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Automated Segmentation of Multiple Sclerosis
Lesions by Model Outlier Detection

Koen Van Leemput*, Frederik Maes, Dirk Vandermeulen, Alan Colchester, and Paul Suetens

Abstract—This paper presents a fully automated algorithm for
segmentation of multiple sclerosis (MS) lesions from multispec-
tral magnetic resonance (MR) images. The method performs inten-
sity-based tissue classification using a stochastic model for normal
brain images and simultaneously detects MS lesions as outliers that
are not well explained by the model. It corrects for MR field in-
homogeneities, estimates tissue-specific intensity models from the
data itself, and incorporates contextual information in the clas-
sification using a Markov random field. The results of the auto-
mated method are compared with lesion delineations by human
experts, showing a high total lesion load correlation. When the de-
gree of spatial correspondence between segmentations is taken into
account, considerable disagreement is found, both between expert
segmentations, and between expert and automatic measurements.

Index Terms—Digital brain atlas, MRI, multiple sclerosis, tissue
classification.

I. INTRODUCTION

M ULTIPLE sclerosis (MS) is a common disease of young
adults that primarily affects the white matter (WM) of

the central nervous system. Magnetic resonance (MR) imaging
is increasingly being used to assess the progression of the dis-
ease and to evaluate the effect of drug therapy, supplementing
traditional neurological disability scales such as the extended
disability status scale (EDSS) [1]. EDSS is heavily weighted
toward locomotor disability and has substantial intrarater and
interrater variability [2], [3]. Although MR measurements may
show significant variability as well, they are far more sensitive
and clearly reveal one important aspect of the underlying patho-
logical process. They are, therefore, nowadays the primary out-
come of preliminary clinical trials to evaluate whether a new
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therapy might favorably modify the evolution of the disease [2],
[3]. A landmark study in this respect was the interferon beta-1b
trial [4] that showed reduction in disease progression as assessed
by MRI-based findings.

In clinical trials, the large number of MR images to be ana-
lyzed makes manual analysis by human experts extremely time-
consuming. Furthermore, the intraobserver and interobserver
variability associated with manual delineations complicates the
analysis of the results, as demonstrated in the beta-interferon
study [4] where there was a significant reduction in measured
lesion loads in the third year due to a systematic change in the
manual tracings. Also, it is not clear how a human rater com-
bines information from multiple images when multispectral MR
data are examined. Therefore, there is a need for fully auto-
mated methods for MS lesion segmentation that can analyze
large amounts of multispectral MR data in a reproducible way
which correlates well with expert analyses.

In this paper, we present such a method and we demonstrate
its performance on MS data sets that consist of T1-, T2-, and
PD-weighted MR images. The approach presented here differs
from existing work in one or more of the following ways. First,
rather than attempting to model MS lesions explicitly, we detect
them as outliers with respect to a statistical model for normal
brain MR images. Second, the method is fully automated due to
the use of a brain atlas that contains information about the ex-
pected location of the major tissue types. And third, the method
retrains itself automatically on each individual scan, making it
adaptive to changes in pulse sequence or voxel size.

The paper is organized as follows. In Section II, we apply con-
cepts borrowed from the robust statistics literature to our previ-
ously published method for automated bias field correction and
tissue classification of normal brain MR images [5], [6]. This
results in an iterative algorithm that interleaves statistical classi-
fication of the data into a number of normal tissue types, assess-
ment of the belief for each voxel that it is an MS lesion based on
its intensity and on the classification of its neighbors, and re-es-
timation of tissue and bias field parameters whereby MS lesions
are down-weighted. In Section III, we apply the method to im-
ages drawn from an ongoing clinical trial. Section IV discusses
the strengths and weaknesses of the method compared with ex-
isting work. Section V summarizes our conclusions.

II. M ETHOD

A. Background

Suppose that -channel samples with
are drawn independently from a multivariate
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normal distribution with mean and covariance matrix

with for notational convenience. The max-
imum-likelihood (ML) parameters are found by maximizing

or, equivalently, the log-likelihood

(1)

yielding and
.

In most practical applications, however, the assumed normal
model is only an approximation to reality, and estimation of the
model parameters should not be severely affected by the pres-
ence of a limited amount of outliers. Considerable research ef-
forts in the field of robust statistics [7] have resulted in a variety
of methods for robust estimation of model parameters in the
presence of outliers, from which the so-called M-estimators [7]
present the most popular family. Since

, the contribution to the log-likelihood in (1) of an
observation that is atypical for the normal distribution is high.
The idea behind M-estimators is to alter (1) slightly in order
to reduce the impact of such outliers. A simple way to do this,
which has recently become very popular in image processing
[8]–[12], is to model a small fraction of the data as
being drawn from a rejection class that is assumed to be uni-
formly distributed

As can easily be verified, assessing the ML parameters is now
equivalent to maximizing

(2)

with respect to the parameterswith [8]. Since
, the contribution of

atypical observations is reduced compared with (1).
The ML parameters should satisfy .

