
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 10, OCTOBER 1999 897

Automated Model-Based Tissue Classification
of MR Images of the Brain

Koen Van Leemput,* Frederik Maes, Dirk Vandermeulen, and Paul Suetens

Abstract—We describe a fully automated method for model-
based tissue classification of magnetic resonance (MR) images of
the brain. The method interleaves classification with estimation
of the model parameters, improving the classification at each
iteration. The algorithm is able to segment single- and multi-
spectral MR images, corrects for MR signal inhomogeneities,
and incorporates contextual information by means of Markov
random Fields (MRF’s). A digital brain atlas containing prior
expectations about the spatial location of tissue classes is used to
initialize the algorithm. This makes the method fully automated
and therefore it provides objective and reproducible segmenta-
tions. We have validated the technique on simulated as well as
on real MR images of the brain.

Index Terms—Digital brain atlas, Markov random fields, MRI,
segmentation, tissue classification.

I. INTRODUCTION

T HE study of many brain disorders, such as multiple
sclerosis or schizophrenia, involves accurate tissue seg-

mentation from magnetic resonance (MR) images of the brain.
Manual tracing of white matter, gray matter, and cerebro-
spinal fluid (CSF) in MR images by a human expert is too time
consuming for studies involving large amounts of data and is
likely to show large intra- and interobserver variability, which
deteriorates the significance of the analysis of the resulting
segmentations. Automated and reliable intensity-based tissue
classification, on the other hand, is complicated by the spectral
overlap of MR intensities of different tissue classes and
by the presence of a spatially smoothly varying intensity
inhomogeneity or bias field [1]. A number of promising
approaches have been presented to cope with these problems
[2]–[4], but they still require some user interaction, making
their results not fully objective and reproducible.

Manuscript received February 18, 1999; revised July 9, 1999. This work
was supported by the EC-funded BIOMED-2 program under Grant BMH4-
CT96-0845 (BIOMORPH), by the Research Fund KULeuven under Grant
GOA/99/05 (VHS+), and by the EC-funded BIOMED-2 program under
Grant BMH4-CT98-6048 (QAMRIC). The work of D. Vandermeulen was
supported in part by the Fund for Scientific Research-Flanders (Belgium)
(FWO-Vlaanderen) under Grant 1.5.397.97. the work of K. Van Leemput was
supported in part by a grant from the Flemish Institute for the Improvement
of the Scientific-Technological Research in the Industry (IWT). F. Maes is
a Postdoctoral Fellow of Research for the Fund for Scientific Research-
Flanders (Belgium) (FWO-Vlaanderen). The Associate Editors responsible
for coordinating the review of this paper and recommending its publication
were M. Viergever and W. Niessen.Asterisk indicates corresponding author.

*K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens are with
the group of Medical Image Computing (Radiology–ESAT/PSI), Faculties of
Medicine and Engineering, University Hospital Gasthuisberg, Herestraat 49,
B-3000 Leuven, Belgium.

Publisher Item Identifier S 0278-0062(99)09632-9.

In contrast, in the companion paper [5] we describe a
new approach for model-based bias correction and tissue
classification in MR images of the brain that is completely
automated. The method is based on an iterative expectation-
maximization (EM) procedure that interleaves tissue classifi-
cation with estimation of tissue-class-specific intensity models
and bias field correction. Initialization of the iterative process
using a digital brain atlas witha priori probability maps for
the different tissue classes avoids all manual intervention,
which makes our method an objective and reproducible tool
for segmenting large amounts of data.

While in [5] we focus on the bias correction performed
by the algorithm and its validation on simulated data, in this
companion paper we concentrate on the tissue segmentation
generated by the algorithm. In [5] tissue classification is done
for each voxel independently, without taking the classification
of its neighbors into account. In this paper, we extend the
model of [5] to further improve the segmentation by incor-
porating contextual information during classification, using
a Markov random field (MRF). The MRF is designed to
facilitate discrimination between brain and nonbrain tissues,
while preserving the detailed interfaces between the various
tissue classes within the brain. We validate the approach, both
on simulated data and on real images, by comparison with
hand-segmented data.

This paper is organized as follows. Section II describes our
method for automated tissue classification of MR images of
the brain, including bias correction and estimation of the class-
conditional intensity model and MRF parameters. The method
is validated in Section III on simulated and real MR images
and we discuss the results in Section IV. Finally, Section V
summarizes the conclusions of the approach.

