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MRI of the brain

Magnetic Resonance (MR) 
imaging of the brain:

Three-dimensional (3-D)

High soft tissue contrast

High spatial resolution

Possibly multi-spectral

Non-invasive quantitative 
measurements possible 
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Segmentation of brain MRI

Radiotherapy planning

Surgical planning

Image-guided interventions

Visualizations

Studying brain diseases

Clinical drug trials

...
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How to segment brain MRI?

Manual delineation by a human expert
difficult to accurately delineate complex 3-D 
structures

extremely time-consuming

considerable inter- and intra-rater variability

multi-spectral input is hard to interpret

Routine analysis is impractical

Need for automated procedures
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Overview

The mixture model and the EM algorithm
A probabilistic brain atlas
Modeling MR bias fields
Multiple Sclerosis lesion segmentation
Partial volume segmentation
Discussion and future directions
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The Gaussian mixture model

Intensity distributions of white 
matter, gray matter and CSF are 
modeled as Gaussian distributions 

mean = average intensity
variance = variation around the 
average intensity  
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The Gaussian mixture model

Once the mean and variance of 
each tissue type is known, voxels 
can be classified based on their 
intensity 
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How to obtain model parameters?

Interactively select representative voxels for 
each tissue type

Train model once and apply it to hundreds of scans

Needs to be re-done for every new pulse-sequence

Not fully reproducible

In clinical trials: inter-scan variations in the intensity 
distributions of the tissue types

Hardware fluctuations of MR scanners over time
Multi-center trials may involve different scanners

Can we estimate the model parameters 
automatically from each individual scan?
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More formal image model

Total model parameters:

Overall model:

spatial 
model

intensity 
model

label of voxel j
intensity of voxel j
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Spatial model

Assume that the label of each voxel is drawn 
independently from the labels of other voxels, with 
probability        for tissue type k
The spatial model parameters are then:

spatial 
model

intensity 
model



Koen Van Leemput, Helsinki University Central Hospital

Unify ing S tatistical Classification and Geometrical Models – MICCAI 2003

Intensity model

Assume that the intensity of a voxel is conditionally 
independent from the intensity of other voxels, given its 
tissue label:
Assume that the intensity distribution of tissue type k is 
normally distributed with mean       and covariance       

The intensity model parameters are then: 

spatial 
model

intensity 
model
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Parameter estimation

Given an image, estimate the so-called 
Maximum-Likelihood parameters
= parameters that maximize

= parameters that best explain the data

Cannot be solved with closed-form 
expressions
Expectation-Maximization (EM) algorithm 
[Dempster et al., 1977] provides a very intuitive 
iterative parameter estimation scheme
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Expectation-Maximization algorithm

spatial 
model

intensity 
model

Observed data

If the tissue labels (“missing data”) were known, 
parameter estimation would be straightforward

EM algorithm iteratively fills in the missing data and 
updates the parameters accordingly

''Missing data''
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Expectation-Maximization algorithm

Expectation step: find the function

Maximization step: find

Iterative optimization algorithm

Likelihood with the missing 
tissue labels filled in 

Expectation over the missing tissue labels 
based on the current parameter estimation 

and the observed data
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Expectation step

Statistical classification 
of the image voxels 

based on the current 
parameter estimation

MRI data

classification

- Bayes' rule
- “soft” classification
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Maximization step

Parameter re-
estimation 

based on the 
current 

classification
MRI data classification
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EM algorithm summarized

Likelihood is 
guaranteed to 

increase at each 
iteration 

Simultaneous 
classification and 

parameter estimation 
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Example
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Example

- But how to extract the    
   intra-cranial volume?
- But how to initialize        
   automatically ?
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Expected location of tissue types

Average of many binary white matter, gray matter and CSF 
segmentations after affine normalization
Expected location of major tissue types in a healthy young 
population in a standardized coordinate frame

Source: Montréal Neurological Institute

gray matter
probability

white matter
probability

Atlas
template

CSF
probability
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Atlas registration

Atlas needs to be brought into 
spatial correspondence with the 
image under study before it can 
be used

Affine transformations 
(translation, rotation, scale and 
skew)
This can be done fully 
automatically by maximizing the 
so-called Mutual Information 
between the atlas template and 
the study image
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Atlas registration

Mutual Information measures the 
statistical dependence between 
two images [Maes et al., 1997]
[Wells et al., 1996a]

Is assumed maximal when the 
images are correctly aligned

Makes very few assumptions 
about the intensities in the 
images to be co-registered 

Fully-automated registration of the atlas template 
with the images under study, regardless of the 
pulse-sequence used.  
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Atlas registration

Image to be 
analyzed

Atlas template
before registration 

Atlas template 
after registration

White matter 
probability

Gray matter 
probability

CSF 
probability
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Improved spatial model 

The prior probability for tissue type k       is 
provided by the statistical brain atlas

Depends now on the location in the brain!