Since

as shown in [8], one possibility to numerically maximize (2) is
to calculate iteratively the weights

(3)

based on the parameter estimation in iteration ,
and subsequently update the parameters that maximize

(4)

which yields for a multivariate normal distribution

Solving an M-estimator by iteratively re-calculating weights
and updating the model parameters based on these weights,
is commonly referred to as the W-estimator [13]. The weight

reflects the typicality of sample with respect
to the normal distribution. For typical samples, ,
whereas for samples that deviate far from the model.
Comparing (4) with (1), it can be seen that the M-estimator
effectively down-weights observations that are atypical for the
normal distribution, making the parameter estimation more
robust against such outliers.

B. Robust Estimation of MR Model Parameters

In previous work [5], [6], we described a model-based method
for fully automated segmentation of normal brain MR images
that interleaves tissue classification with estimation of tissue
class specific intensity distribution parameters and correction
for so-called bias field inhomogeneities. We now outline how
this algorithm can be made robust with respect to model out-
liers, such as MS lesions.

Suppose that there aretissue types present in an-channel
MR image of the brain. Suppose further that each voxel

in the image is drawn independently from one of
the tissue types , with some a priori known
spatially varying probability . Finally, suppose that the inten-
sity probability distribution of each classcan be modeled by
a multivariate normal distribution with mean and covariance
matrix , and that the spatially smoothly varying bias fields
in each of the channels can be modeled by a linear combi-
nation of polynomial basis functions
where denotes the spatial position of voxel. Denoting as
the vector of bias field parameters of channel ,
and as the total set
of model parameters, the probability density for an MR image
with intensities is given by

...

with the intensity of voxel after bias field correction.
The parameters that maximize the log-likelihood

can be assessed with the so-called expectation-
maximization (EM) algorithm [14], that iteratively performs a
statistical classification of the voxels based on the current pa-
rameter estimation (expectation step), and subsequently updates
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the parameters based on this classification (maximization step).
As shown in [6], the expectation step based on the parameter
estimation of the -th iteration yields, up to a
constant that is independent of

(5)

where the classification

(6)

is the probability that voxel belongs to tissue type based
on the parameters . The subsequent maximization step
involves searching for the parameters that maximize (5),
yielding closed-form expressions for that can be found in
[5]1 . Interleaving this parameter estimation step with the clas-
sification step (6) guarantees iteratively better estimations of

[14].
Unfortunately, maximizing (5) with respect tois not robust

against outliers in the data, such as MS lesions. The weights
represent the degree to which voxelbelongs to tissue type.
Since , an observation that is atypical for each of
the tissue classes cannot have a small membership value for all
classes simultaneously. Based on the concepts explained in Sec-
tion II-A we, therefore, introduce a second type of weight that
reflects the degree of typicality of each voxel in thetissue
classes. As shown below, these membership values are not con-
strained to sum to unity for each voxel and, therefore, allow
down-weighting model outliers for the model parameter esti-
mation.

Similar to the approach described in Section II-A, where (1)
was replaced by the more robust (2), we replace (5) by

(7)

Maximizing (7) with respect to implies
. Since

we define the typicality weights

(8)

and maximize

(9)

1In fact, these equations only guarantee thatQ(� j � ) �
Q(� j � ), resulting in a generalized EM algorithm [14].

instead. The difference with (5) lies herein, that in (9) the
weights are replaced by a combination of two weights

. Since is not constrained to be unity, model
outliers can have a small degree of membership in all tissue
classes simultaneously. Therefore, observations that are atyp-
ical for each of the tissue types, have a reduced weight on the
parameter estimation, thereby robustizing the EM procedure.

Maximization of (9) with respect to results in closed-form
expressions for the tissue class specific parametersand ,
as well as for the bias field parameters. The exact equations
are identical to the ones derived in [5], provided that is re-
placed by . For the sake of completeness, we reproduce
them in the Appendix.

To summarize, the robustized EM algorithm interleaves clas-
sification (6), assessment of typicality (8), estimation of tissue
intensity distribution parameters [Appendix, (17), and (18)] and
bias field correction [Appendix, (19)]. It is clear that the pre-
sented algorithm can be viewed as a generalization of the W-es-
timator of Section II-A to the case of multiple classes. Further-
more, choosing 0 results in 1, and, therefore,
reduces the method to the original algorithm described in [5].

C. From Typicality Weights to Outlier Belief Values

So far, we have only been concerned with robust parameter
estimation in the presence of model outliers. Our main interest,
however, lies in the identification of these outliers, as they are
candidate MS lesions. In this section, we take a closer look at
the typicality weights calculated in (8) and show how, after a
slight alteration, they can be used to assess the belief that voxel

is an outlier.
Referring back to the W-estimator described in Section II-A,

(3) classifies the fraction of voxel as belonging to the normal
distribution. The remaining fraction

is, therefore, a measure for the belief that voxelis a model
outlier. In a similar way

(10)
reflects the belief that voxelis not generated by the model de-
scribed in Section II-B. However, as discussed below, the de-
pendence of (10) through on the determinant of the
covariance matrices prevents its direct interpretation as a true
outlier belief value.