II. ML A PPROACH FORMODEL-BASED

SEGMENTATION OF THE BRAIN

For notational convenience, let the intensities in an MR
image be denoted as a one-dimensional (1-D) array

where is the number of voxels. Let the
underlying segmentation be denoted as
where indicates to which tissue type voxel belongs.
Assuming that there are tissue types, for some

where is a unit vector whoseth component
is one, all the other components being zero. The segmentation
process can then be defined as an estimation problem where
the underlying hidden segmentationhas to be estimated from
the observed intensities.
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In this paper, we use a parameterized model for MR
images of the brain to automate this estimation process.
More specifically, the hidden segmentationis modeled as
the realization of a random process with some probability
density function that is parameterized by the
parameter set Furthermore, it is assumed that has
generated the observed intensitieswith probability density
function parameterized by . As will be
shown in the following, estimation of the segmentation

is straightforward once the model parameters
are known. However, estimation of these model

parameters, in its turn, is helped by knowledge of the
segmentation. Intuitively, both the segmentation and the
model parameters can be estimated simultaneously by
interleaving the segmentation with estimation of the model
parameters.

The EM algorithm [6] formalizes this intuitive approach. It
estimates the maximum likelihood (ML) parameters

by iteratively estimating the hidden databased on the current
parameter estimation and recalculating that maximizes
the likelihood of the so-called complete data More
specifically, the algorithm interleaves two steps:

E Step: Find the function

M Step: Find

with the iteration number. If during the M step,
the next estimate is chosen only to ensure

, then the algorithm is
called a generalized EM algorithm (GEM). It has been shown
that the log likelihood is guaranteed to increase
for EM and GEM algorithms [7]. Upon convergence, the
segmentation is obtained as a byproduct as the estimated.

Recently, we developed a GEM algorithm for automated
bias field correction of MR images of the brain [5], [8],
using a specific model where each voxel is randomly
sampled from a parameterized intensity distribution. Since
the segmentation algorithm that is presented in this paper
is an extension of it, we briefly describe it in Section II-
A. The model is then extended in Section II-B by adding
a regularization component using the concept of MRF’s.
Section II-C explains how a digital brain atlas can be added
to the method in order to make it a fully automated tool
for segmenting brain tissue from MR images. We describe
some implementation issues in Section II-D and we finally
show how the method works on a simple example in
Section II-E.

A. The Independent Model

Consider the following simple model for an MR image. The
tissue type of voxel , represented by , is drawn randomly
from a collection of possible classes, each with its own
known probability for That is

Suppose furthermore that the intensity of a voxel belonging to
class is normally distributed around a certain mean, with
a variance grouped in . Furthermore, suppose
that the spatially smoothly varying intensity inhomogeneity or
bias field can be written as a linear combination
of smoothly varying basis functions with
where is the number of basis functions anddenotes the
spatial position. Let denote the bias
field parameters and the overall model
parameters. The bias field in MR is usually modeled as a
multiplicative effect. We therefore work on log-transformed
intensities, which makes the bias additive. The probability
density for voxel intensity in voxel , given that it belongs
to class , is then

where denotes a zero-mean normal distribution with
variance .

Application of the EM algorithm that searches for the ML
estimation of the model parameters yields the following
equations (see Appendix A):

(1)

(2)

(3)

...

(4)
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with

...
...

. . .

...

where denotes the iteration number.
These equations can be interpreted as three interleaved

steps: classification of the voxels (1); estimation of the normal
distributions (2) and (3); and estimation of the bias field (4).
Previously, we have given a more detailed description of the
algorithm and its practical use [5], [8]. Therefore, we direct
the interested reader to these papers for more details. Suffice
it to say that we use polynomials for the basis functions
and that the algorithm is easily extended to multispectral MR
data by substituting the normal distributions with mean
and variance to multivariate normals with mean and
covariance matrix .

B. Regularization Using MRF’s

The independent model of Section II-A classifies the voxels
based on their intensity only. This yields acceptable segmen-
tation results as long as the different classes are well separated
in intensity feature space, i.e., have a clearly discernible
associated intensity distribution. Unfortunately, this is not
always true for MR images of the brain, especially when only
one MR channel is available. Whereas such tissues as white
matter, gray matter, and CSF usually have a characteristic
intensity, voxels surrounding the brain often show an MR
intensity that is very similar to brain tissue. This results in
erroneous classifications of small regions surrounding the brain
as gray matter or white matter.

We therefore extend the MR model by incorporating gen-
eral spatial and anatomical constraints, such as that a voxel
surrounded by nonbrain tissue cannot belong to gray matter,
by introducing the concept of MRF’s. The hidden dataare
assumed to be a realization of a random process where the
probability that voxel belongs to tissue typedepends on the
tissue type of its neighbors. The Hammersley–Clifford theorem
states that such a random field is a Gibbs Random Field (see
[9] and the references therein), i.e., its configurations obey a
Gibbs distribution

where is a normalization
constant called the partition function and is an
energy function dependent on the MRF parameters.

