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Abstract

In this paper we present a data-driven approach to mod-
eling end user energy consumption in residential and
commercial buildings. Our model is based upon a data
set of monthly electricity and gas bills, collected by
a utility over the course of several years, for approxi-
mately 6,500 buildings in Cambridge, MA. In addition,
we use publicly available tax assessor records and geo-
graphical survey information to determine correspond-
ing features for the buildings. Using both parametric
and non-parametric learning methods, we learn mod-
els that predict distributions over energy usage based
upon these features, and use these models to develop
two end-user systems. For utilities or authorized insti-
tutions (those who may obtain access to the full data)
we provide a system that visualizes energy consump-
tion for each building in the city; this allows compa-
nies to quickly identify outliers (buildings which use
much more energy than expected even after condition-
ing on the relevant predictors), for instance allowing
them to target homes for potential retrofits or tiered pric-
ing schemes. For other end users, we provide an inter-
face for entering their own electricity and gas usage,
along with basic information about their home, to deter-
mine how their consumption compares to that of simi-
lar buildings as predicted by our model. Merely allow-
ing users to contextualize their consumption in this way,
relating it to the consumption in similar buildings, can
itself produce behavior changes to significantly reduce
consumption.

Introduction
In the effort to build a sustainable society, energy issues play
a crucial role. Humans consume an average of more than 16
terrawatts of power and growing, 86% of which comes from
(unsustainable) fossil fuels (Multiple 2009). In the United
States, 41% of all energy is consumed in residential and
commercial buildings, mainly in the forms of electricity and
natural gas. Reducing these consumptions in particular will
play a large role in reducing our overall energy dependence.

As a whole, however, end users receive relatively little
information about their energy usage. Most of the feed-
back we receive about our energy consumption comes via
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monthly electricity and gas bills, which provide little infor-
mation or context to our usage other than a dollar amount.
Crucially, energy bills provide no mechanism to determine
things such as how a building’s consumption compares to
similar buildings, whether retrofits or upgraded appliances
are financially reasonable, what portion of the consump-
tion is simply due to location (cold locations will inevitably
require more heating, for example) versus personal behav-
ior, etc. Moreover, simply providing people with feedback
about their energy use can itself produce behavior changes
that significantly reduce energy consumption (Darby 2006;
Neenan and Robinson 2009). Recent research has specifi-
cally highlighted the value of normative energy feedback,
showing users how their usage relates to that of their peers
and neighbors (Cialdini and Schultz 2004; Allcott 2010).

In this paper, we present a study of energy consumption
in a large number of buildings in Cambridge, Massachusetts,
and develop models than can begin to answer such ques-
tions. We use a data set consisting of monthly electrical and
gas bills, collected by a utility, for approximately 6,500 sep-
arate buildings in the city. We integrate this usage informa-
tion with publicly available tax assessor and geographical
survey information to correlate energy usage with features
such as living area, building value, building type, etc,. We
perform a preliminary analysis of the data set, focusing on
the value of using logarithmic scaling for energy usage, and
we use feature selection methods to determine the most rel-
evant features for predicting consumption. We then apply
both parametric and non-parametric learning algorithms to
predict distributions over building consumption. Finally, we
use these models to develop EnergyView, a system that al-
lows both utilities (at a city-wide scale) and end users (at a
single building scale) to view and compare their energy us-
age to that of similar buildings as predicted by the models.

Related Work
This paper builds upon a number of works, both from the
energy sector and the statistics and machine learning com-
munities. Since this is primarily and application and analysis
paper, we mainly use existing algorithmic approaches, but
with a focus on recently developed methods for regression
under non-Gaussian likelihoods (Kotz and Nadarajah 2004;
Vanhatalo, Jylanki, and Vehtari 2009).