In statistics, an observation is said to be abnormal with
respect to a given normal distribution if its so-called Maha-
lanobis-distance exceeds a pre-
defined threshold. Regarding (8), the belief that voxelis an
outlier exceeds the belief that it is a regular sample from class

if or , which is equivalent to
. Because of its dependence on

, the Mahalanobis-distance threshold above whichis con-
sidered abnormal with respect to classchanges over the iter-
ations of the EM algorithm as is updated. Even worse, this
threshold varies over the different classes, in such a way that
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observations are more easily rejected from classes with a broad
distribution than from classes with a narrow one. Because of
these problems, it is not clear howshould be chosen.

Ideally, a voxel should be considered abnormal with re-
spect to class if , where is an explicit Ma-
halanobis-distance threshold that is equal for all classes alike.
We investigated modifications to (8) that result in this behavior,
and we have selected a method which replaces (8) by

(11)

is now made class-dependent because is taken into ac-
count, and re-parameterized using the more easily interpretable

. The actual choice of can be regarded as the choice of a sta-
tistical significance level and will be dealt with in Section III.

D. Application to MS Lesion Segmentation

Outlier voxels also occur outside MS lesions. This is typically
true for partial volume (PV) voxels that, in contravention to the
assumptions made in Section II-B, do not belong to one single
tissue type but are rather a mixture of more than one tissue. Since
they are perfectly normal brain tissue, though, we prevent them
from being detected as MS lesion by introducing constraints on
intensity and context on the weights calculated in (11).

In our MR images, we have also noticed the presence of
gross model outliers in the cerebro-spinal fluid (CSF) that ap-
pear dark on the PD- and T2-weighted images and that we at-
tribute mainly to the falx cerebri of the dura mater and to blood
vessels. While we are only interested in MS lesions, we have
experienced that these CSF outliers can impede accurate esti-
mations of the tissue-specific intensity models. Therefore, we
explicitly look for these CSF outliers as well, so that they are
rejected from the model parameter estimation too.

1) Additional Intensity Constraints:Since MS lesions ap-
pear hyper-intense on both the PD- and the T2-weighted images,
we define

if

and

otherwise

as an indicator of whether voxelhas the correct intensity to be
a candidate MS lesion, based on the estimated mean intensity
of grey matter (GM) in the T2- and the PD-weighted channel.
Here, denotes after bias field correction [Appendix,
(16)]. Similarly

if

and

otherwise

indicates candidacy to belong to the dark outliers in the CSF.
We now replace (11) by

(12)

so that voxels that do not meet the intensity conditions for lesion
or CSF outliers are not allowed to have a reduced weight.
Because and cannot simultaneously attain the unity value

(13)

is the belief that voxel belongs to an MS lesion, whereas this
is for CSF outliers.

2) Additional Contextual Constraints:Around 90%–95%
of the MS lesions are WM lesions, and the gross dark outliers
are located inside the CSF. We, therefore, add the contextual
constraint that MS lesions and CSF outliers should be located
in the vicinity of WM and normal CSF, respectively. To this
end, we define

if
if
otherwise

in which the classification map of what is assumed healthy WM
is fused with the map of MS lesions, yielding a mask that covers
the total WM. In the same way, the map of CSF outliers is added
to the classification map of CSF. Inspired by the application of
Markov random fields (MRFs) using the mean-field approxi-
mation in the EM procedure as presented in [6], we introduce
a spatially varying prior for the tissue types using a simple
Potts model, i.e., the extension of the binary Ising [15] model
to more than two classes. Let the matrices and
denote the costs associated with class transitions among neigh-
boring voxels in the plane and out of the plane, respectively

...
...

...
. . .

...
...

...
. . .

Let denote a vector whose-th component
counts the number of its four nearest neighborsin the plane
that are classified to tissue type. Similarly, let represent the
same entity based on its two nearest neighbors out of the plane.
The prior probability that voxel belongs to
tissue type given the classification of its neighbors during the
previous iteration , is, up to a normalization factor, mod-
eled by [6]

In other words, the higherand , the lower the prior probability
that a voxel belongs to a class that is different from its neighbors.