No unknown spatial model parameters        to be 
estimated

spatial 
model

intensity 
model
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Resulting EM algorithm

Expectation step:

Maximization step: remains the same

Classification takes 
prior knowledge into 
account

This effectively introduces  
geometrical constraints 
into the statistical 
classification

Classification is moderated 
by the  statistical brain 

atlas 
[Ashburner and Friston, 1997]

Makes the algorithm more robust
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Fully-automated segmentation

Atlas initializes EM algorithm

Atlas provides a rough brain 
mask   =>   no need for 
brain stripping in a pre-
processing step

Fully automated, pulse 
sequence adaptive brain MRI 
segmentation  
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MR field inhomogeneity

MRI-specific imaging artifact
Equipment limitations
Patient-induced electrodynamic interactions

Results in non-uniform tissue intensities

Also called “bias field”

Original MRI data After intensity windowing
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MR field inhomogeneity

Causes segmentation errors in the automated 
EM segmentation procedure



Koen Van Leemput, Helsinki University Central Hospital

Unify ing S tatistical Classification and Geometrical Models – MICCAI 2003

Improved intensity model 

Include an explicit model for the bias 
field in the intensity model 

[Van Leemput et al., 1999], based on 
[Wells et al., 1996b]

spatial 
model

intensity 
model
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Improved intensity model

Bias field is usually assumed to be multiplicative

After logarithmic transformation  =>  bias field 
becomes additive

=+

Improved modelOld model Bias field model

- Fourth-order polynomial
- Parameters need to be estimated as well
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Resulting EM algorithm

Three-step 
EM algorithm
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E-step: classification

MRI data

classification

bias field
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M-step part 1: distribution estimation

MRI data

classification

bias field
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M-step part 2: bias field estimation

predicted

classification

weights
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M-step part 2: bias field estimation

=-
Weighed 

least-
squares 

fit

Bias field is computed 
primarily from tissues with 

a narrow intensity 
distribution, and is 

extrapolated to regions 
where it cannot be 

confidently estimated 

predicted

weights

MRI data residue

bias field
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Example 1

MRI data

White matter without 
bias field model

White matter with 
bias field model

Estimated bias field
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Example 2: 2-D multi-slice sequence

MRI data Estimated bias field 

Bias-corrected MRI data 
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Implemented in ”EMS” software

Freely available from the website of the Medical Image Computing 
group, K.U.Leuven, Belgium: bilbo.esat.kuleuven.ac.be
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Multiple Sclerosis (MS)

Common disease of young adults
Primarily affects white matter
Cause?

environmental factors
genetic susceptibility

Relapsing-remitting
Relapse, stabilization, (partial) recovery

Primary progressive
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MRI in Multiple Sclerosis

MRI depicts abnormalities in 95% of patients

Diagnosis accompanied by confirmatory MRI

T1-weighted T2-weighted PD-weighted
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MRI in Multiple Sclerosis

Assessing progression
Monitoring effect of a new drug therapy

MS lesion segmentation from MRI

More sensitive and more objective marker than 
neurological disability scales

Primary outcome of preliminary clinical trials

Manual analysis????
- many hundreds of scans
- inter- and intra-rater variability

Need for automated tools
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Including MS lesion model????

Widely varying appearance in MRI

                         difficult to model

Not every individual scan contains lesions

                         difficult to estimate model parameters

T1-weighted T2-weighted PD-weighted
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Lesions as model outliers

Detect lesions as voxels that are not well 
explained by the model for normal brain MRI

Requires knowledge of the model 
parameters

But estimation of those model parameters is 
difficult  in the presence of lesions!
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Parameter estimation?

estimated bias field corrected datasynthetic data

Consider case of one tissue type
Simulated data with known bias field
Estimate bias field using Maximum-Likelihood 
(ML) parameter estimation: 
maximize 
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Parameter estimation?

