampled) representation, and by sampling
the viewpoint space more finely where visibility changes
more quickly.

We use an openGL-based algorithm [18] for visibility
computation. We define a coarse initial grid of viewpoints
(each node on the grid corresponds to a camera position at
a standard height of 39 inches). From each sampled view-
point, we render the known model, determine the set of vis-
ible edges, and store them into a lookup table. We then
dynamically refine the grid according to visibility. The vis-
ibility difference (measured as the size of the set difference
between the set of lines visible at each node) is computed.
Whenever the variation between two nodes is larger than a
threshold, a new node is created in the middle. The process
goes on until all adjacent nodes have a difference smaller
than the threshold. In addition, the adjacency between two
nodes is discarded if a wall lies between them.

The algorithm works as follows. At each camera posi-
tion, six synthetic cameras corresponding to the six faces
of a cube are situated. For each of these synthetic cameras,
the full 3D model is rendered, with hidden surfaces elimi-
nated, and the resulting pixel buffer is stored in an array P.
In a second step, the edges of the 3D model are rendered
in feedback mode, leading to a feedback buffer B. For each
item in the buffer B, the z-buffer value is compared to the
z-value stored in P. If these value match within some small
threshold, the edge is classified as visible.

Since only a portion of each edge may be visible, edges
are actually subdivided into one inch-long sub-edges. Fig-
ure 4 shows an example of our visibility computation in a
typical lab area.

Figure 4. Visibility precomputation in a typical lab area. Visible
edges are displayed in green. Note that many edges are partly
occluded.

3.5. Short-Sequence SFM

3.5.1 3D structure estimate

Our SFM algorithm takes as input a set of line correspon-
dences across three views and produces a metric recon-
struction of the 3D structure and camera poses. Figure 5
shows the corresponding geometric configuration. In the
first step, a projective reconstruction is obtained using the
trifocal tensor minimization algorithm described in section
15.4 of [9]. For each line correspondence [« [’ « 1" be-
tween the three images, we generate two correspondences
z1 — ' < 1" and 2y < ' < 1" where z; and z, are the
two endpoints of /. Since the trifocal tensor is of dimension
27 (3 x 3 x 3), 14 line correspondences are required.

The reconstruction obtained after the first step is correct
up to a projective transformation of the 3D space. Without
additional knowledge about the scene or the cameras, it is
not possible to obtain a metric reconstruction of the scene.
Figure 6 illustrates this ambiguity. In the case of calibrated
cameras however, this ambiguity can be fully resolved up to
a one dimension scaling ambiguity.

Assuming that K;, Ko and K3 are the known three
calibration matrices for the three camera matrices Py,
P, and P35, we compute the two essential matrices
E,2 and E; 3 corresponding to the normalize matrices
(K1 'P1, K2 'P3) and (K, ~'P1, K3 'Pg). From each
essential matrix, the camera matrices can be extracted up to
a four-fold ambiguity. As described in [9], the four ambi-
guities correspond to reverting the camera translation vec-
tors or flipping the cameras about the line joining the two
centers. Therefore, E15 gives four solutions for (P1,P2),
and Eq3 gives four solutions for (Pq,P3), which leads

Figure 5. The projection of a 3D line segment L on three cameras
C, C" and C”. If the camera positions are known, the 2D line
segments I, I’ and I”’ can be back projected into a line in the 3D
space.

Figure 6. The projective reconstruction ambiguity: figures (left)
and (right) show two projective reconstructions leading to the
same 2D points on the three images. The three cameras are repre-
sented in red, green and blue. The ambiguity can be resolved up
to a single scale factor if the cameras are calibrated.

to 16 possible configurations for the set of three cameras
(P1,P2,P3). However, only one of them satisfies the fol-
lowing constraints:

1. the reconstructed 3D structure lies in front of the three
cameras;

2. the reprojection error is minimized.

The best configuration is the one satisfying these two con-
straints, and it is the one we preserve.

3.5.2 Camera and Trifocal Tensor Refinement

Since the observed data is subject to noise, the line corre-
spondences described in section 3.5.1 is relatively incorrect
in practice. It is therefore necessary to run a minimization
algorithm to find the best estimate for the trifocal tensor
once an initial estimate of it has been obtained through a
linear algorithm. Our algorithm minimizes the algebraic er-
ror using a Levenberg-Marquardt method as suggested in
section 15.4 of [9]. Once an estimate has been obtained for

the 3D structure and the camera poses, a Newton refinement
algorithm as described in [3] is used to minimize the repro-
jection error. We minimize the error function

n 3
€= dally — proj(P;, Ly)) 4)
i=1 j=1

where I;; is the observed segment L, on image j,
proj(P;, L;) is the projection of L; on camera P; and d,
is the distance between two line segments as defined in sec-
tion 3.1. In practice, the reprojection error minimization
turns out to bring significantly more improvement to the re-
construction than the trifocal tensor optimization.

