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Automated Model-Based Tissue Classification
of MR Images of the Brain

Koen Van Leemput,* Frederik Maes, Dirk Vandermeulen, and Paul Suetens

Abstract—We describe a fully automated method for model- In contrast, in the companion paper [5] we describe a
based tissue classification of magnetic resonance (MR) images ofhew approach for model-based bias correction and tissue
the brain. The method interleaves classification with estimation 5ssification in MR images of the brain that is completely
of the model parameters, improving the classification at each ; . . .
iteration. The algorithm is able to segment single- and multi- automated. The method is based on an iterative expectation-
spectral MR images, corrects for MR signal inhomogeneities, Mmaximization (EM) procedure that interleaves tissue classifi-
and incorporates contextual information by means of Markov cation with estimation of tissue-class-specific intensity models
randOTt_FieldSb(Mlt?ti’S). Atplilgital lta_rain fatt_las Conltaining_ priord . and bias field correction. Initialization of the iterative process
expectations apbou e spatial location or tissue classes IS use H T H H A ili
init[i)alize the algorithm. Tﬁis makes the method fully automated (hsmg.a dlgltal. brain atlas wita pf'o” probability maps for.
and therefore it provides objective and reproducible segmenta- the_ different tissue classes avo_'ds_ all manual Inter_ventlon,
tions. We have validated the technique on simulated as well as Which makes our method an objective and reproducible tool
on real MR images of the brain. for segmenting large amounts of data.

Index Terms—Dbigital brain atlas, Markov random fields, MRI, While in [_5] we fogus Or_' th? bias C_orreCt'on perfolrme(_j
segmentation, tissue classification. by the algorithm and its validation on simulated data, in this
companion paper we concentrate on the tissue segmentation
generated by the algorithm. In [5] tissue classification is done
for each voxel independently, without taking the classification

HE study of many brain disorders, such as multiplef its neighbors into account. In this paper, we extend the

sclerosis or schizophrenia, involves accurate tissue segedel of [5] to further improve the segmentation by incor-
mentation from magnetic resonance (MR) images of the braporating contextual information during classification, using
Manual tracing of white matter, gray matter, and cerebra Markov random field (MRF). The MRF is designed to
spinal fluid (CSF) in MR images by a human expert is too timiacilitate discrimination between brain and nonbrain tissues,
consuming for studies involving large amounts of data andvghile preserving the detailed interfaces between the various
likely to show large intra- and interobserver variability, whichissue classes within the brain. We validate the approach, both
deteriorates the significance of the analysis of the resulting simulated data and on real images, by comparison with
segmentations. Automated and reliable intensity-based tissiznd-segmented data.
classification, on the other hand, is complicated by the spectrallhis paper is organized as follows. Section Il describes our
overlap of MR intensities of different tissue classes andethod for automated tissue classification of MR images of
by the presence of a spatially smoothly varying intensitye brain, including bias correction and estimation of the class-
inhomogeneity or bias field [1]. A number of promisingconditional intensity model and MRF parameters. The method
approaches have been presented to cope with these problemalidated in Section Il on simulated and real MR images
[2]-[4], but they still require some user interaction, makingnd we discuss the results in Section IV. Finally, Section V
their results not fully objective and reproducible. summarizes the conclusions of the approach.

I. INTRODUCTION
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In this paper, we use a parameterized model for MR. The Independent Model

images of the brain to automate this estimation process.cqnsider the following simple model for an MR image. The
More specifically, the hidden segmentationis modeled as o5 e type of voxet, represented by;, is drawn randomly

the realization of a random process with some probabilify,y, 5 collection of K possible classes, each with its own
density function f(»|®.) that is parameterized by the,,qwn probability P(k) for 1 < k < K. That is
parameter setb.. Furthermore, it is assumed that has - T

generated the observed intensitigsvith probability density

function f(y|z, ®,) parameterized by®,. As will be f(z = ex) = P(k).
shown in the following, estimation of the segmentation

z is straightforward once the model parametebs =

{®y,®-} are known. However, estimation of these modedyppose furthermore that the intensity of a voxel belonging to
parameters, in its turn, is helped by knowledge of th@assk is normally distributed around a certain mean with
segmentation. Intuitively, both the segmentation and t'%ﬁ\/ariancef,% grouped irdy, = {1, 02}. Furthermore, suppose
model parameters can be estimated simultaneously it the spatially smoothly varying intensity inhomogeneity or
interleaving the segmentation with estimation of the modg|as field can be written as a linear combinatidp ¢;¢; (z)

parameters. _ - of smoothly varying basis functions;(z) with 1 < j < J
The EM algorithm [6] formalizes this intuitive agproach. l\where J is the number of basis functions aaddenotes the
estimates the maximum likelihood (ML) parametérs spatial position. LetC' = {ci,¢z, --,c;} denote the bias
field parameters an&, = {61, -- -, 0k, C} the overall model

& — arg max log f(y]®) para_m_eter_s. The bias field in MR is usually modeled as a
o multiplicative effect. We therefore work on log-transformed
intensities, which makes the bias additive. The probability
by iteratively estimating the hidden datdased on the current density for voxel intensity; in voxel 4, given that it belongs
parameter estimatio® and recalculatingd that maximizes to classk, is then
the likelihood of the so-called complete data= (v, »). More
specifically, the algorithm interleaves two steps:
E Step: Find the function flyilzi = en, @y) = Go | yi — 4 — Z cjpj(wi)
J