From the energy community, our work builds most di-



rectly upon the studies, mentioned above, that highlight the
importance of normative feedback for improving energy ef-
ficiency (Cialdini and Schultz 2004; Allcott 2010). Indeed,
we are aware of several companies that work in this area, but
as they do not share the details of their models or data, it is
difficult to know what methods they employ.

Several academic studies exist that examine individual
home residential energy usage at a high resolution, (e.g.,
(Berges et al. 2009)), but this work is roughly orthogonal to
this paper, as we here consider much lower resolution data,
but for many more houses. Likewise, there exist several stud-
ies on building energy consumption at a highly aggregate
level (Berry 2005), but again these differ from this work as
we consider a data set obtained directly from a large number
of individual buildings.

Thus, in relation to this past work, this paper makes sev-
eral contributions. We analyze a large-scale real-world en-
ergy usage data set, illustrate several interesting character-
istics of the data, use recent machine learning techniques to
develop predictive models, and present a public end-user in-
terface for obtaining contextual information about ones own
energy use. To the best of our knowledge, this represents one
of the largest-scale, publicly-available studies of its kind,
conducted on real data, and the EnergyView tool represents
one of the first tools of its kind where the algorithms behind
its predictions are fully described.

Data Collection and Analysis
The primary data set we build our model upon is a collec-
tion of monthly electricity and gas bills, collected over sev-
eral years from buildings in Cambridge, MA, and obtained
from NStar, the electricity and gas utility in Cambridge. The
data consists of electricity and gas account numbers, their
corresponding street addresses, and monthly electricity and
gas meter readings for each account over some period of
time, typically two to three years. Electricity usage is given
in kilowatt-hours per month, while gas usage is given in
therms per month. To convert these to equivalent units, we
use the conversion factor(1/3)29.3 therms/kwh, where 29.3
is the standard conversion rate, and 2/3 represents the aver-
age conversion loss for electricity generation in the United
States; this also corresponds to the relative pricing of gasand
electricity, an average of $1.05/therm and $0.11/kwh respec-
tively (Multiple 2009). The primary goal of our algorithms
will be to predict this total usage as a function of building
features (though we also apply the same techniques to esti-
mating monthly electricity and gas usage separately in order
to provide more detailed feedback).

In addition to the energy data, we use publicly available
tax assessor records1 and a Geographic Information Sys-
tem (GIS) database2 compiled by the city. The tax asses-

1Tax assessor records for Cambridge are available via
a web interface athttp://www2.cambridgema.gov/
fiscalaffairs/PropertySearch.cfm. We know of no
source where the database can be downloaded directly, and instead
had to use an automated tool to parse and import the records via
this interface.

2GIS databases for Cambridge can be ordered at

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

Kwh / Year

C
ou

nt

Figure 1: A histogram of total energy consumption per
building, for the 6,499 buildings considered. Note the log-
arithmic scale on thex axis.

sor records contain detailed features about every registered
property and building in Cambridge, listing for each ad-
dress features such as the value of the building, the property
class (condominium, single family home, retail store, etc),
the square footage, the year a building was built, and other
similar features. The GIS database consists of polygonal out-
lines for parcels and buildings in the city, plus estimated roof
heights for buildings (obtained via an aerial lidar scan). We
aggregate features at thewhole building level, so that, for
example, multiple units at a given street address are aggre-
gated into one building; this is a necessity since the utility
data does not include unit numbers, but only a street number
and street name. After correlating addresses between the en-
ergy usage, tax assessor, and GIS databases, and removing
any entries for which there are less than a year of full gas and
electricity readings, there are a total of 6,499 unique build-
ings that we include in our data set. This represents slightly
more than half of the 12,792 unique addresses in the Cam-
bridge tax assessor records (the main reason for omitting a
building is that one or more of the correspond energy ac-
counts don’t span a full uninterrupted year in the utility data
we have access to).