We use a simple MRF that is defined on a so-called first-
order neighborhood system, i.e., only the six nearest neighbors
on the three-dimensional (3-D) image lattice are used. Let

denote the neighborhood of voxel
where , , , and are its four neighbors in the plane,

and and its two neighbors out of the plane. The voxel
size in MR images is equal in the and direction, but
usually different in the direction. We therefore assume that
the interaction between a voxel with its neighbors in the

direction is the same as that with its neighbors in the
direction, but different from that with its neighbors in the
direction. Therefore, we use the following Potts model (the

ary extension of the binary Ising model [10]):

where

stands for the set of labels at the six sites neighboringand

where

is a vector that counts per classthe number of neighbors of
within the plane that belong to Similarly,

counts per class the number of neighbors out of the plane
that belong to . and are matrices that together
form the MRF parameters .

With the addition of the MRF, there are now two parameter
sets and . As explained in Appendix B, the exact
calculation of is no longer practically feasible and we use
an approximation based on the so-called mean field theory,
as proposed by Zhang [11] and Langanet al. [12]. More
specifically, (2)–(4) remain valid, but the classification step
is no longer given by (1) but by

(5)

where

The difference lies herein, that in the independent model
each voxel had the samea priori probability to
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belong to class , whereas now this probability depends on
the classification of the neighboring voxels.

The calculation of the MRF parameters is
more difficult. Zhang [11] used an approximation based on
the same mean field idiom

(6)

This results in an expression that is very similar to Besag’s
pseudo-likelihood approach [9] for estimation of the MRF
parameters for fully labeled data , but now with
from (5) instead of . Unfortunately, even with this pseudo-
likelihood approximation, it is not possible to derive closed-
form expressions for as it was the case for . Instead,
numerical maximization methods for solving the nonlinear
equations must be used. However, these are rather time con-
suming and the solution can differ depending on the initial
estimate.

We therefore use a more efficient heuristic approach that
is noniterative, using a least squares (LS) fit procedure [9].
Hereto, we define a vector that denotes all
parameters and

and an equally sized configuration vector

In Appendix C, we show that for any neighborhood configu-
ration and for any two distinct values and the
following holds:

(7)

Each distinct combination of , , , and defines one
such equation. Supposing that can somehow
be estimated, one obtains an over determined linear system of
equations that can be solved using a standard LS method. This
would provide an estimation of the MRF parameters.

During iteration we estimate
by constructing a histogram that counts
how many times a specific configuration occurred
in the current classification . Since is a soft clas-
sification, the contribution of a voxelto the histogram entry

is given by the probability that its con-
figuration is Subsequently,
is estimated by Solving the linear
system of (7) then provides the estimation .

To summarize, the complete EM algorithm interleaves four
steps: classification of the voxels (5); estimation of the normal
distribution parameters (2) and (3); estimation of the bias
field (4); and estimation of the MRF parameters (7). The
classification step (5) shows a remarkable similarity with the
iterated conditional modes (ICM) algorithm [13]. ICM is a

local optimization algorithm that tries to find the most likely
hidden data given the data and the parameters and

. It iteratively updates the discrete labelsby assigning the
label of each voxel to

Comparing the above to (5), it can be seen that the EM
algorithm is a soft implementation of the ICM algorithm, i.e.,
the classification is updated in a soft sense rather than
with discrete labels. The difference with the ICM algorithm
lies herein, that the parameters and are updated each
iteration.

C. Initialization with a Digital Brain Atlas

The algorithm presented above interleaves classification,
distribution parameter estimation, bias field parameter estima-
tion, and MRF parameter estimation. We initially set the bias
field parameters to zero and start the iterations by providing the
algorithm with a rough prior estimation of the classification
in every voxel . The distribution parameters are then estimated
using (2) and (3), after which a first estimate of the bias field
is made with (4) and the MRF parameters are calculated using
(7). Subsequently, (5) is used to calculate a new estimate of
the tissue classification, etc.

The prior classification is derived from a digital brain atlas
that contains spatially varying prior probability maps for the
location of white matter, gray matter, and CSF (see [5] for
more details). The use of the atlas avoids interactive user
intervention to initialize the algorithm, which makes the results
reproducible and objective and allows the method to be fully
automated.