Q@2 = Ellog f(q|®)|y, ™).
(@l ) oz Jla|®)ly ] where GG, () denotes a zero-mean normal distribution with

variance o?.
M Step: Find Application of the EM algorithm that searches for the ML
estimation of the model parameteds, yields the following
0"+ — arg max Q((I)@(m)) equations (see Appendix A):
i3]

(m)
m+l) - (mtl flyilzi = er, @y ) f(2 = er)
with m the iteration number. If during the M step, ng )I[PE )]k: e .

the next estimate ®™ is chosen only to ensure iz = e, Oz = e
QD9 > Q(e(™)|d(™), then the algorithm is ;f(yl 5@ 2
called a generalized EM algorithm (GEM). It has been shown (1)
that the log likelihoodlog f(y|®) is guaranteed to increase N 7
for EM and GEM algorithms [7]. Upon convergence, the (m4) | (m)
. - - Dk Yi Z ¢ b ()
segmentation is obtained as a byproduct as the estimated = ot
Recently, we developed a GEM algorithm for automated p{"*" = . (2)
bias field correction of MR images of the brain [5], [8], pEZ’H)
using a specific model where each voxel is randomly =
sampled from a parameterized intensity distribution. Since . ; 2
the segmentation algorithm that is presented in this paper (m+1) _(mA41) Z c('m)(/)j(x‘)
o i} T

is an extension of it, we briefly describe it in Section II- - ik Yi ™ Fa -
7= Jj=

A. The model is then extended in Section II-B by addingo{"*")? = _
a regularization component using the concept of MRF’s. p(m+1)

Section 1I-C explains how a digital brain atlas can be added = ik

to the method in order to make it a fully automated tool A3)
for segmenting brain tissue from MR images. We describe (m+1)
some implementation issues in Section II-D and we finally {,,+1)
show how the method works on a simple example i €2
Section II-E. :

— (AtW(rn—l—l)A)—lAtW(nl-i—l)T(rn-l—l) (4)
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with where Z(®,) = X, exp[—Unmr(2|®.)] is a normalization
P1(x1)  ¢alzy) - constant called the partition function aid,,:(z|®.) is an
A= |pr(x) ¢a(w2) - energy function dependent on the MRF parameders

We use a simple MRF that is defined on a so-called first-
order neighborhood system, i.e., only the six nearest neighbors

Wwimth) :diag(wg"’“)) on the three-dimensional (3-D) image lattice are used. Let
K N; = {i",4%,i%,i°,4*,i*} denote the neighborhood of voxel
w{™tY = > w{m i wherei™, i, ', andi¢ are its four neighbors in the plane,
k=1 and* and " its two neighbors out of the plane. The voxel
K size in MR images is equal in the and y direction, but
Z wgg’“)u;"’“) usually different in the: direction. We therefore assume that
gD k=L the interaction between a voxel with its neighbors in the
o K (mt1) z direction is the same as that with its neighbors in the
Z Wik direction, but different from that with its neighbors in the
k=1~(rn+l) direction. Therefore, we use the following Potts model (the
Yy1—y mary extension of the binary Ising model [10]):

1
T(rn-f—l) — |y — ngrn-l-l)

9 n

: u1lrf(z|(1)z) = Z Uvmrf(zi|z|./\fi7(1)z)
=1

wii Y =p (oY where

wherem denotes the iteration number.

These equations can be interpreted as three interleaved 2y, = {zv |’ € Ni}
steps: classification of the voxels (1); estimation of the norm
distributions (2) and (3); and estimation of the bias field (4).
Previously, we have given a more detailed description of the Unet (2
algorithm and its practical use [5], [8]. Therefore, we direct
the interested reader to these papers for more details. Suffi
it to say that we use polynomials for the basis functignse)
and that the algorithm is easily extended to multispectral MR
data by substituting the normal distributions with mean is a vector that counts per clakghe number of neighbors of
and variances} to multivariate normals with meap,, and ¢ within the plane that belong té. Similarly,

covariance matrix>’.

ands for the set of labels at the six sites neighboiiagd

n, @) = 2iGg; + 2 HR;

re

G; = Zin + Zis + 2w+ Zge

h; = z;¢ + Zib

B. Regularization Using MRF’s counts per clasg the number of neighbors out of the plane

The independent model of Section II-A classifies the voxelgat belong tok. G and H are K x K matrices that together
based on their intensity only. This yields acceptable segmdftm the MRF parameter®. = {G, H}.
tation results as long as the different classes are well separateWith the addition of the MRF, there are now two parameter
in intensity feature space, i.e., have a clearly discernibfets ®, and ®.. As explained in Appendix B, the exact
associated intensity distribution. Unfortunately, this is né@lculation of®, is no longer practically feasible and we use
always true for MR images of the brain, especially when onfn approximation based on the so-called mean field theory,
one MR channel is available. Whereas such tissues as wi@ife Proposed by Zhang [11] and Langahal. [12]. More
matter, gray matter, and CSF usually have a characterigiRecifically, (2)—(4) remain valid, but the classification step
intensity, voxels surrounding the brain often show an M no longer given by (1) but by
intensity that is very similar to brain tissue. This results ingm+1) _ ; (m+1)
erroneous classifications of small regions surrounding the brAii =l Ji