Because MS lesions can usually be considered as abnormal
WM, we assume that the prior probability that voxelbelongs
to a lesion equals the prior probability that it is WM. The same
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reasoning holds for the dark outliers and CSF. Therefore, the
addition of the contextual constraints results in

(14)

In the absence of neighboring WM, the prior probability for WM
will be lower than the prior for other tissue types,

thereby discouraging voxelfrom being classified as MS lesion.
As explained in [6], the MRF parametersand are derived

from the data itself. During each iteration, a neighborhood
configuration histogram is set up, that counts how many times
each possible combination of different tissue types in neigh-
boring voxels occurs in the current classification of nonlesion
tissue . From this histogram, an estimation of and

is derived [6]. The larger the voxel size, the more the tissue
types will be mixed in each other’s neighborhood, and the lower
the class transition costsand . Therefore, the contextual con-
straints in (14) automatically adapt to the voxel size of the data.

To summarize, the algorithm iteratively interleaves statistical
classification of the voxels into normal tissue types using (6),
assessment of the belief for each voxel that it is not part of an
MS lesion or a CSF outlier based on its intensity and on the clas-
sification of its neighboring voxels using (14), and, only based
on what is considered as healthy tissue, estimation of the mul-
tivariate normal intensity distributions and bias correction (Ap-
pendix, (17),(18) and (19)). Upon convergence, the belief that
voxel is part of an MS lesion is obtained from (13).

E. Initialization and Convergence Criterion

We initialize the iterative algorithm by providing it with a
rough prior estimation of the classification . With the typi-
cality weights and the bias field parametersinitialized to
unity and zero, respectively, a first estimation of and is
made (Appendix, (17) and (18)), allowing in its turn a prelimi-
nary estimation of the bias field parameters(Appendix, (19)).
These model parameter estimations then provide a new estima-
tion of the classification (6) and typicality weights (14),
etc.

The prior classification is derived from a digital brain atlas
that contains information about the expected location of WM,
GM, and CSF (see [5] for more details). We use the atlas that
is distributed with the SPM99 software package [16], that is the
average of a large number of affinely co-registered manual seg-
mentations of healthy brain MR images [17]. We use the spa-
tially varying prior probability maps of the atlas not only for
initialization but also for the tissue type priors in (6). As will
be explained in Section II-F, the atlas can be fully automatically
brought into spatial correspondence with the MR data. There-
fore, the EM algorithm works without any user interaction, so
that its calculations are fully reproducible.

Convergence of the original EM algorithm that iteratively
improves the log-likelihood of the MR model of Sec-
tion II-B means that the relative change of the log-likelihood

becomes negligible. It can
be shown [14] that,

where is given by (5), which proves that iter-
ative maximization of indeed consistently im-
proves . In this paper, however, we iteratively maximize
the modified version given by (9) rather than
the original , so that is no longer guaran-
teed to increase. We, therefore, detect convergence when

(15)
becomes negligible.

F. Implementation

In our implementation we use four classes: WM, GM, CSF,
and “other,” where the “other” class is modeled by two normal
distributions for nonbrain tissues and a Rayleigh distribution for
MR background noise as explained in [5]. Voxels where the atlas
indicates a prior probability of unity for “other” are of no interest
and are discarded. Because of the atlas,is only nonzero for

“other” in regions far away from the expected location of
MS lesions. We, therefore, fix 1 for “other,” thereby
not allowing voxels to be rejected from the “other” class as these
could never be true MS lesions.

We have implemented the method in Matlab-code [18] on top
of the SPM99 package [16], except for the MRF related parts
that were coded in for efficiency purposes. We first bring the
multispectral MR data of the same subject into spatial corre-
spondence using a fully automated affine registration technique
based on maximization of mutual information [19]. With the
same registration program, we drive a T1-weighted image that
is associated with the digital brain atlas into correspondence
with the MR data. The prior probability maps of the atlas are
subsequently resampled to the image grid of the MR data, and
are used for initialization of the EM algorithm as explained in
Section II-E. To speed up the iterative process, the model pa-
rameters are updated based on only those voxels that lie on the
subgrid of the full image grid that best approximates 44 4
mm . As in [5] and [6], we use fourth-order polynomial models
for the bias fields, and we stop the iterations as soon as(15)
drops below 10 .

To summarize, the method is fully automated, with only a
single parameter in (14) that needs to be experimentally tuned.
The choice of significantly affects the quality of the MS lesion
segmentation, as will be discussed in detail in Section III.

III. RESULTS

As part of the BIOMORPH project [20], we analyzed MR
data acquired during a clinical trial in which 50 MS patients
were repeatedly scanned with an interval of approximately one
month over a period of about one year. The serial image data
were acquired on a Philips T5 1.5-T MR scanner, and consisted
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(a) (b)

(c) (d)

Fig. 1. (a) TLL over all 20 scans of ten patients at two time points, segmented by manual delineation of the MS lesions by a human expert and by the automated
method with varying values of�. (b) Correlation coefficient between the TLL values of these 20 scans individually obtained by manual delineation and by the
automated method with varying values of�. (c) and (d) Same as (a) and (b), respectively, but with the bias correction component of the automatic algorithm
disabled.