We also use the atlas for constraining the classification
process during the subsequent iterations of the algorithm, since
it contains extra spatial information in case of overlapping
intensities between distinct classes. More specifically, we
multiply the prior probability in (5) in
every voxel by the prior probability of class in the atlas.
This also makes the algorithm more robust in case of very
severe bias fields.

D. Implementation

In this section, we describe our practical approach and
the implementation that was used to validate the method in
Section III.

We use four classes: white matter (class 1); gray matter
(class 2); CSF (class 3); and other (class 4). As explained in
[5], the other class is represented by two normal distributions
and one distribution that models the background noise in
MR. The prior probability for these classes is
obtained by simply dividing the prior probability for other
equally over these three distributions.

The MRF parameters and are 4 4 matrices. The
th element describes the contribution to the energy func-

tion of a neighboring voxel that
belongs to class . Direct application of this model favors
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configurations of where each class is spatially clustered.
More specifically, a homogeneous region of white matter
would preferably be surrounded by a homogeneous region
of gray matter, in its turn surrounded by CSF that is finally
surrounded by other. Small regions outside the brain that are
misclassified as brain tissue are not preferable, and the MRF
helps avoid such misclassifications.

However, it has been described in the literature that fine
structures, such as the interface between white matter and
gray matter, can be erased by the Potts/Ising MRF model
[3], [14]. The MRF over regularizes such subtle borders and
attempts to produce nicely smooth interfaces. We therefore
propose a modification that penalizes impossible combinations,
such as a gray matter voxel surrounded by voxels belonging
to other, while at the same time preserving edges between
tissues that are known to border each other. We impose that
a voxel surrounded by white-matter and gray-matter voxels
must have the same probability to be white matter as to be
gray matter. With the class numbers defined above, this can
be achieved by imposing the constraints that and

, the same for As a result, voxels surrounded
by brain tissues have a low probability for CSF and other and
a high, but equal, probability for white and gray matter. The
actual decision between white and gray matter is therefore only
based on the intensity, so that the interface between white and
gray matter is unaffected by the MRF.

The same rationale applies for the interface between gray
matter and CSF and , the same for

, and to the interface between CSF and other
and , the same for . This reduces the number of
MRF parameters to be estimated by (7) from to

The constraint that can easily be implemented
by adding the corresponding columns in (7) before solving
the linear system of equations.

The EM procedure can be iterated until either the parameter
estimates converge or some maximum number of iterations
is reached. The ultimate stop criterion detects when the log-
likelihood stops increasing significantly, since this
is after all the objective function that the EM algorithm
maximizes. However

requires calculation of all the possible realizations of the MRF,
which is computationally not feasible. We therefore once more
call upon the mean field theory by approximating
using (6)

(8)

Note that evaluation of this objective function involves no
additional computational burden, since the contribution of each

voxel is calculated anyway during the classification step as the
denominator of (5).

We have implemented the method in C language and
integrated it inside the Matlab-based [15] SPM96-software
package [16]. The program is able to segment multispectral
MR brain images and is fully automated. As a first step,
we coregister and reformat all the MR channels in case of
multispectral data, using the affine registration method based
on maximization of mutual information of Maeset al. [17].
We then spatially normalize the atlas to the study image with
the same registration program. The EM algorithm described
above is then used to segment the images. Voxels where the
atlas indicates a zero prior probability for white matter, gray
matter, or CSF are of no interest and are simply discarded. To
speed up the computation, we update the parameters
only based on a limited subset of all voxels. Only voxels
are used that lie on the subgrid of the original image grid
that is closest to 4 4 4 mm The algorithm is stopped
when the relative change of the estimation of
between two subsequent iterations drops below 0.0001, which
typically occurs after approximately 25 iterations. The overall
calculation time depends on the size of the images involved.
It takes less than 30 min to segment a single-channel image
with dimensions 256 256 60 on an SGI onyx 2.

E. Example

To clarify how the algorithm works, we here illustrate by
way of an example the influence each component of the
method has on the resulting segmentations. We have processed
the same single-channel T1-weighted image (Siemens Vision
1.5 T, 3-D MPRAGE, 256 256 matrix, 1.25 mm slice
thickness, 128 slices, FOV 256 mm, TR 11.4 ms, TE

4.4 ms) a number of times, each time leaving some step out
of the algorithm (see Fig. 1).

The first time, we set the order of the bias field polyno-
mial and the MRF parameter matrices and to zero,
which reduces the method to the application of the inde-
pendent model, as described in Section II-A where the bias
field estimation step is left out. The second time, and

were again fixed to zero, but now the order of the bias
field polynomial was set to four. Fig. 1(b) and (c) shows
the gray-matter component of the classification probability

upon convergence for both situations. Without bias cor-
rection, white matter at the top of the brain is misclassified
as gray matter, whereas the result is clearly much better
when the bias correction step is added to the algorithm.
However, some tissues surrounding the brain have intensities
that are similar to brain tissue and are wrongly classified as
gray matter.