as gray matter or white matter. _ Jilz = e, oY) f(z = ek|p§$’), ™) c

We therefore extend the MR model by incorporating gen- K (5)
eral spatial and anatomical constraints, such as that a voxel Z fluilz = ej,<1>§m))f(zi = ej|p(’:’),<1>§m))
surrounded by nonbrain tissue cannot belong to gray matter, J

by introducing the concept of MRF’s. The hidden datare
assumed to be a realization of a random process where the

probability tha_t vox_eli belongs to tissue typédepe_nds on the F(oi = el (m) <I><m)) B C*Umr(ekIpf\f.j>7q>§m>)
tissue type of its neighbors. The Hammersley—Clifford theorem %= CklPay ¥ ) T T ) () w(mye
states that such a random field is a Gibbs Random Field (see Z e Ummleilpi @)
[9] and the references therein), i.e., its configurations obey a j=1

Gibbs distribution The difference lies herein, that in the independent model

f(2|®.) = Z(®.) 7" exp[— Ut (2]®.)] each voxel had the sameepriori probability f(z; = ex) to
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belong to class:, whereas now this probability depends ofocal optimization algorithm that tries to find the most likely
the classification of the neighboring voxels. hidden dataz given the datay and the parameterg, and

The calculation of the MRF parameteds, = {G,H} is &,. It iteratively updates the discrete labelby assigning the
more difficult. Zhang [11] used an approximation based dabel of each voxel to

the same mean field idiom m
(195,00 7(m+1) +— arg max Tuilzi, @) f (2 ) i)7 e-)
—Unre(zilpys 20" % @ o p 1. )
(m)y ~ € ‘ = f(yZ|ZZ,(I)y)f(ZZ|Z f 7(I)z)
f(z|(l>z ) o 1:[ Z C—U;nrr(Z“P,(\T):‘I’(zm)) ) (6) zzz;
2} Comparing the above to (5), it can be seen that the EM

This results in an expression that is very similar to Besa gog;';hsr;flii;is;f(tnﬁg?j Egéifg i(rjlf;h:o;tcs',\gnasl,gor:\ttwgr’ tlhim
seudo-likelihood approach [9] for estimation of the MRF . . X ; :
pSeuco-IKel bp 5] matl with discrete labels. The difference with the ICM algorithm

parametersd. for fully labeled dataz, but now with p™ ° )
from (5) instead ofz. Unfortunately, even with this pseudo-!i‘:’azigem’ that the parametets, and . are updated each

likelihood approximation, it is not possible to derive closed
form expressions fo. as it was the case fop,. Instead,

numerical maximization methods for solving the nonlineaCP'
equations must be used. However, these are rather time confhe algorithm presented above interleaves classification,
suming and the solution can differ depending on the initigistribution parameter estimation, bias field parameter estima-
estimate. tion, and MRF parameter estimation. We initially set the bias

We therefore use a more efficient heuristic approach tHigld parameters to zero and start the iterations by providing the
is noniterative, using a least squares (LS) fit procedure [@{lgorithm with a rough prior estimation of the classificatjgn
Hereto, we define &2K2 x 1 vector 6 that denotes all in every voxek. The distribution parameters are then estimated
parameters7 and H using (2) and (3), after which a first estimate of the bias field

is made with (4) and the MRF parameters are calculated using

0 =[G GuxlGar - Gaxe| -+ [Grer - Grex] (7). Subsequently, (5) is used to calculate a new estimate of
Hyy---Hig|Ho -+ Hog |-+ |Hg1 -+ Hire] the tissue classification, etc.

The prior classification is derived from a digital brain atlas
that contains spatially varying prior probability maps for the
Vi g =710t zi2gt o0 zikgl location of white matter, gray matter, and CSF (see [5] for

zitht zohl oo zighl] more details). The use of the atlas avoids interactive user
intervention to initialize the algorithm, which makes the results

In Appendix C, we show that for any neighborhood configymproducible and objective and allows the method to be fully
ration {g;, h;} and for any two distinct values; and z;, the gutomated.

Initialization with a Digital Brain Atlas

and an equally sized configuration vectr g, 1.,

following holds: We also use the atlas for constraining the classification
. . 5 —lon F(2, 95, hil ) . _process_durlng the sub_sequent iterations of the algorithm, since
[vZ, g0 _Uzz,gz-,hi] = log —f(7’ g hi|@.) ) (7) it contains extra spatial information in case of overlapping
“pr 1yt z

o o _ intensities between distinct classes. More specifically, we
Each dlstlnpt comblnatlion of;, z, gi, and h; defines one myltiply the prior probability f(z; = ek|zM,<I>§"')) in (5) in
such equation. Supposing thftz;, g, h;|®.) can somehow every voxeli by the prior probability of class in the atlas.

be estimated, one obtains an over determined linear systentgfs also makes the algorithm more robust in case of very
equations that can be solved using a standard LS method. Tdd§ere bias fields.

would provide an estimation of the MRF parameters.