Logarithmic Energy Scaling
A preliminary analysis of the data illustrates several inter-
esting features, which we build upon to develop models in
the subsequent section. Figure 1 shows a histogram of total
energy consumption per year for the different buildings in
our data set. The data appears roughly Gaussian (although
slightly skewed), but the important fact here is that thex
axis islogarithmic, implying that total energy consumption
roughly follows a log-normal distribution. This means that
energy consumption variesmultiplicatively between differ-
ent houses: a house in the 80th percentile of energy con-
sumption uses about 3 times as much energy as a house in
the 20th percentile. Further, even the log-normal distribu-
tion in fact underestimates the spread of the data; the data is
heavy-tailed, such that a log Student-t distribution (Cassidy,

http://www.cambridgema.gov/gis.aspx.
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Figure 2: A plot of building square footage versus total
yearly energy consumption, both in logarithmic scales. The
dotted line shows the least-squares fit.

Hamp, and Ouyed 2010) fits the energy consumption better,
as we will show quantitatively in the next section.

Approximately log-normal distributions of energy usage
may initially seem rather surprising, but these are actu-
ally quite reasonable given other phenomena in economics
and social science. In particular, many observed phenomena
naturally follow roughly log-normal distributions (Limpert,
Stahel, and Abbt 2001), including factors that would be ex-
pected to influence energy consumption, such as income,
property sizes, and (in our own data set) building square
footage. Furthermore,power-law behaviors, defined as a lin-
ear relationships between the logarithms of input and output
variables (Newman 2005), are ubiquitous in many empir-
ical domains, including domains related to city consump-
tion and scaling (Kuhnert, Helbing, and West 2006). Since
the Gaussian and multivariate T distributions are preserved
by linear transformations (Kotz and Nadarajah 2004) (i.e.,
a linear function of a multivariate Gaussian or multivariate
T distribution will also be Gaussian or multivariate T), log-
normal or log-T input variables, together with a power-law
relationship, would imply the same distribution for the out-
put. Figure 2 illustrates this type of relationship for our data
set, plotting building living area as square footage against
total energy consumption on a log-log scale. While there is
naturally a great deal of noise, there is also a fairly clear
linear relationship, indicating an intuitive power-law rela-
tionship between square footage and energy consumption.
While the relationships are more difficult to display when
additional variates are introduced, the chief goal of the next
section will be to exploit these types of relationships to de-
rive predictive models of energy consumption based upon
known features.

Data Features and Feature Selection
Finally, before discussing the modeling methods we use for
this data, we discuss the actual features used to predict en-
ergy consumption, as well as feature selection procedures
that identify the most relevant features for this task. We ex-
tract a total of 35 features from the tax assessor and GIS data
set, all of which are shown in Table 1. Many of the features

Feature % RMSE Individual
Reduction Correlation

Building Value 24.721 % 0.659
Num Electric Meters 13.438 % 0.647

Property Class 12.729 % 0.633
Living Area 2.760 % 0.611

Num Gas Meters 2.517 % 0.626
Heat Fuel 2.241 % 0.480

Building Style 1.432 % 0.632
Heat Type 0.826 % 0.431
Central AC 0.749 % 0.558

Overall Grade -0.045 % 0.346
Roof Material 0.105 % 0.595

Exterior Wall Type -0.300 % 0.597
Occupancy Type -0.656 % 0.623

Laplacian Eigenvectors 0.138 % 0.180
GIS Parcel Area 0.164 % 0.381

Total Rooms 0.074 % 0.049
Residential Exemption 0.037 % 0.207

Fireplaces 0.014 % 0.092
Overall Condition -0.068 % 0.234

Full Baths 0.000 % 0.101
Roof Type -0.024 % 0.557

Assessed Value -0.010 % 0.615
GIS Parcel Perimeter 0.001 % 0.371

Land Area -0.007 % 0.352
Land Value -0.202 % 0.377
Half Baths -0.023 % 0.022

Garage Parking -0.039 % 0.229
Year Built -0.013 % 0.095

GIS Building Perimeter -0.014 % 0.104
GIS Building Area 0.033 % 0.143

GIS Building Volume 0.016 % 0.112
Num Stories -0.041 % 0.064
Open Parking -0.011 % 0.069