We then added the MRF parameter estimation step and
again ran the algorithm with bias polynomial order set to
four. It can be seen from Fig. 1(d) that addition of the MRF
results in a better distinction between brain tissues and tissues
surrounding the brain. This is most beneficial in the case of
single-channel MR data, where it is often difficult to discern
such tissues based on their intensity only. The MRF cleans
up the segmentations of brain tissues, while preserving the
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(a) (b) (c) (d) (e)

Fig. 1. Example of how the different components of the algorithm work. (a) T1-weighted image. (b) Gray-matter segmentation without bias field correction
and MRF. (c) Gray-matter segmentation with bias field correction but without MRF. (d) Gray-matter segmentation with bias field correction and MRF.
(e) Gray-matter segmentation with bias field correction and MRF without constraints.

detailed interface between gray and white matter and between
gray matter and CSF. Fig. 2 depicts a 3-D volume rendering
of the gray matter segmentation map when the MRF is used.

To demonstrate why we impose additional constraints on
the interaction matrices and , described in Section II-
D, we have processed the same image once more, but now
without the constraints. We started from the previous segmen-
tation [Fig. 1(d)], reestimated and from there without
the constraints, and performed the classification step until
convergence while keeping the parameters fixed. As can be
seen from Fig. 1(e), the resulting segmentation now shows
nicely distinct regions, but small details, such as small ridges
of white matter, are lost. The MRF prior has over regularized
the segmentation and should therefore not be used in this form.
By imposing the additional constraints on and , we only
use the MRF to penalize combinations that are not possible.
This helps to clean up the segmentation maps of the brain
tissues, but leaves fine details intact.

III. V ALIDATION

A. Simulated Data

Although the algorithm should be validated on real MR data,
a comprehensive validation is easier performed on simulated
images, since the ground truth is not known forin vivo data.
Furthermore, experiments with simulated data allow studying
the influence of several imaging artifacts, such as noise and
MR bias fields, separately.

Fig. 2. 3-D volume rendering of the gray-matter segmentation of the data
of Fig. 1 with bias field correction and MRF.

Therefore, we have validated the EM algorithm on simulated
MR images of the head (see [5] for a visual impression of these
images) that were generated by the BrainWeb MR simulator
[18]–[20]. We used images with an isotropic voxel size of
1 mm and studied the influence of noise, field inhomogeneity,
and contrast (T1-, T2-, or PD-weighted) by comparing the
automatic segmentations with the known ground truth. For
this comparison, we made a hard final segmentation from the
tissue classification maps produced by the automatic algorithm
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(a) (b) (c)

Fig. 3. Overlap metric between the automatic segmentation and the known ground truth for simulated MR images without bias field as a function of
noise level for (a) gray matter, (b) white matter, and (c) total brain.

(a) (b) (c)

Fig. 4. (a) Examination of misclassified voxels on the simulated data: T1 image. (b) Misclassified white matter voxels for 1% noise. (c) Misclassified white
matter voxels for 3% noise. The ground-truth white matter is shown in gray; misclassified white matter voxels are overlayed in white.

by assigning each voxel uniquely to the class where it most
probably belongs. Let denote the volume of the voxels
that are assigned to a classby both the ground truth and
the automatic algorithm. Similarly, let and denote the
volume of voxels assigned to class by, respectively, the
automatic algorithm and the ground truth. We then measure the
overlap between the automatic segmentation and the ground
truth for class by This metric, first
described by Dice [21] and recently reintroduced by Zijdenbos
et al. [22], attains the value of one if both segmentations are
in full agreement and zero if there is no overlap at all.

We first investigated the influence of noise by using images
that were not corrupted with a bias field. We ran the EM
algorithm with the order of the bias field polynomial set to
zero, i.e., no bias correction is performed, on T1-, T2-, and
PD-weighted images separately and combined, for noise levels
ranging from 1 to 9%. A noise level of 3% is considered
typical, whereas 9% represents extreme conditions. The vari-
ation of the overlap metric for gray matter, white matter, and
total brain (both together) with the noise level is depicted in
Fig. 3. As a general trend, the segmentation can be seen to
deteriorate with increasing noise. Furthermore, the use of all
three channels (T1, T2, and PD) together yielded, in all cases,

better segmentations compared to the situation where only one
channel was available for the algorithm.