During iteration(m + 1) we estimatef(z;, g;, h7‘,|‘1>,gm+l)) D. Implementation
by constructing a histograrf(z:, g;. h:|®™ ) that counts
how many times a specific configuratidr;, g;, ; } occurred
in the current classificatiopt™+1). Sincep(™+1) is a soft clas- Section III
sification, the(gggtriputign of a voxelto the .h.istograr-n entry  we use four classes: white matter (class 1); gray matter
H(z, 9, hi|®=""") is given by the probability that its 59" (class 2); CSF (class 3); and other (class 4). As explained in
figuration is {z;, g:, h;}. Subsequentlyf(z;, g, h;|®{" ) [5], the other class is represented by two normal distributions
is estimated byH(z;,gi, h;|®" ™) /n. Solving the linear and one distribution that models the background noise in
system of (7) then provides the estimatiof™ ™. MR. The prior probabilityf(z; |z, ®.) for these classes is

To summarize, the complete EM algorithm interleaves fowbtained by simply dividing the prior probability for other
steps: classification of the voxels (5); estimation of the normeadjually over these three distributions.
distribution parameters (2) and (3); estimation of the bias The MRF parameter§/ and H are 4 x 4 matrices. The
field (4); and estimation of the MRF parameters (7). Thg:, j)th element describes the contribution to the energy func-
classification step (5) shows a remarkable similarity with then U,.:(z; = ex|zn;, ®.) of a neighboring voxel that
iterated conditional modes (ICM) algorithm [13]. ICM is abelongs to clasg. Direct application of this model favors

In this section, we describe our practical approach and
the implementation that was used to validate the method in
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configurations ofz where each class is spatially clustered:oxel is calculated anyway during the classification step as the
More specifically, a homogeneous region of white mattelenominator of (5).
would preferably be surrounded by a homogeneous regionWe have implemented the method in C language and
of gray matter, in its turn surrounded by CSF that is finallintegrated it inside the Matlab-based [15] SPM96-software
surrounded by other. Small regions outside the brain that gra&ckage [16]. The program is able to segment multispectral
misclassified as brain tissue are not preferable, and the MRIR brain images and is fully automated. As a first step,
helps avoid such misclassifications. we coregister and reformat all the MR channels in case of

However, it has been described in the literature that fimeultispectral data, using the affine registration method based
structures, such as the interface between white matter amd maximization of mutual information of Maest al. [17].
gray matter, can be erased by the Potts/lsing MRF mod&k then spatially normalize the atlas to the study image with
[3], [14]. The MRF over regularizes such subtle borders anlde same registration program. The EM algorithm described
attempts to produce nicely smooth interfaces. We therefabove is then used to segment the images. Voxels where the
propose a modification that penalizes impossible combinatioaflas indicates a zero prior probability for white matter, gray
such as a gray matter voxel surrounded by voxels belongirmgtter, or CSF are of no interest and are simply discarded. To
to other, while at the same time preserving edges betwespeed up the computation, we update the paramététg ™)
tissues that are known to border each other. We impose tbhaty based on a limited subset of all voxels. Only voxels
a voxel surrounded by white-matter and gray-matter voxedgse used that lie on the subgrid of the original image grid
must have the same probability to be white matter as to tat is closest to 4 4 x 4 mn?. The algorithm is stopped
gray matter. With the class numbers defined above, this cahen the relative change of the estimation lof f(y|®)
be achieved by imposing the constraints that = G5; and  between two subsequent iterations drops below 0.0001, which
G12 = Gas, the same forH. As a result, voxels surroundedtypically occurs after approximately 25 iterations. The overall
by brain tissues have a low probability for CSF and other amalculation time depends on the size of the images involved.
a high, but equal, probability for white and gray matter. Thi takes less than 30 min to segment a single-channel image
actual decision between white and gray matter is therefore omjth dimensions 256x 256 x 60 on an SGI onyx 2.
based on the intensity, so that the interface between white and
gray matter is unaffected by the MRF.

The same rationale applies for the interface between gray Example

matter and CSKGa2 = G32 and Gaz = (33, the same for  To clarify how the algorithm works, we here illustrate by

H), and to the interface between CSF and off®¥3 = Gu3  way of an example the influence each component of the

andG34 = Ga4, the same foii). This reduces the number ofmethod has on the resulting segmentations. We have processed

MRF parameters to be estimated by (7) franx 4> = 3210  the same single-channel T1-weighted image (Siemens Vision

20. The constraint that7;;, = G can easily be implemented1 5 T, 3-D MPRAGE, 256x 256 matrix, 1.25 mm slice

by adding the corresponding columns in (7) before solvingickness, 128 slices, FO¥ 256 mm, TR= 11.4 ms, TE

the linear system of equations. = 4.4 ms) a number of times, each time leaving some step out
The EM procedure can be iterated until either the parametgirthe algorithm (see Fig. 1).

estimates converge or some maximum number of iterationsthe first time, we set the order of the bias field polyno-

is reached. The ultimate stop criterion detects when the logial and the MRF parameter matric&s and H to zero,

likelihood log f(y|®) stops increasing significantly, since thisyhich reduces the method to the application of the inde-

is after all the objective function that the EM algorithmpendent model, as described in Section II-A where the bias

maximizes. However field estimation step is left out. The second tin&, and
H were again fixed to zero, but now the order of the bias
log f(y|®™)) = log Z f(y|z, @éﬂl))f(z@gm)) field polynomial was set to four. Fig. 1(_b_) a_nd (c) shoy\_/s
> the gray-matter component of the classification probability

_ _ . o p upon convergence for both situations. Without bias cor-
requires calculation of all the possible realizations of the MRiection, white matter at the top of the brain is misclassified
which is Computationally not feasible. We therefore once MO gray matter, whereas the result is C|ear|y much better
call upon the mean field theory by approximatiy‘igzléi"’)) when the bias correction step is added to the algorithm.