Consider case of one tissue type
Simulated data with known bias field
Estimate bias field using Maximum-Likelihood 
(ML) parameter estimation: 
maximize 

estimated bias field corrected datasynthetic data
with “lesion”

“lesion”
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Robust statistics

Model outliers should have a reduced weight on 
the parameter estimation

M-estimator:

Iterative parameter estimation (“W-estimator”)

    step 1: calculate “typicality” weights

    step 2: maximize
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Robust statistics

synthetic data estimated bias field corrected data

histogram corrected data “typicality”
= weight in 

parameter estimation

1 - “typicality”
= outlier belief
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Applied to MS lesion segmentation

Extension to multiple tissues

Outlier belief depends on covariances of classes

•Statistical meaning?

•How to choose     ?
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Applied to MS lesion segmentation

Heuristic adaptation that takes the size of the 
covariance matrices into account

Re-parameterization to more easily interpretable 

     = mahalanobis distance threshold

      ~ statistical significance level
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MS lesions are not the only model 
outliers...

Partial volume voxels are also model outliers
On the edge between two or more tissue types

Mix several tissue types

Violate model assumptions (cf. later)
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Separating MS lesions from 
partial volume voxels

Exploit prior knowledge about MS lesions
MS lesions are hyperintense on PD and T2

95% of MS lesions are white matter lesions

Constraints on intensity

Constraints on location

Markov random field model 
[Li, 1995]
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Can be used to confine lesions to locations 
close to white matter

Markov random field (MRF) model

Tissue type in a voxel is 
statistically dependent on the 

tissue type of neighboring 
voxels

Typical MRF 
samples, for 

different MRF 
 parameter 

sets
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Fully-automated MS lesion 
segmentation

Model parameters 
are only estimated 
from normal tissues

Model adapts itself to 
each individual scan

No need for pre- or 
post-processing

Only one parameter 
to be specified: 
significance level 

[Van Leemput et al., 2001]
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Validation

Data from clinical trial
50 MS patients scanned every month during 1 
year

T1-, T2- and PD-weighted MR images

European Commission funded research project 
BIOMORPH

Automated segmentations compared to expert 
MS lesion delineations
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Validation

T1 T2 PD Expert lesion 
delineation

White 
matter

Gray 
matter

CSF MS lesions

Automated 
segmentation
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Total lesion load (TLL)

Total lesion volume per scan
For 10 patients, 2 consecutive time points 
were analyzed by a human expert
Expert TLL estimation compared to automated 
TLL estimation
Evaluated for different 

    significance levels 
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Average 
automated TLL 
decreases from 
150% to 25% of 
expert estimates 
as      increases

Total lesion load (TLL)



Koen Van Leemput, Helsinki University Central Hospital

Unify ing S tatistical Classification and Geometrical Models – MICCAI 2003

Total lesion load (TLL)

But correlation 
coefficient is 
always very high 
(0.96-0.98)

Exact choice of    
is unimportant in 
clinical trials 
assessing change 
in lesion volume
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Total lesion load (TLL)

For case      = 3.0

Agreement in 
direction of 
change in 9/10 
cases

patient 1 patient 2
…
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Implemented in ”EMS” software

Freely available from the website of the Medical Image Computing 
group, K.U.Leuven, Belgium:  bilbo.esat.kuleuven.ac.be
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Partial volume segmentation

Assumed so far that each voxel belongs to 
one single tissue type
In reality, many voxels in brain MR images are 
a mixture of several tissue types at the same 
time

Complex shape of the tissue interfaces in the 
brain

Limited spatial resolution of MRI

“Partial volume (PV) effect”
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Partial volume segmentation

Consistently misplacing the tissue borders in a 
1 mm isotropic brain MRI with a single pixel in 
each slice results in large volume errors 
[Niessen et al., 1999]:

~ 30% for white matter

~ 40% for gray matter

~ 60% for CSF

Partial volume voxels make lesion 
segmentation by outlier detection more difficult

Need to explicitly model the partial volume effect
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Improved image model

spatial 
model

intensity 
model

Original image 
grid

Downsampled 
image grid

downsample
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Before downsampling...

100% tissue 1
    0% tissue 2

    0% tissue 1
100% tissue 2
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... after downsampling (3x)

100% tissue 1
    0% tissue 2

89% tissue 1
11% tissue 2

78% tissue 1
22% tissue 2

...