Covered Parking -0.013 % 0.071
Residential/Commercial -0.553 % 0.272

Table 1: All the building features extracted from the tax as-
sessor and GIS data, ranked in the order that they are se-
lected in greedy forward feature selection. The first nine fea-
tures (above the line) decrease cross-validation RMSE (sec-
ond column), to a statistically significant degree (p < 0.01
in a pairwise t-test). Also shown is the correlation coefficient
between total energy and the feature in isolation.

are real-valued, in which case we include their logarithm
(owing to the discussion above) directly in the final feature
vector. For discrete features, we use a standard binary en-
coding of the feature, i.e., for ak-valued discrete value we
add the representation

φ(xi) ∈ {0, 1}k = (1{xi = 1}, . . . ,1{xi = k}) (1)

to the feature vector, where all the entries are zero if a dis-
crete value is previously unseen or if the feature value is
unknown. All the features listed in Table 1 are extracted
directly from the GIS or tax assessor database with the
exception of the “Laplacian Eigenvectors” feature, which



uses a standard spectral clustering procedure (Chung 1997).
Briefly, we construct this feature by building a (symmetric)
k-nn graph on the 2D building locations, then looking at
the principle eigenvectors (here corresponding to thelowest
eigenvalues) of the discretenormalized Laplacian operator
on this graph, defined as

L = I −D−1/2AD−1/2 (2)

whereD is a diagonal matrix of node degrees in the graph
andA is an adjacency matrix. These features provide an op-
timal orthogonal basis for reconstructing smooth functions
on the graph’s manifold, and thus in our setting correspond
to smoothly spatially varying functions (in terms of the ar-
rangement of the building locations).

Since we are in a data-rich setting, where we have signif-
icantly more features than examples, it is possible to simply
pass all these features to our learning algorithms; even the
algorithms we consider, which can in theory be sensitive to
irrelevant features, do not perform significantly worse when
provided with all the features. Nonetheless, for the sake of
model simplicity and intuition, it is very useful to determine
which of the features we extract are most useful for predict-
ing energy consumption. To this end, we employ a simple
greedy forward feature selection procedure that sequentially
adds features based on how much they decrease training root
mean squared error (RMSE) of a linear regression predictor.
Table 1 shows a list of the features in the order they are se-
lected by the greedy procedure. The table also shows how
much adding the feature decreases the RMSE as measured
by cross validation; thus, while adding a feature by definition
will always decrease the training RMSE to some extent, only
the first 9 features decrease the RMSE as measured via cross
validation to a statistically significant degree (p < 0.01 in
a pairwise t-test). These also correspond to features that we
would expect to have a large impact on energy consumption:
building value; square footage; number of electric/gas ac-
counts (recall that since we are computing energy usage on
aper-building basis, the number of electric and gas accounts
serve as a rough proxy for the number of separate units);
building class (a discrete feature that designates the building
as a condominium, single family home, multi-family home,
retail store, office building, etc); heat fuel (oil, gas, or elec-
tric); heat type (forced air, hot water, electric radiant, etc),
and whether or not the house has central AC.

Equally interesting are the features that donot lead to a
significant decrease in RMSE. For example, including the
eigenvectors of the graph Laplacian does not significantly
improve performance. This suggests that spatially varying
attributes are not especially prevalent in this data set: while
there is spatial correlation in total energy consumption, once
we regress on other features that also are spatially correlated
(such as building value), there is little added benefit to in-
cluding purely spatial features. To illustrate this, we also
include in Table 1 the correlation coefficient between each
of the different features and the total energy consumption,
which captures how correlated each feature is with the total
energy independent of any other features. In cases where this
correlation is high, yet the feature is ranked low in Table 1,
then the feature is also highly correlated with the previously

selected features, such that adding the feature to a linear re-
gression model gives little added benefit.