using (6) However, some tissues surrounding the brain have intensities
(m) that are similar to brain tissue and are wrongly classified as
log f(y|@"™) gray matter.
o ~ o N () (m) We then added the MRF parameter estimation step and
_1ogZ 1_[1 [FCyilzi, @) fzilp e 2] again ran the algorithm with bias polynomial order set to

” four. It can be seen from Fig. 1(d) that addition of the MRF
_ log |2, ) f(z (n_l)’ (™). (8 results in a better distinction between brain tissues and tissues

; ® z; Jui v le ) ® surrounding the brain. This is most beneficial in the case of

single-channel MR data, where it is often difficult to discern

Note that evaluation of this objective function involves nsuch tissues based on their intensity only. The MRF cleans
additional computational burden, since the contribution of eaclp the segmentations of brain tissues, while preserving the
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(b) (© (d) (e)

Fig. 1. Example of how the different components of the algorithm work. (a) T1-weighted image. (b) Gray-matter segmentation without bias field correct
and MRF. (c) Gray-matter segmentation with bias field correction but without MRF. (d) Gray-matter segmentation with bias field correction and MRF.
(e) Gray-matter segmentation with bias field correction and MRF without constraints.

detailed interface between gray and white matter and between
gray matter and CSF. Fig. 2 depicts a 3-D volume rendering
of the gray matter segmentation map when the MRF is used.
To demonstrate why we impose additional constraints on
the interaction matrice€s and H, described in Section II-
D, we have processed the same image once more, but now
without the constraints. We started from the previous segmen-
tation [Fig. 1(d)], reestimated? and H from there without
the constraints, and performed the classification step until
convergence while keeping the parameters fixed. As can be
seen from Fig. 1(e), the resulting segmentation now shows
nicely distinct regions, but small details, such as small ridges
of white matter, are lost. The MRF prior has over regularized
the segmentation and should therefore not be used in this form.
By imposing the additional constraints é¢hand H, we only
use the MRF to penalize combinations that are not possib'I:(ie. 5
This helps to clean up the segmentation maps of the br@iﬂ‘tig‘_ 1
tissues, but leaves fine details intact.

3-D volume rendering of the gray-matter segmentation of the data
with bias field correction and MRF.

I1l. V ALIDATION Therefore, we have validated the EM algorithm on simulated
MR images of the head (see [5] for a visual impression of these
A. Simulated Data images) that were generated by the BrainWeb MR simulator

Although the algorithm should be validated on real MR dat&l8]-[20]. We used images with an isotropic voxel size of
a comprehensive validation is easier performed on simulatednm and studied the influence of noise, field inhomogeneity,
images, since the ground truth is not known fievivo data. and contrast (T1-, T2-, or PD-weighted) by comparing the
Furthermore, experiments with simulated data allow studyigtomatic segmentations with the known ground truth. For
the influence of several imaging artifacts, such as noise altis comparison, we made a hard final segmentation from the
MR bias fields, separately. tissue classification maps produced by the automatic algorithm
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Fig. 3. Overlap metric between the automatic segmentation and the known ground truth for simulated MR images without bias field as a function of
noise level for (a) gray matter, (b) white matter, and (c) total brain.

@) (b) (©

Fig. 4. (a) Examination of misclassified voxels on the simulated data: T1 image. (b) Misclassified white matter voxels for 1% noise. (c) Misclassified wh
matter voxels for 3% noise. The ground-truth white matter is shown in gray; misclassified white matter voxels are overlayed in white.

by assigning each voxel uniquely to the class where it mdsttter segmentations compared to the situation where only one
probably belongs. Le¥* denote the volume of the voxelschannel was available for the algorithm.
that are assigned to a clagsby both the ground truth and  Surprisingly, however, the segmentation on single-channel
the automatic algorithm. Similarly, l18t* and V* denote the data improves systematically when the noise level decreases
volume of voxels assigned to clagsby, respectively, the from 9 to 3%, but then deteriorates again for noise level
automatic algorithm and the ground truth. We then measure tt8. Furthermore, the total brain volume is fairly accurately
overlap between the automatic segmentation and the growsdimented in all cases, whereas the segmentation of gray and
truth for classk by 2VE/(VE + VF). This metric, first white matter is generally much worse. We therefore examined
described by Dice [21] and recently reintroduced by Zijdenbake classification maps more closely and observed that both
et al. [22], attains the value of one if both segmentations ambservations are caused by the same effect. Fig. 4 depicts a
in full agreement and zero if there is no overlap at all. representative slice of the T1 data set with 1% noise and the
We first investigated the influence of noise by using imagexact location of misclassified white matter voxels in that slice
that were not corrupted with a bias field. We ran the ENbr 1% and 3% noise. We concentrate on this data, since the
algorithm with the order of the bias field polynomial set t@verlap metric drop from 3 to 1% was the most remarkable
zero, i.e., no bias correction is performed, on T1-, T2-, aridr white matter segmented from T1 data in Fig. 3.
PD-weighted images separately and combined, for noise level$\s can be seen from Fig. 4, a one-voxel-thick interface
ranging from 1 to 9%. A noise level of 3% is considerethetween white and gray matter is consistently misclassified
typical, whereas 9% represents extreme conditions. The vani-the case of 1% noise. These voxels are partial volume
ation of the overlap metric for gray matter, white matter, an@PV) voxels, i.e., they have an intensity that lies somewhere
total brain (both together) with the noise level is depicted im between the mean intensity of white and gray matter. Such
Fig. 3. As a general trend, the segmentation can be seerP¥ voxels that do in fact not belong to either white or gray
deteriorate with increasing noise. Furthermore, the use of alhtter, but are really a mixture of both, are mostly classified to
three channels (T1, T2, and PD) together yielded, in all casé® class with the largest variance. In the absence of noise, the
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Fig. 5. Overlap metric between the automatic segmentation without bias correction and the known ground truth for simulated MR images with bias fields
of 40% as a function of noise level for (a) gray matter, (b) white matter, and (c) total brain.
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Fig. 6. Overlap metric between the automatic segmentation with bias field correction and the known ground truth for simulated MR images with bias fields
of 40% as a function of noise level for (a) gray matter, (b) white matter, and (c) total brain.