at each time point of a double echo spin-echo PD/T2-weighted
image pair (TR 2816 ms and TE 20/80 ms) and a spin-echo
T1-weighted image (TR 425 ms and TE 15 ms) that contained
24 axial slices with a pixel size of 0.9 0.9 mm , 5-mm slice
thickness, and an interslice gap of 0.5 mm. For each patient,
at least one additional scan of the same modalities but with a
higher spatial resolution was acquired, consisting of a double
echo turbo spin-echo PD/T2 weighted image pair (TR 3300 ms
and TE 23.5/120 ms, 52 axial slices, pixel size 0.90.9 mm ,
slice thickness 2.4 mm, interslice gap 0.1 mm) and a fast field
echo T1-weighted image (TR 28.3 ms and TE 6.9 ms, 60 contin-
uous 2.4-mm-thick axial slices with pixel size 0.90.9 mm ).

A. Validation on Low-Resolution Images

MS lesions were manually traced by a human expert based
only on the T2-weighted images for ten patients at two consec-

utive time points. Segmentations obtained with the automatic
algorithm with varying values of were compared with the ex-
pert segmentations by the total lesion load (TLL) on these 20
scans, measured as the number of voxels classified as MS le-
sion. TLL was calculated in two different ways for the auto-
mated segmentations. The first, based on a partial occupancy or
“soft” classification, computed TLL as the integration of the es-
timated lesion fraction (13) over all voxels, whereas the second,
based on a “hard” classification, measured TLL as the number
of voxels in which this fraction exceeds the value of 0.5.

Fig. 1(a) shows the average TLL over the 20 scans for the au-
tomated method for the Mahalanobis distancevarying from
2.7 (corresponding to a significance level of 0.063) to 3.65
( 0.004), in steps of 0.05. As expected, both TLL values cal-
culated by the automated method decrease whenis increased,
since the higher , the less easily voxels are rejected from the
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(a) (b)

Fig. 2. (a) Similarity index between the automatic and the expert lesion delineations on 20 data sets for varying values of�, with and without the bias field
correction component enabled in the automated method. (b) TLL of each of the 20 data sets obtained by manual delineation and using the automated methodwith
� = 3.

model. It can also be seen that the TLL based on a hard classifi-
cation is significantly smaller than the TLL calculated directly
from the soft classification. Referring to (14), this can be ex-
plained by the fact that the lesion fraction is small but nonzero
for voxels that are well explained by the model. Summation of
this small fraction over all voxels results in a global offset that
is not negligible. When the TLL is calculated after a hard clas-
sification, the contribution of the nonlesion voxels disappears,
yielding a better indication of the TLL calculated by the algo-
rithm. Fig. 1(a) shows that varyingfrom 2.7 to 3.65 results in
an automatic TLL ranging from 150% to only 25% of the expert
TLL, and that 3 ( 0.029) results in an automatic TLL
that is very close to the manual TLL.

Despite the strong influence ofon the absolute TLL values,
the linear correlation between the automated TLLs of the 20
scans and the expert TLLs is remarkable insensitive to the
choice of . Fig. 1(b) depicts the correlation coefficient for
varying from 2.7 to 3.65. Over this wide range, the correlation
coefficient varies between 0.96 and 0.98 for both the hard and
the soft TLLs. For values of where the automated method
under-segments the lesions according to Fig. 1(a), the effect
of converting the soft classification into a hard one introduces
random noise in the measurements, resulting in a slightly lower
correlation coefficient. In contrast, for values ofwhere the
method over-segments, eliminating voxels with a small lesion
fraction seems to help in reducing the number of false positives.

To investigate the need for bias field correction, we re-applied
the algorithm on the same data for the same range of, but
with the bias field coefficients fixed to zero throughout the
iterations. The average TLL and the correlation coefficients with
varying in this situation are depicted in Fig. 1(c) and (d), which
need to be compared with Fig. 1(a) and (b), respectively. Clearly,
bias field correction has a tremendous effect on the quality of
the automated MS lesion segmentation. Whereas previously the
correlation coefficient varied between 0.96 and 0.98, it varies
between 0.82 and 0.91 without bias field correction.

Comparing the TLL of two raters does not take into account
any spatial correspondence of the segmented lesions. We, there-
fore, also compared the different segmentations using the sim-
ilarity index [21], [22]. With and the number of voxels
rated as MS lesion by the automated algorithm after hard clas-
sification and by the expert, respectively, and the number
of voxels rated as lesion by both the automated method and the
expert, the similarity index is defined as , which
is simply the volume of intersection of the two segmentations
divided by the mean of the two segmentation volumes. Fig. 2(a)
depicts the value of this index over all 20 scans for varyings,
both with and without bias correction, again demonstrating the
need for bias field corrections. The best correspondence, with
a similarity index of 0.45, was found for 3. For this value
of , the automatic TLL was virtually equal to the expert TLL,
as can be verified from Fig. 1(a). Therefore, a similarity index
of 0.45 means that less than half of the voxels labeled as lesion
by the expert were also identified by the automated method, and
vice versa.