3.6. Line Cloud Matching

Once the 3D structure has been reconstructed, it is nec-
essary to align this structure with the known 3D model to
recover the camera pose in the world coordinate frame. We
present here a closed-form solution to the problem of align-
ing a set S of 3D lines onto another set S’ of 3D lines. This
problem has seven degrees of freedom: three for the trans-
lation ts_. s, three for the rotation Rs_,s- and one for the
scale factor As_, 5.

Given a pair of skew" lines in each set, we construct a
transformation that brings the first pair onto the second pair
as follows. We define Cy; the shortest segment between
two lines in 3D. Note that when the two lines are skew, this
segment is unique and always defined. Given a pair of lines
(I1,12) in S and (1{,1%) in S’, we define the scale factor
As—g as the ratio of the lengths of Cj,;, and Ci,- We
define the translation ¢s_.s- as the vector Cy,;,Cy;y,. And
we define the rotation Rs_. s+ as the rotation centered in the
origin which brings the vector [onto vector [].

The transformation 7 = (As_s/, Rs—s/,ts—s/) is a
good candidate for the searched transformation if (1, 12)
and (14, 15) have the same skewness, where the skewness of
two lines is defined as the angle made by these two lines
on the plane perpendicular to the shortest segment between
them.

This algorithm is wrapped into a RANSAC framework
demonstrated in figure 7.

4, Reaults

We implemented our method in approximately 45,000
lines of Matlab code running on a 4-CPU 3.20Ghz 1Gb
RAM laptop.

4.1. Line Cloud Matching

The RANSAC framework is parameterized by the max-
imum number of runs before FAILURE is returned. In our

two lines are considered as skew if they are not paralel and do not
intersect in space.

1. forrun=1,..,Ndo

2. picktwo lines (I1,13)in S

3 picktwo lines (I'y,15) in &'

4. skewness test: If the two set of lines do not have the
same skewness, jump to the next run.

5. Otherwise, compute the transformation 7 which
transforms (11, l2) into (I'1,15).

6: Apply 7 to the lines in S and match the result with
S’ in term of distance d,,.

7. iftest = ok then

8: accept the transformation and return SUCCESS.
9 else
10: continue

11: return FAILURE.

Figure 7. Line Cloud Matching Algorithm

case, the input line cloud S contains as many lines as corre-
spondences between the images. Typically, this number is
about a few dozens. The output line cloud S’ is the cloud of
visible edges as returned by the function £ defined in sec-
tion 3.2. This cloud has a size of a few hundred lines. In
practice, the match is found after a few thousands of runs.
Most of the runs do not pass the skewness test, thus making
the process relatively fast (a few seconds). A result of the
line cloud matching is shown on figure 1.

4.2. SFM on Simulated Data

We use a 3D model of our lab space to generate sets of
synthetic images. For each set of three images, we recon-
struct the 3D structure and camera poses and compare them
to the original data. We provide the following performance
metrics to assess the efficiency of our method:

e errorc . the sum of the translation error for the three
cameras (in inches).

e error, : the sum of the angle error for the three cam-
eras (in degrees).

e errorg . the average error on the structure, defined
as the d, distance from the original structure to the
reconstructed structure (in inches).

e errorg : the average reprojection error in pixels.

In the ideal case where noise is absent, all these metrics are
equal to zero. In this section, we show the effect of various
parameters on these metrics.

4.2.1 Effect of Noise

In our model, a Gaussian noise ¢ = (0trans, Orot) 1S ap-
plied to the line segments in term of translation and rota-
tion. Table 4.2.1 summarizes the results. Figure 1 shows a
successful reconstruction.

o errorc | error, | errorg | errorg
0,0 | 0.6 0.09 0.000 0.0
1,120 0.18 0.006 1.6
1,3 | 20.0 0.70 0.240 3.7
2,4 | 80.0 1.80 0.340 4.5

4.2.2 Increasing the Number of Correspondences

As stated in section 3.5.1, at least 14 line correspondences
are required for a successful run of SFM. However, increas-
ing the number of correspondences greatly improves the
quality of the results, as demonstrated in table 4.2.2. In this
experiment, we have chosen a noise oy qns = 1,070t = 1.
Beyond a few hundred correspondences, the progress stales.

N | errorc | error,, | errors | errorg
14 | 40.0 12.0 0.3000 | 23.0
32 |20 0.20 0.006 1.60
50 | 2.0 0.18 0.002 0.52
120 | 1.7 0.16 0.002 0.31

4.2.3 Spacing between the Cameras

Our SFM algorithm is insensitive to the spacing between
the cameras. We have run several sets of experiments for
decreasing distances between the cameras - from 200 inches
down to 10 inches. The quality of the reconstruction is the
same, even when the cameras are close to each other.

4.2.4 Performance

The SFM reconstruction runs in 12 seconds on a 4-CPU
3.20Ghz 1Gb RAM laptop. However, we have spent little
time on optimization and many leads can be followed to
make the algorithms run faster.

5. Discussion

This section addresses the conditions under which our
method operates successfully.