Pure tissue 1Pure tissue 1 Pure tissue 2Pure tissue 2

Partial volume Partial volume 
tissuetissue



Koen Van Leemput, Helsinki University Central Hospital

Unify ing S tatistical Classification and Geometrical Models – MICCAI 2003

Expectation-Maximization algorithm 

spatial 
model

intensity 
model

downsample

Observed 
data

Missing data
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Expectation-Maximization algorithm 

Expectation step: find the function

Maximization step: find

Involves a partial volume image classification:
Not only probability for pure tissues

But also probability for e.g. 22% of tissue 
1 and 78% of tissue 2 

Unifying framework for PV segmentation literature 
[Van Leemput et al., 2003]
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Spatial model 1

Mixing combination in a voxel is 
independent of the mixing 
combinations in other voxels

All non-pure mixing combinations 
are equally probable 

Often used model, first proposed by 
[Santago and Gage, 1993 & 1995] 

spatial 
model

intensity 
model

downsample
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Spatial model 1

T1, 1x1x1 mm³ Parameter initialization

EM parameter estimation White matter fraction White-gray matter PV voxels
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Spatial model 1

T2, 1,18 x 1,18 x 3 mm³ EM parameter estimation 1

EM parameter estimation 2 EM parameter estimation 3

Slight modifications in 
the initialization result 
in different parameter 
estimations

Fully histogram-based 
method but histogram 
alone is not sufficient

The “true” parameter 
estimation is the one 
that provides a 
meaningful 
classification

Spatial information 
needed
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Spatial model 2

spatial 
model

intensity 
model

downsample

Markov random field model

Clustered regions of the same 
tissue type before downsampling

Homogeneous regions of pure 
tissues bordered by partial 
volume voxels after 
downsampling
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Spatial model 2

T1, 1x1x1 mm³ Parameter initialization

EM parameter estimation White matter fraction White-gray matter PV voxels
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Spatial model 2

T2, 1,18 x 1,18 x 3 mm³ EM parameter estimation?

MRF model tends to 
minimize the 
boundary length 
between tissues

This discourages 
classifications from 
accurately following 
the complex shape of 
the tissue interfaces

MRF over-smooths 
the classifications in 
cases where the 
intensity information 
doesn't prevent it

In order to solve this, better 
spatial models are needed to 

describe the spatial distribution 
of tissues in the brain

?



Koen Van Leemput, Helsinki University Central Hospital

Unify ing S tatistical Classification and Geometrical Models – MICCAI 2003

Overview

The mixture model and the EM algorithm
A probabilistic brain atlas
Modeling MR bias fields
Multiple Sclerosis lesion segmentation
Partial volume segmentation
Discussion and future directions



Koen Van Leemput, Helsinki University Central Hospital

Unify ing S tatistical Classification and Geometrical Models – MICCAI 2003

Expectation-Maximization algorithm

Image classification performed simultaneously 
with model parameter estimation:

Intuitive algorithm that interleaves classification 
with model parameter estimation
Allows to integrate prior geometrical knowledge into 
the classification in a natural fashion

After automated initialization with a statistical 
atlas, the classifier re-trains itself on each 
individual scan

Segments images of arbitrary pulse-sequences 
without user intervention 
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Each tissue has a typical intensity and tissue-
specific intensity variations

MR bias fields can be explicitly modeled

Lesions can be detected as model outliers
This allows to explicitly exclude lesions from model 
parameter estimations (e.g. bias field correction)

The partial volume effect can be explicitly 
modeled

The intensity model is already quite complete

Intensity model 
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Spatial model

Affine atlas registration provides only a rough brain 
mask => misclassifications of non-brain tissues as 
brain tissue

Affine atlas registration does not allow to segment 
brain MR images with large shape differences (e.g. 
dramatically enlarged ventricles)

White matter/gray matter/CSF atlas does not allow 
further parcellation of the brain 

More sophisticated models are needed for robust 
partial volume segmentation => atlas-based?

Deformable registration [Maes et al., 1999]
[Marroquin et al., 2002][Pohl et al., 2002][D'Agostino 
et al., 2003]
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Future research directions?

Deformable atlas registrations are performed by minimizing 
a registration metric between an MRI template associated 
with the atlas and the image to be segmented

Subject image

gray matter
probability

white matter
probability

MRI
template

CSF
probability

?

But presence of bias fields or lesions may hinder registration
Many deformable registration algorithms require similar 
intensities in the two images
Mutual Information based deformable registration is still difficult  
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Future research directions?

spatial 
model

intensity 
model

?

Deformable registration is performed to help the 
segmentation, but the segmentation could in turn help the 
registration
Deformation field as model parameters in the image model, 
to be estimated by the EM-algorithm?

Simultaneous registration and segmentation would 
eliminate the need for an atlas template
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