For illustration purposes, we depict the expert TLLs of the 20
scans along with the automatic ones for 3 in Fig. 2(b). A
paired t-test did not reveal a significant difference between the
manual and these automatic TLL ratings ( 0.94). Scans 1
and 2 are two consecutive scans from one patient, 3 and 4 from
the next, and so on. Note that in nine out of ten cases, the two
ratings agree over the direction of the change of the TLL over
time. Fig. 3 displays the MR data of what is called scan 19 in
Fig. 2(b) and the automatically calculated classification along
with the lesion delineations performed by the human expert.

B. Validation on Higher-Resolution Images

In addition to the 20 manual delineations on low-resolution
images, three of the higher resolution scans were also analyzed
by two human experts, trained at a different institute, by tracing
MS lesions based on the T2-weighted images alone. One of the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Automatic classification of one of the 20 data sets that were also analyzed by a human expert. (a) T1-weighted image. (b) T2-weighted image. (c)
PD-weighted image. (d) WM classification. (e) GM classification. (f) CSF classification. (g) dark outliers in the CSF. (h) MS lesion classification. (i) Expert
delineation of the MS lesions.

experts, hereafter referred to as expert 2, was the same expert
who delineated the lesions on the low-resolution images. As
can be seen from Table I, expert 1 consistently labeled more
voxels as MS lesion than expert 2, with an average of 30%
more volume. Regarding the spatial correspondence of the le-
sion delineations, the similarity index between the two experts
was 0.58. Only 51% of the voxels labeled by expert 1 were also
indicated by expert 2, whereas this was 66% percent conversely,
indicating that the voxels which both experts labeled as lesion
had a closer correspondence with the delineations of expert 2
than with the delineations of expert 1.

TABLE I
TOTAL LESION LOAD OF LESIONSSEGMENTED BY TWO HUMAN EXPERTS

ON THREE HIGHER-RESOLUTION SCANS

For these high resolution images, Fig. 4(a) shows the average
TLL computed by the automated algorithm forvarying from
2.65 to 3.5 (corresponding to 0.071 and 0.007, re-
spectively), based on hard classifications. The similarity index
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(a) (b)

Fig. 4. Automated lesion segmentation with varying values of� on three higher resolution data sets compared with manual delineation by two human experts:
(a) TLL; (b) similarity index between each pair of raters.

between the automatic method and either of the experts for the
same range of is depicted in Fig. 4(b). As was the case with
the low-resolution data in Section III-A, thefor which the av-
erage automatic TLL is most similar to the average expert TLL,
is also the one that yields the best spatial correspondence. Since
expert 1 indicated more voxels as MS lesion than expert 2, the
for which the automated method best mimics the labeling per-
formed by expert 1 is smaller than the one that best approaches
the segmentations done by expert 2. Whereas in Section III-A,
the optimal with regard to expert 2 was 3 ( 0.029), it is now
3.35 ( 0.011), which is a remarkably higher value. This can
be explained by the fact that in Section III-A, the slice thickness
was more than double the slice thickness in the current data and,
therefore, the current data contain far less PV voxels. Therefore,
the different tissue types are more tightly clustered in feature
space, yielding smaller estimates of the variances, thereby
reducing the absolute distance to the meansat which voxels
are considered as abnormal. The best similarity index for the au-
tomatic method compared with expert 1 is 0.47, and to expert
2 is 0.51, indicating that the automatic method shows a better
spatial correspondence with expert 2 than with expert 1. When
compared with the similarity index of 0.58 between the two ex-
perts, it can be seen that the two experts are in better agreement
with each other than with the automated algorithm.

IV. DISCUSSION

We have described a model-based method for automated MS
lesion segmentation that iteratively interleaves statistical clas-
sification of the image voxels into a number of healthy tissue
types, assessment of the belief for each voxel that it actually be-
longs to healthy tissue, and estimation of intensity distribution
parameters and MR bias field parameters only based on healthy
tissue voxels. The main characteristics of our algorithm are the
detection strategy of MS lesions as model outliers, the absence
of any human interaction due to the use of a probabilistic brain

atlas, and the automatic adaptation of the method to changes in
MR pulse sequence and voxel size.

MS lesions are detected as voxels that are not well explained
by a statistical model for normal brain MR images. This ap-
proach circumvents explicit lesion modeling, which is difficult
because of their widely varying appearance in MR images, and
because not every individual scan contains a sufficient number
of lesions for estimating the model parameters. The core of our
method is a clustering algorithm that is made robust against
model outliers, which is a research topic that has recently
received much attention (see [23] and [24] for an overview).
From an algorithmic point of view, our method bears close
resemblance to an adaptation of the EM classifier described
by Schroeteret al. [9], who iteratively classified normal brain
MR images into a small number of Gaussian distributions, each
time rejecting voxels that exceed a predefined Mahalanobis
distance to each of the Gaussians, and updating the model
parameters only based on nonrejected voxels. In contrast to
their method that either accepts or rejects voxels, our method
uses a soft rejection scheme and also takes the classification of
the voxels and their neighbors into account.