Surprisingly, however, the segmentation on single-channel
data improves systematically when the noise level decreases
from 9 to 3%, but then deteriorates again for noise level
1%. Furthermore, the total brain volume is fairly accurately
segmented in all cases, whereas the segmentation of gray and
white matter is generally much worse. We therefore examined
the classification maps more closely and observed that both
observations are caused by the same effect. Fig. 4 depicts a
representative slice of the T1 data set with 1% noise and the
exact location of misclassified white matter voxels in that slice
for 1% and 3% noise. We concentrate on this data, since the
overlap metric drop from 3 to 1% was the most remarkable
for white matter segmented from T1 data in Fig. 3.

As can be seen from Fig. 4, a one-voxel-thick interface
between white and gray matter is consistently misclassified
in the case of 1% noise. These voxels are partial volume
(PV) voxels, i.e., they have an intensity that lies somewhere
in between the mean intensity of white and gray matter. Such
PV voxels that do in fact not belong to either white or gray
matter, but are really a mixture of both, are mostly classified to
the class with the largest variance. In the absence of noise, the
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(a) (b) (c)

Fig. 5. Overlap metric between the automatic segmentation without bias correction and the known ground truth for simulated MR images with bias fields
of 40% as a function of noise level for (a) gray matter, (b) white matter, and (c) total brain.

(a) (b) (c)

Fig. 6. Overlap metric between the automatic segmentation with bias field correction and the known ground truth for simulated MR images with bias fields
of 40% as a function of noise level for (a) gray matter, (b) white matter, and (c) total brain.

intensity variance of pure tissue voxels around their class mean
is only determined by the simulated tissue characteristics. As
is the case in real MR images, gray matter shows a larger
variance than white matter in the simulated data. Hence, the
PV voxels are mostly classified as gray matter. When noise is
introduced, the difference in variance between white and gray
matter decreases, which shifts their interface slightly. Fig. 4
shows this effect clearly: when the noise level is increased
from 1 to 3%, the segmentation error is reduced. Adding
more noise again deteriorates the segmentation, since then pure
tissue voxels start to be misclassified due to the noise.

To validate the performance of the algorithm on images
that are corrupted by severe bias fields, we used simulated
images with 40% field inhomogeneity. Fig. 5 depicts the
segmentations when the order of the bias field polynomial was
set to zero, i.e., when no bias field correction was performed.
The bias field clearly deteriorates the segmentations, especially
when only one channel is available to the algorithm. When,
on the contrary, the order of the bias field polynomial was set
to four, the segmentations were much better. This is shown in
Fig. 6. Comparing these results with the ones of Fig. 3 reveals
few differences, which shows that the algorithm corrects such
MR field inhomogeneities well.

B. Hand-Segmented Data

We have validated the algorithm on real MR data as well, by
comparing the automatic segmentations with manual tracings

by a human expert. We analyzed nine datasets that were
acquired on a Signa 1.5T system, having 1.171.17-mm
in-plane resolution and 124 1.2-mm-thick slices acquired in
the sagittal plane. These images are of the brains of children
around the age of 10–16 years and were manually segmented
by Robert T. Schultz, Child Study Center, Yale University,
New Haven, CT. For all 124 slices, the whole brain outer
surface was traced, although no attempt was made to carefully
delineate all sulci. For two slices out of each dataset, one axial
and one coronal, the gray–white and gray–CSF boundaries
were carefully traced, trying to precisely delineate the sulci.

We compared the manual tracings with the automatic seg-
mentations by calculating the overlap metric that was also
used in Section III-A. Table I contains the result on each of
the nine datasets for the total brain and for gray matter in the
coronal and axial slice that was chosen for manual delineation.

By far, most of the misclassifications on the total brain
are caused by the more detailed segmentation of the gray-
matter–CSF interface by the automatic method compared to
the manual tracing. As was the case with the simulated
data, the gray matter segmentation is clearly less accurate
than the total brain segmentation. Fig. 7 depicts the exact
location of misclassified gray matter voxels for the coronal
and axial manually traced slices of a representative dataset. It
can be seen that the automatic algorithm segments the gray
matter–CSF interface in more detail than the manual tracer.
Some tissue surrounding the brain is still misclassified as
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(a) (b) (c) (d) (e)

Fig. 7. Examination of voxels that are differently classified by the human tracer than by the automated method on a representative dataset. (a) Axial and
coronal slice that was carefully manually segmented. (b) Corresponding manual segmentation of gray matter. (c) Automatic segmentation of gray matter
without MRF prior. (d) Automatic segmentation of gray matter with MRF. (e) Difference between manual and automatic segmentation with MRF shown
in white. The overlap metric is 84.4% for the axial and 83.1% for the coronal slice.