intensity variance of pure tissue voxels around their class mdan a human expert. We analyzed nine datasets that were
is only determined by the simulated tissue characteristics. Asquired on a Signa 1.5T system, having 1:71.17-mm
is the case in real MR images, gray matter shows a largefplane resolution and 124 1.2-mm-thick slices acquired in
variance than white matter in the simulated data. Hence, e sagittal plane. These images are of the brains of children
PV voxels are mostly classified as gray matter. When noiseagound the age of 10-16 years and were manually segmented
introduced, the difference in variance between white and grby Robert T. Schultz, Child Study Center, Yale University,
matter decreases, which shifts their interface slightly. Fig.Mew Haven, CT. For all 124 slices, the whole brain outer
shows this effect clearly: when the noise level is increasedrface was traced, although no attempt was made to carefully
from 1 to 3%, the segmentation error is reduced. Addingelineate all sulci. For two slices out of each dataset, one axial
more noise again deteriorates the segmentation, since then piti¢ one coronal, the gray-white and gray—CSF boundaries
tissue voxels start to be misclassified due to the noise.  were carefully traced, trying to precisely delineate the sulci.
To validate the performance of the algorithm on images We compared the manual tracings with the automatic seg-
that are corrupted by severe bias fields, we used simulat@éntations by calculating the overlap metric that was also
images with 40% field inhomogeneity. Fig. 5 depicts thgsed in Section IlI-A. Table I contains the result on each of
segmentations when the order of the bias field polynomial wafe nine datasets for the total brain and for gray matter in the
set to zero, i.e., when no bias field correction was performeghronal and axial slice that was chosen for manual delineation.
The bias field clearly deteriorates the segmentations, especiallgy far, most of the misclassifications on the total brain
when only one channel is available to the algorithm. Whegre caused by the more detailed segmentation of the gray-
on the contrary, the order of the bias field polynomial was sgfatter—CSF interface by the automatic method compared to
to four, the segmentations were much better. This is shownifs manual tracing. As was the case with the simulated
Fig. 6. Comparing these results with the ones of Fig. 3 reve@igta, the gray matter segmentation is clearly less accurate
few differences, which shows that the algorithm corrects sughyn the total brain segmentation. Fig. 7 depicts the exact

MR field inhomogeneities well. location of misclassified gray matter voxels for the coronal
and axial manually traced slices of a representative dataset. It
B. Hand-Segmented Data can be seen that the automatic algorithm segments the gray

We have validated the algorithm on real MR data as well, byatter—CSF interface in more detail than the manual tracer.
comparing the automatic segmentations with manual tracin§eme tissue surrounding the brain is still misclassified as
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@ (b) © (d) (e)

Fig. 7. Examination of voxels that are differently classified by the human tracer than by the automated method on a representative dataset.da) Axial an
coronal slice that was carefully manually segmented. (b) Corresponding manual segmentation of gray matter. (c) Automatic segmentation @fr gray matt
without MRF prior. (d) Automatic segmentation of gray matter with MRF. (e) Difference between manual and automatic segmentation with MRF shown

in white. The overlap metric is 84.4% for the axial and 83.1% for the coronal slice.

TABLE | TABLE I
OVERLAP METRIC BETWEEN MANUAL AND AUTOMATIC SEGMENTATION ON ESTIMATED MRF INTERACTION MATRICES FORNINE DATASETS OF MR IMAGES
NINE DATASETS OF MR IMAGES OF CHILDREN. THE TOTAL BRAIN OF CHILDREN (MEAN £ STANDARD DEVIATION). CLAss 1 |s WHITE
SEGMENTATION ON THE WHOLE VOLUME WAS CoMPARED, AS WELL AS MATTER, CLASS 2 GRAY MATTER, CLASS 3 CSFaAND CLAss 4 OTHER
GRAY MATTER SEGMENTATION OF AN AXIAL AND A CORONAL SLICE G
Total brain | Gray matter | Gray matter - . -
((r0> axial ((7'0) coronal (%) 0+0 0+0 2.57+0.17 2.96+0.07
05§ 330 ]4.5 00 0+0 00 1.83+£0.48
95.7 81.7 83.8 3.37+0.06 0+0 0+0 0+0
96.0 84.9 3.7 | 3.03+£0.08 2.39+0.56 0+0 010
96.0 85.2 81.1
95.2 77.3 74.4
95.5 81.4 80.2 H =
95.4 88.6 86.4 I 0£0 00 2.754+0.11 3.33+0.41
95.4 84.4 83.1 0£0 00 0+0 1.51+0.25
94.7 80.8 82.0 3.60+0.13 0+0 0+0 0+0
| 3.35+£097 2.13+0.23 0+0 0+0