Most of the methods for MS lesion segmentation described
in the literature are semi-automated rather than fully automated
methods, designed to facilitate the tedious task of manually out-
lining lesions by human experts, and to reduce the interrater and
intrarater variability associated with such expert segmentations.
Typical examples of user interaction in these approaches include
accepting or rejecting automatically computed lesions [25], or
manually drawing regions of pure tissue types for training an
automated classifier [22], [25]–[27]. While these methods have
proven to be useful, they remain impractical when hundreds of
scans need to be analyzed as part of a clinical trial, and the vari-
ability of manual tracings is not totally removed. In contrast, our
method is fully automated as it uses a probabilistic brain atlas to
train its classifier. Furthermore, the atlas provides spatial infor-
mation that avoids nonbrain voxels from being classified as MS
lesion, making the method work without the often-used tracing
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of the intracranial cavity in a preprocessing step [22], [25]–[29].
A limitation of this approach is that the method cannot be di-
rectly applied to regions for which no such atlas is currently
available, such as the spinal cord.

Auniquefeatureofouralgorithmis that itautomaticallyadapts
its intensity models and contextual constraints when analyzing
images that were acquired with a different MR pulse sequence or
voxelsize,suchasfor instancethescansofSectionIII-AandB.Zi-
jdenboset al.described [30] and validated [31] a fully automated
pipeline for MS lesion segmentation based on an artificial neural
network classifier. Similarly, Kikinis[28]et al.and Guttmannet
al. [32] have developed a method with minimal user intervention
that is built on the EM classifier of Wellset al. [33] with dedi-
cated preprocessing and postprocessing steps. Both methods use
a fixed classifier that is only trained once and that is subsequently
used to analyze hundreds of scans. In clinical trials, however, in-
terscan variations in cluster shape and location in intensity space
cannot be excluded, not only because of hardware fluctuations of
MR scanners over a period of time, but also because different im-
agers may be used in a multicenter trial [32]. In contrast to the
methods described above, our algorithm retrains its classifier on
each individual scan, making it adaptive to such contrast varia-
tions. Also, due to the multispectral nature of the approach, addi-
tional MR data that may be available, such as fluid attenuated in-
version recovery (FLAIR) images, can be immediately exploited
byourmethodtofacilitatetissueclassificationandlesiondiscrim-
ination without prior re-training of the classifier.

Often, a post-processing step is applied to automatically seg-
mented MS lesions, in which false positives are removed based
on a set of experimentally tuned morphologic operators, connec-
tivity rules, size thresholds, etc [22], [26], [28]. Since such rules
largely depend on the voxel size, they may need to be re-tuned
for images with a different voxel size. Alternatively, images can
be re-sampled to a specific image grid before processing, but
this introduces partial voluming that can reduce the detection of
lesions considerably, especially for small lesion loads [32]. To
avoid these problems, we have added explicit contextual con-
straints on the iterative MS lesions detection that automatically
adapt to the voxel size. Similar to other methods [26], [27], [29],
[30], we exploit the knowledge that the majority of MS lesions
is situated inside WM. Johnstonet al. [26], [34] fused the seg-
mentation maps of normal WM and MS lesions obtained with
a MRF-based statistical classifier, producing a mask that covers
the total WM, and subsequently re-classified the voxels inside
that mask to either WM or lesion. Similarly, our method fuses
the normal WM with the lesions in each iteration, producing, in
combination with MRF constraints, a prior probability mask for
WM that is automatically updated during the iterations. Since
the MRF parameters are re-estimated for each individual scan,
the contextual constraints automatically adapt to the voxel size
of the images.

A number of authors have explored the use of the time do-
main for MS lesion segmentation in serial MR data. After seg-
mentation of each three-dimensional (3-D) data set individually
in a time series, Metcalfet al. [35] and Kikiniset al. [28] used
a four-dimensional (4-D) connected component labeling as a
post-processing step to remove lesions that appeared isolated
in time or that had a 4-D volume below a predefined threshold.

Gerig et al. [36] only considered the voxel intensity changes
over time, without segmentation of spatial structures. In a sim-
ilar vein, Reyet al. [37] and Thirion and Calmon [38] analyzed
the deformation field computed by Thirion’s nonrigid registra-
tion algorithm [39] between two consecutive time points. Ex-
tending the MRF constraints from 3-D to 4-D in our approach
would yield an algorithm that takes both spatial and temporal
contextual information into account, with possibly a better dis-
crimination between lesion and nonlesion voxels. However, a
major drawback of using the time domain as an additional fea-
ture, is the need for coregistration and resampling of all images
of a serial scan sequence. As mentioned previously, this resam-
pling introduces partial voluming that decreases the spatial dis-
crimination power [32] for which the additional discrimination
power of the time domain might not compensate.