Although the forward selection procedure that we use is
well-known to be overly greedy in certain cases (Tibshirani
1996) (this had lead to a variety of alternative procedures
such as LASSO-based feature selection (Efron et al. 2004)),
the approach is often very effective both in practice and in
theory (Zhang 2009). In previous experiments we found vir-
tually no difference in the features selected when consid-
ering more complex procedures such as the LASSO. Addi-
tionally, since we are performing feature selection based on
linear regression, there may be some concern of throwing
out features that are potentially of interest to the non-linear
regression algorithms we consider later. However, this has
not been the case in the experiments we have considered,
and we will discuss this further in the next section.

Modeling and Evaluation
In this section we present learning methods for predicting
energy usage given known features of a building. As we
don’t expect to predict the energy usage exactly (certainly
energy consumption depends on many variables that are not
known, including end-user preferences), and since, as we
will discuss more in the section, we are concerned with pro-
viding users with information about where they lie in the
distribution of energy consumption, our focus is onproba-
bilistic methods that return a distribution over possible en-
ergy consumption levels. Formally, our predictors will all
have the form

y = f(x) + ǫ (3)

wherey ∈ R
m denotes the predicted energy usage (or rather,

based on the discussion above, the logarithm of the predicted
energy usage),x ∈ R

n denotes a vector of inputs describ-
ing known features of the house (that we delineate below),
andǫ denotes a (possibly input dependent) zero-mean error
term. Although we focus in this section on real-valued re-
gression (predicting just the total energy consumption), we
apply these same methods to multivariate predictions, for in-
stance to predict the energy consumption in each month as
shown later in the paper. We focus on two well-known prob-
abilistic regression techniques: linear models and Gaussian
process regression. However, given the above discussion re-
garding the log T distribution fitting the data better than log
normal distributions, we focus also upon more recent work
using non-Gaussian likelihoods.

Linear Regression
In the linear regression case,

f(x) = θTx (4)

for parametersθ ∈ R
n, and the error term is given by some

input-independent distributionp(ǫ), often referred to as the
likelihood function. Based upon the discussion in the pre-
vious section, we consider the standard normal error term
(leading to ordinary least squares), a Student-t distributed
error term, and a Laplace distributed error term (another
heavy-tailed distribution commonly used in robust regres-
sion). The densities and notation for the normal, Laplace,



and T distribution are given respectively by

p(ǫ ;σ) =
1√
2πσ

exp

(

− ǫ2

2σ2

)

p(ǫ ;σ) =
1

2σ
exp

(

−|ǫ|
σ

)

p(ǫ ;σ, ν) =
Γ((ν + 1)/2)

Γν/2
√
2πσ

(

1 +
ǫ2

νσ2

)

−ν+1

2

(5)

whereσ is a scale parameter andν is a degree of freedom pa-
rameter for the T distribution. Given a data set{xi, yi}Ni=1,
we can compute maximum likelihood estimates ofθ and the
relevant distribution parameters for each of these models.
Defining the design matrices

X ≡







xT
1

...
xT
N






, y ≡







y1
...
yN






(6)

then for the normal likelihood the ML estimates are
θ̂ = (XTX)−1XTy

σ̂2 =
1

n
(y −Xθ̂)T (y −Xθ̂).