TABLE I
OVERLAP METRIC BETWEEN MANUAL AND AUTOMATIC SEGMENTATION ON

NINE DATASETS OF MR IMAGES OF CHILDREN. THE TOTAL BRAIN

SEGMENTATION ON THE WHOLE VOLUME WAS COMPARED, AS WELL AS

GRAY MATTER SEGMENTATION OF AN AXIAL AND A CORONAL SLICE

gray matter, although this error is already reduced compared
to the situation where no MRF prior is used. However, by
far most misclassifications are due to the classification of
gray–white matter partial volume voxels to gray matter by the
automated method. The human observer has segmented white
matter consistently, as a thicker structure than the automatic
algorithm.

Table II shows the final estimation of the MRF parameters
and for these nine datasets. Since each column of

both matrices is only defined up to a constant, as can be
verified from (7), we normalized each column for visualization
purposes by adding a constant so that the diagonal elements
become zero. For each entry, we calculated the mean and
the standard deviation over the nine datasets. It can be seen
that the parameter estimations are fairly constant over the
datasets. This should not come as a surprise, as all the images
have a similar content. Because of the virtually isotropic
voxelsize, the out-plane interactions are very similar to
the in-plane interactions . Finally, the relatively high values

TABLE II
ESTIMATED MRF INTERACTION MATRICES FORNINE DATASETS OF MR IMAGES

OF CHILDREN (MEAN � STANDARD DEVIATION). CLASS 1 IS WHITE

MATTER, CLASS 2 GRAY MATTER, CLASS 3 CSFAND CLASS 4 OTHER

associated with noncompatible tissue types reflect the high
spatial resolution of the images. White matter is always
surrounded by gray matter, which, in its turn, is consistently
surrounded by CSF, which is finally surrounded by other.

IV. DISCUSSION

We have described and validated a fully automated model-
based method for segmenting brain tissues from MR im-
ages. The algorithm iteratively interleaves voxel classification,
intensity distribution parameter estimation, MR bias field
correction, and MRF parameter estimation.

Due to the fact that the in-plane resolution is generally
different than the out-plane resolution in MR images, we have
modeled in-plane class transition probabilities with different
parameters than between-slice class transition probabilities
parameterized by . Since the resolution of MR images can
largely vary, we reestimate and for every image sepa-
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rately. It should be noted, however, that the MRF parameter
estimation step is responsible for almost half of the total
computational burden. To speed up the algorithm, one could
neglect the out-plane interactions and precalculate the in-
plane interactions just once on a normal brain dataset.
Since the in-plane resolution in MR is fairly constant, this
precalculated could then be used for the segmentation of all
following datasets. However, this approach does not make use
of the full 3-D nature of the MR images and can therefore be
expected to yield less powerful discrimination between brain
and nonbrain tissues. On the contrary, if a large set of similar
images with equal voxel sizes has to be segmented, both
and could be precalculated on one image and applied to
all other images of the set. Although we have not validated
this approach, we expect this to speed up the process without
loss of accuracy.

Application of the genuine Ising model or itsary exten-
sion, the Potts model, leads to the loss of small details in
the resulting segmentations, as shown in Fig. 1(e). This over
regularization is a well-known effect which other models try
to overcome. In particular, the so-called Chien model, first
proposed by Descombeset al. [14], seems better adapted to
medical images since it better preserves fine structures and lin-
ear shapes. Unfortunately, generalizing this two-dimensional
(2-D) model to 3-D induces neighborhoods of 124 voxels and
leads in practice to intractable computations [23]. A more
efficient extension to 3-D has been proposed in [23], but
this still involves 60 neighbors. Instead, we have imposed
additional constraints on the interaction matricesand of
the Potts model. This leads to an algorithm that is computa-
tionally efficient, involving only six neighbors, while leaving
fine details intact.

A problem that showed up during the validation for both
simulated and real MR data, was the PV effect. Whereas
the model we used assumes that each voxel in the image
belongs to only one single class, voxels that lie on the
border between different tissue types violate this assumption.
In reality, these voxels are a mixture of tissues and every
segmentation method that tries to assign them exclusively to
one class is condemned to fail. The problem is especially
important in images of the brain since the interface between
gray and white matter is highly complex, which results in
a high volume of PV voxels compared to the volume of
pure tissue voxels. Misclassification of this thin interface
therefore gives immediate rise to considerable segmentation
errors [24].