Although the algorithm we present is fully automatic, an ap-
propriate Mahalanobis distance thresholdhas to be chosen in
advance. When evaluating the role of, a distinction has to be
made between the possible application areas of the method. In
clinical trials, the main requirement for an automated method
is that its measurements change in response to a treatment in
a manner proportionate to manual measurements, rather than
having an exact equivalence in the measurements [2], [3]. In
Section III-A we, therefore, performed a linear regression anal-
ysis between the TLLs estimated by the automatic algorithm
and the TLLs derived from human expert segmentations on 20
data sets for a wide range of. Although the average TLL pro-
duced by the automated method varied from only 25% up to
150% of the average expert TLL estimation, the automatic mea-
surements always kept changing proportionately to the manual
measurements, with high correlation coefficients between 0.96
and 0.98. Therefore, the actual choice ofis fairly unimportant
for this type of application.

The role of is much more critical when the goal is to
investigate the basic MS mechanisms or time correlations of
lesion groups in MS time series, as these applications require
that the lesions are also spatially correctly detected. To assess
the spatial correspondence between automated segmentations
and manual lesion tracings performed by two human experts,
we calculated the so-called similarity index between each pair
of raters on three data sets in Section III-B. By varying, the
automated method could be tuned toward the segmentation
behavior of each expert. However, despite the high interexpert
variability, the agreement between the two experts was still
clearly better than between either of the experts and the
automated algorithm. Of particular concern was the fact that
the optimal that best brought the automatic segmentations
into agreement with the labelings done by one of the experts,
differed for the different scan types of Section III-A and B.
We believe that this effect is caused by the presence of far
more PV voxels in the data of Section III-A, due to the
considerably larger slice thickness. In general, the higher the
resolution and the better the contrast between lesions and
unaffected tissue in the images, the easier MS lesions are
detected by the automatic algorithm and the highershould
be chosen. Therefore, the algorithm presumably needs to be
tuned for different studies, despite the automatic adaptation
of the tissue models and the MRF parameters to the data.
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While the method yields TLL measurements that clearly
correlate with manual estimates, its spatial localization of MS
lesions does not seem sufficiently accurate compared with
segmentations performed by two human experts, trained at a
different institute, on three data sets. However, the automatic
algorithm worked on multispectral data, while the manual
segmentations were only based on T2-weighted images, which
might explain part of the disagreement. For a more thorough
validation and assessment of intraobserver and interobserver
variability associated with manual delineation, multiple human
experts trained at different institutions should perform nu-
merous manual segmentations of volume data sets, having
available multispectral MR to assist in lesion identification.
However, even then, validation of the automated method
remains difficult. The fundamental problem is the lack of
any method to measure accuracy: that is, there is no reliable
method to identify which portions of the image truly represent
MS lesions. Well designed studies such as [31] have shown
that there is very wide variation in lesion volumes estimated
by different observers, especially when these were trained at
different institutions. There is no reason to assume that the
mean of a large number of human expert estimations represents
the true result.

To our knowledge, the spatial distribution of automatically
segmented lesions has not received much attention in the litera-
ture, most methods concentrating only on the TLL [30]–[32] or
on the reduction of human inter and intraobserver variability in
TLL estimation with semi-automated methods [22], [25], [27].
Bello and Colchester [40] reviewed different measures for spa-
tial correspondence and introduced a mutual information-based
index which took account of the probability of chance corre-
spondence. In the present paper we have used the simpler “sim-
ilarity index” which is the intersection divided by the mean.

To date, we have successfully analyzed over 300 scans with
the method presented in this paper. In the future, we plan to ex-
tend our work by subdividing and analyzing automatically seg-
mented lesions based on their spatial location relative to the atlas
and based on their appearance in the T1-, T2-, and PD-weighted
images. As part of the clinical trial described in this paper, we
ultimately intend to correlate the automatic measurements with
the clinical data of the patients.

V. CONCLUSION

This paper describes a fully automated atlas-based approach
for MS lesion segmentation from multispectral MR images. The
method simultaneously estimates the parameters of a stochastic
tissue intensity model for normal brain MR images, and detects
MS lesions as voxels that are not well explained by the model.
The results of the automated method were compared with le-
sions delineated by human experts, showing a high TLL cor-
relation, but an average overall spatial correspondence that is
lower than that between the experts.

APPENDIX

We here reproduce the closed-form expressions for, ,
and that maximize (9). The interested reader is referred to [5]

for more information. Let

... (16)

represent the intensity of voxelafter correction for the bias
field that was estimated during the previous iteration .
The intensity distribution parameters are then given by

(17)

(18)

and the bias field parameters by

...
...

.. .
...

...

(19)

with

...
...

...
. . .

(diag)
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