5.1. Genericity Assumptions

A variety of degenerate or anomalous conditions may
cause our method to exhibit degraded performance, or to
fail outright. These include:

e Degenerate camera path such as no motion, or only
straight line motion.

e Degenerate environment structure such as bundles of
parallel 3D lines. In this case, it is not possible to esti-
mate the location along the line direction.

e Excessive clutter preventing a sufficient observability
of a priori structure.

o Insufficient light levels jeopardizing the feature mea-
surements.

e \ery rapid translation or rotation generating image
blurring and loss of useful a priori location estimate.

Our method succeeds in recovering the camera pose in a
synthetic world. The case of partial occlusion has been
tested and the results shown in section 4 are the same when
only parts of the 3D lines are visible. Our method is cur-
rently unable to handle real data although the reconstruction
results are very promising. We believe that this failure may
have two root causes : an excessive noise in the observa-
tions and/or an inaccurate calibration of the camera.

5.2. Future Work

We are currently working on making the system more ro-
bust to noise so that data acquired in real conditions can be
handled. The current implementation can also be optimized
to reach a close to real-time performance. Some significant
progress can be made on various parts of the system. In
particular, the initialization step, which is currently man-
ual, could be replaced by an automatic method. The edge
tracker could also be improved using a more sophisticated
approach, such as the “stochastic nearest-neighbor gating”
described in [2].

6. Conclusion

We have reframed 6-DOF localization as a visibility pre-
computation, followed by an initialization of a camera pose
estimate, and online maintenance of that estimate. Our
structure from motion algorithm trackes infinite 3D lines —
no line segments, no point features — to aid data association,
robustness, and estimation accuracy.

We presented detailed empirical results for synthetic data
showing a successful reconstruction of the 3D structure and
the camera pose, even in the case of high occlusion level.
We analyzed the effect of noise and correspondences on the
reconstruction results. Finally, we discussed our system’s
failure mode and how it might be made more robust and
generically applicabled in the future.

References

[1] M. Antone and S. Teller. Scalable extrinsic calibration of
omni-directional image networks. Int. J. Comput. Vision,
49(2-3):143-174, 2002. 2

[2] M. Bosse, R. J. Rikoski, J. J. Leonard, and S. J. Teller.
Vanishing points and three-dimensional lines from omni-
directional video. The Visual Computer, 19(6):417—430,
2003. 2,7

CVPR
#141

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

(3]

[4]

(5]
(6]

[7]

(8]

(9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

CVPR 2006 Submission #141. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

T.F. Coleman and Y. Li. An interior trust region approach for
nonlinear minimization subject to bounds. j-SIAM-J-OPT,
6(2):418—445, May 1996. 6

S. Coorg and S. Teller. Matching and pose refinement with
camera pose estimates. Technical Report MIT/LCS/TM-561,
Massachusetts Institute of Technology, 1996. 2

C. C. Eric. 3d localization with conical vision. 3

O. Faugeras, Q.-T. Luong, and T. Papadopoulou. The Geom-
etry of Multiple Images: The Laws That Govern The Forma-
tion of Images of A Scene and Some of Their Applications.
MIT Press, Cambridge, MA, USA, 2001. 2

T. A. Funkhouser and C. H. Sequin. Adaptive display al-
gorithm for interactive frame rates during visualization of
complex virtual environments. In Proc. of SIGGRAPH-93:
Computer Graphics, pages 247—254, Anaheim, CA, 1993. 2
Z. Gigus and J. Malik. Computing the aspect graph for line
drawings of polyhedral objects. IEEE Trans. Pattern Anal.
Mach. Intell., 12(2):113-122, 1990. 4

R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision, First Edition. Cambridge University Press,
ISBN: 0521623049, 2000. 2, 3,5

J. Heikkild and O. Silvén. A four-step camera calibration
procedure with implicit image correction. In CVPR, pages
1106—, 1997. 3

B. K. P. Horn and B. G. Schunck. Determining optical flow.
Artificial Intelligence, 16(1-3):185-203, 1981. 2

M. Jogan and A. Leonardis. Robust localization using
panoramic view-based recognition, 2000. 3

Y. Matsumoto, K. lkeda, M. Inaba, and H. Inoue. Visual
navigation using omnidirectional view sequence, 1999. 3
M. Mouaddib and B. Marhic. Geometrical matching for mo-
bile robot localization, October 2000. 2

Y. Y. Y. Nishizawa and M. Yachida. Map-based navigation
for a mobile robot with omnidirectional image sensor copis.
In IEEE Trans. Robotics and Automation, pages 634—648,
October 1995. 2

S. Se, D. Lowe, and J. Little. Local and global localization
for mobile robots using visual landmarks. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 414—420, Maui, Hawaii, October
2001. 2

N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor. Omni-
directional vision for robot navigation. In Proc. IEEE Work-
shop on Omnidirectional Vision - Omnivis00, 2000. 3

M. Woo, Davis, and M. B. Sheridan. OpenGL Program-
ming Guide: The Official Guide to Learning OpenGL, Ver-
sion 1.2. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999. 4

CVPR
#141

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