Ideally, the model should be adjusted to model a mixture
of tissue types in each voxel rather than a single tissue type
only. In the literature, a number of attempts have been made
in this direction. Choiet al. [25] introduced the concept
of so-calledmixels, but they had to introduce heuristics in
order to arrive at a workable solution. More recently, Laidlaw
et al. [26] have applied the intensity distribution of partial
volume mixtures of two tissues derived by Santago and
Gage [27] to the segmentation problem. However, the time
figures they sketch are still too high for the method to be
practically useful. Further research is therefore needed in this
direction.

Often one is not only interested in segmentations of the total
white and gray matter, but also in anatomical substructures of
the brain. Examples include the separation of the left and right
hemisphere in the study of brain asymmetry associated with
schizophrenia. While the segmentation of such anatomically
defined structures is typically performed by matching a labeled
atlas to the study image, using a nonrigid registration tech-
nique, these methods have difficulty in segmenting such highly
variable structures as the white–gray matter interface. We are
currently investigating the use of Thirion’s demons [28] tech-
nique to subdivide the segmentation maps generated by the EM
algorithm described above into anatomical substructures [29].

Although the MRF in combination with the digital atlas
helps avoid misclassifications, it is not always sufficient to
totally prevent nonbrain tissues to be misclassified as gray
or white matter, as can be seen on Fig. 7. Usually, this
kind of problem is addressed by mathematical morphological
operations in a postprocessing step. Alternatively, deformable
topological models have been proposed [30]. In a similar vein,
we plan to use a nonrigid registration method to generate a new
atlas by averaging the segmentations of a number of normal
subjects after nonrigid matching. Compared to the atlas that
we use at this moment, which was generated by averaging
segmentations after affine normalization, the new a priori maps
for gray matter, white matter, and CSF would be much sharper.
We expect this to lead to a better fitted brain mask and, as a
result, to improved segmentations.

We demonstrated the validity of the approach on simulated
data and by comparison with manual segmentations by a
single observer. More validation is needed to fully charac-
terize the performance of the algorithm against a range of
multiple expert segmentations. Further work includes adapting
the algorithm so that it can be applied to fully automated
segmentation of Multiple Sclerosis (MS) lesions in the brain
for analyzing the time evolution of MS lesions during drug
treatment [31].

V. CONCLUSIONS

We have presented a fully automated model-based method
for tissue classification of MR images of the brain. The
algorithm interleaves classification with MR bias field correc-
tion, intensity distribution estimation, and estimation of MRF
parameters. We use a digital brain atlas, containing information
about the expecteda priori location of tissue types, to initialize
the algorithm. This yields a fully automated method for tissue
classification that produces objective and reproducible results.
The method was validated on simulated and real MR images of
the brain. The use of MRF’s helps in discriminating between
brain and nonbrain tissues. Future work will focus on the
construction of a more accurate brain atlas using a nonrigid
registration technique and on the investigation of the partial
volume effect.

APPENDIX A

We here derive the EM algorithm for the independent model
of Section II-A. The log likelihood for the complete data
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can be written as

Since is a vector with all zero components except for a
single component that is unity, we have

and

where is a vector that has as th component
and similar has a th component

. Therefore, we have

Define as the estimation of the
hidden data in voxel based on its intensity and the
current parameter estimate . It can then be seen that

which results in (1) after application of Bayes’ rule. Explicit
maximization of to yields (2) and (3) for the
distribution parameters and and (4) for the
bias field parameters [5], [8].

APPENDIX B

We here derive the equations for the parameterswhen the
MRF is added. There are now two parameter setsand .
Denoting , the log likelihood for the complete
data now becomes

and hence

The parameters can now be calculated in the same way
as the independent model. However,
can no longer been calculated with (1) since theare not

independent and, as a result, it is difficult to obtain the exact
solution. By definition

However, due to the interaction between the’s, the above
would involve calculation of all the possible realizations
of the MRF. Therefore, exact calculation of is not
computationally feasible and an approximate technique must
be used.

We here adopt an approximation that was proposed by
Zhang [11] and Langanet al. [12], based on the mean field
theory from statistical mechanics. This mean field approach
suggests an approximation to based on the assumption
that the influence of in the calculation of
can be approximated by the influence of from the
previous iteration. This explains (5). Once is known,
the equations for the parameters can be derived in
exactly the same way as with the independent model and,
therefore, (2)–(4) remain valid.

APPENDIX C

We show how (7) can be obtained. Usingand as
defined in Section II-B, the following holds:

(9)

The conditional likelihood is related to the
potential by

Furthermore

so that

Since the right-hand side of the above is independent of the
value of , so is the left-hand side and therefore

for any two distinct values and .Rearranging the above
and using (9), we obtain (7).
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