gray matter, although this error is already reduced compared
to the situation where no MRF prior is used. However, b@ssociated with noncompatible tissue types reflect the high
far most misclassifications are due to the classification ®patial resolution of the images. White matter is always
gray—white matter partial volume voxels to gray matter by tpirrounded by gray matter, which, in its turn, is consistently
automated method. The human observer has segmented wiggounded by CSF, which is finally surrounded by other.
matter consistently, as a thicker structure than the automatic
algorithm.

Table Il shows the final estimation of the MRF parameters IV. DiscussioN
G and H for these nine datasets. Since each column ofWe have described and validated a fully automated model-
both matrices is only defined up to a constant, as can based method for segmenting brain tissues from MR im-
verified from (7), we normalized each column for visualizatioages. The algorithm iteratively interleaves voxel classification,
purposes by adding a constant so that the diagonal eleméntsnsity distribution parameter estimation, MR bias field
become zero. For each entry, we calculated the mean amdrection, and MRF parameter estimation.
the standard deviation over the nine datasets. It can be seeDue to the fact that the in-plane resolution is generally
that the parameter estimations are fairly constant over tti#ferent than the out-plane resolution in MR images, we have
datasets. This should not come as a surprise, as all the imagesieled in-plane class transition probabilities with different
have a similar content. Because of the virtually isotropisarameters? than between-slice class transition probabilities
voxelsize, the out-plane interactiorf$ are very similar to parameterized byd. Since the resolution of MR images can
the in-plane interaction&. Finally, the relatively high values largely vary, we reestimaté& and H for every image sepa-



906 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 10, OCTOBER 1999

rately. It should be noted, however, that the MRF parameterOften one is not only interested in segmentations of the total
estimation step is responsible for almost half of the totathite and gray matter, but also in anatomical substructures of
computational burden. To speed up the algorithm, one coulee brain. Examples include the separation of the left and right
neglect the out-plane interactiod$ and precalculate the in- hemisphere in the study of brain asymmetry associated with
plane interactions just once on a normal brain datasetschizophrenia. While the segmentation of such anatomically
Since the in-plane resolution in MR is fairly constant, thidefined structures is typically performed by matching a labeled
precalculated7 could then be used for the segmentation of adltlas to the study image, using a nonrigid registration tech-
following datasets. However, this approach does not make usgue, these methods have difficulty in segmenting such highly
of the full 3-D nature of the MR images and can therefore bariable structures as the white—gray matter interface. We are
expected to yield less powerful discrimination between bragurrently investigating the use of Thirion’s demons [28] tech-
and nonbrain tissues. On the contrary, if a large set of similaique to subdivide the segmentation maps generated by the EM
images with equal voxel sizes has to be segmented, @othalgorithm described above into anatomical substructures [29].
and H could be precalculated on one image and applied toAlthough the MRF in combination with the digital atlas
all other images of the set. Although we have not validatdtelps avoid misclassifications, it is not always sufficient to
this approach, we expect this to speed up the process withtaially prevent nonbrain tissues to be misclassified as gray
loss of accuracy. or white matter, as can be seen on Fig. 7. Usually, this
Application of the genuine Ising model or itaary exten- kind of problem is addressed by mathematical morphological
sion, the Potts model, leads to the loss of small details @perations in a postprocessing step. Alternatively, deformable
the resulting segmentations, as shown in Fig. 1(e). This owepological models have been proposed [30]. In a similar vein,
regularization is a well-known effect which other models tryve plan to use a nonrigid registration method to generate a new
to overcome. In particular, the so-called Chien model, firgtlas by averaging the segmentations of a number of normal
proposed by Descombext al. [14], seems better adapted tosubjects after nonrigid matching. Compared to the atlas that
medical images since it better preserves fine structures and We use at this moment, which was generated by averaging
ear shapes. Unfortunately, generalizing this two-dimensiorggigmentations after affine normalization, the new a priori maps
(2-D) model to 3-D induces neighborhoods of 124 voxels aridr gray matter, white matter, and CSF would be much sharper.
leads in practice to intractable computations [23]. A moré/e expect this to lead to a better fitted brain mask and, as a
efficient extension to 3-D has been proposed in [23], btgsult, to improved segmentations.
this still involves 60 neighbors. Instead, we have imposedWe demonstrated the validity of the approach on simulated
additional constraints on the interaction matricésnd H of data and by comparison with manual segmentations by a
the Potts model. This leads to an algorithm that is computgingle observer. More validation is needed to fully charac-
tionally efficient, involving only six neighbors, while leavingterize the performance of the algorithm against a range of
fine details intact. multiple expert segmentations. Further work includes adapting
A problem that showed up during the validation for botithe algorithm so that it can be applied to fully automated
simulated and real MR data, was the PV effect. Whereaegmentation of Multiple Sclerosis (MS) lesions in the brain
the model we used assumes that each voxel in the imédge analyzing the time evolution of MS lesions during drug
belongs to only one single class, voxels that lie on tHeeatment [31].
border between different tissue types violate this assumption.
In reality, these voxels are a mixture of tissues and every
segmentation method that tries to assign them exclusively to
one class is condemned to fail. The problem is especiallyWe have presented a fully automated model-based method
important in images of the brain since the interface betweéor tissue classification of MR images of the brain. The
gray and white matter is highly complex, which results ialgorithm interleaves classification with MR bias field correc-
a high volume of PV voxels compared to the volume dion, intensity distribution estimation, and estimation of MRF
pure tissue voxels. Misclassification of this thin interfacparameters. We use a digital brain atlas, containing information
therefore gives immediate rise to considerable segmentatadpout the expectea priori location of tissue types, to initialize
errors [24]. the algorithm. This yields a fully automated method for tissue
Ideally, the model should be adjusted to model a mixtu@assification that produces objective and reproducible results.
of tissue types in each voxel rather than a single tissue typbe method was validated on simulated and real MR images of
only. In the literature, a number of attempts have been maie brain. The use of MRF’s helps in discriminating between
in this direction. Choiet al. [25] introduced the concept brain and nonbrain tissues. Future work will focus on the
of so-calledmixels but they had to introduce heuristics inconstruction of a more accurate brain atlas using a nonrigid
order to arrive at a workable solution. More recently, Laidlawegistration technique and on the investigation of the partial
et al. [26] have applied the intensity distribution of partiavolume effect.
volume mixtures of two tissues derived by Santago and
Gage [27] to the segmentation problem. However, the time
figures they sketch are still too high for the method to be
practically useful. Further research is therefore needed in thisNe here derive the EM algorithm for the independent model
direction. of Section II-A. The log likelihood for the complete data

V. CONCLUSIONS

APPENDIX A
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g = (y, 2) can be written as independent and, as a result, it is difficult to obtain the exact
solution. By definition
log f(q|®y) = log f(u, 2|®y)
= log f(ylz, @) +log f(2) Elaily, @™ =Y zif(zly, ™)
=D log fluilzi ®,) + Y log f(z). 3 zif(lz @) £ (2 08)
=1 =1 z
- (m)
Since z; is a vector with all zero components except for a Jyletm)
single component that is unity, we have However, due to the interaction between thés, the above
log 6 — ® would involve calculation of all the possible realizations
08 J(yilzi ®y) = 7 Uil @) of the MRF. Therefore, exact calculation pf™*" is not
and computationally feasible and an approximate technique must
be used.
log f(z) = 2V We here adopt an approximation that was proposed by

Zhang [11] and Langamet al. [12], based on the mean field
where U(y;|®,) is a vector that has asth component theory from statistical mechanics. This mean field approach

log f(vil~ ., ®,) and similarV has akth component suggests an approximation;b&”’l) based on the assumption
log f(# = ex). Therefore, we have that the influence ok;,j # ¢ in the calculation Ofp(m+l)
can be approximated by the influence pﬁ‘") from the
Q(‘I’y@ém)) = Ellog f(q|®y)ly, ‘I’ém)] previous iteration. This explains (5). Ong&™t1 is known,

the equations for the parametebé"’*l) can be derived in
exactly the same way as with the independent model and,
therefore, (2)—(4) remain valid.

Elzty, @00 (yi|®y)

M:

=1
+ > ElZ]y, oMV
i=1 APPENDIX C

We show how (7) can be obtained. Usié@ndwv.. 4, 1, as

Define p\™ ™ = E[x|y:. "] as the estimation of the , , ,
defined in Section 1I-B, the following holds:

hidden dataz; in voxel : based on its intensity; and the
H rn)
current parameter estlma@g . It can then be seen that Ut (2i| 27, @) = 21 Gg; + 2 Hh;

N = flz = ealys, @) =L, g1 0- (9)

which results in (1) after application of Bayes’ rule. Explicitt "€ conditional |Ike|lh00df(77|7M, ®.) is related to the

maximization ofQ(®,|®™) to @, yields (2) and (3) for the POENtAl Ut (zilzv:, @2) by
distribution parameterﬂ,(cm“) and o,i"“’l) and (4) for the o~ Umse (zil2x; ®2)
bias field parameters,”*") [5], [8]. fzilzn, @2) = 5 Ol

2!
APPENDIX B

We here derive the equations for the paramefgrarhen the Furthermore

MREF is added. There are now two parameter detand ... (90, 1i] @)
Denoting® = {®,,®.}, the log likelihood for the complete Flailan, ®2) = [(zilgis hi, @2) = F(gi, i, |22)
datag = (y,z) now becomes

so that
log f(q|®) = Zlogf Yilzi, ©y) — Ut (2]®) — log Z(2.) S o Umir(al 2, 22)
e~ Unmir(2il2n;,@2) 2!
and hence [(zirgi hil®2) — flgi, il ©@2)
(m) - (m) Since the right-hand side of the above is independent of the
Q(e|@ Z Elzily, @ U (| @) value of z;, so is the left-hand side and therefore
=1

— BlUer(2]82) +log 2(2.)Jy, 2] U1 B2) el )

2, @iy i | D - 2, giy hi| @

The parameterg, can now be calculated in the same way fzi 93, hil®:) Jz 91, hal ®:)

as the independent model. Howevpj’,"*l) = E[zly,®™)] for any two distinct values; and z; .Rearranging the above
can no longer been calculated with (1) since theare not and using (9), we obtain (7).
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