(7)

For the Laplace likelihood

θ̂ = argmin
θ
‖y −Xθ‖1

σ̂ =
1

n
‖y −Xθ̂‖1

(8)

where‖ · ‖1 denote theℓ1 norm (the sum of the absolute
values of a vector), which makes the optimization overθ a
convex optimization problem (solved, for example, via lin-
ear programming (Boyd and Vandenberghe 2004)). For the
T distribution there is no closed form estimate for the param-
eters, but they can be obtained via the EM algorithm, which
amounts to iterating the following updates until convergence

si ←
1

σ̂2
(yi − θ̂Txi)

T (yi − θ̂Txi)

wi ←
ν̂ + 1

ν̂ + si

θ̂ ← (XTdiag(w)X)−1XTdiag(w)y

σ̂2 ← 1

1Tw
(y −Xθ̂)Tdiag(w)(y −Xθ̂)

ν̂ ← argmin
ν

N
∑

i=1

log p(y − θ̂Txi ; 0, σ̂, ν)

(9)

where probability in the optimization overν is the density
of the T distribution, and this step is performed via numeri-
cal optimization.3 Because the log likelihood is not convex
with respect to the parameters, there is no guarantee that this
procedure will find the global optimum but in practice if we
initialize θ̂ andσ̂2 to be, for example, the least squares esti-
mates, then this procedure is quite robust.

3Regression with a T distribution is not often done in this man-
ner (for example, the presentation in (Kotz and Nadarajah 2004)
does not describe this procedure), but this a straightforward ex-
tension of ML estimation for the T distribution to the regression
setting, and seems to be well known.

Gaussian Process Regression
Gaussian process (GP) regression (Rasmussen and Williams
2006) provides a non-parametric regression method, and al-
lows for much richer representations than in linear regres-
sion. In GP regression, the underlying regression function
f is modeled as a Gaussian process, a stochastic process
where the distribution off(x1), f(x2), . . . for any set of in-
putsx1,x2, . . . is jointly Gaussian with some mean (which
we will assume to be zero), and covariances

Cov(f(xi), f(xj)) = K(xi,xj) (10)

for some positive definitekernel function K : Rn×Rn → R.
Overloading notation slightly, we write this as

f |X ∼ N (0,K(X,X)) (11)

and where in the following we will simply useK ∈ R
N×N

to denoteK(X,X) (the kernel matrix formed between all
the training examples). As before, we assume thatyi =
f(xi) + ǫ, whereǫ is again a zero-mean error term with one
of the three distributions described above. Whenǫ is Gaus-
sian with varianceσ2

ǫ , the distributionp(f(x′)|X,y,x′) (the
distribution value off(x′) for some new inputx′) is also
Gaussian, and can be computed in closed form

f(x′) ∼ N
(

K(x′,X)(K+ σ2
ǫ I)

−1y,

K(x′,x′)−K(x′,X)(K+ σ2
ǫ I)

−1K(X,x′)
)

.
(12)

When ǫ is Laplace or T distributed, there is no longer a
closed form expression for the distribution overf(x′), and
we must resort to approximate methods such as Expecta-
tion Propagation, Variational Bayes, or the Laplace approxi-
mation (Rasmussen and Williams 2006; Vanhatalo, Jylanki,
and Vehtari 2009). A description of these methods is beyond
the scope of this paper, but several freely available software
packages exist that implement such approximate methods
for GP regression with non-Gaussian likelihood.4

For our task we use the squared exponential kernel func-
tion, with independent length scales, given by

K(x,x′) = s2 exp

(

n
∑

i=1

(xi − x′

i)
2

2ℓ2i

)

(13)

where the the magnitudes ∈ R+ and length scalesℓi ∈
R+ are free parameters. As is common practice, we estimate
these parameters by maximizing themarginal likelihood of
the training data, given by

p(y|X) =

∫

p(y|f ,X)p(f |X)df . (14)

As before, when the likelihood is Gaussian this term (and its
derivatives with respect to the free parameters) can be com-
puted analytically. When the likelihood is not Gaussian, ap-
proximations are again needed, but again the software pack-
ages mentioned above provide methods for doing so.

4In this work we use the GPML package (Rasmuseen and Hick-
ish 2011) for the Gaussian and Laplace likelihood GP regression,
and the GPstuff package (Vanahtalo et al. 2011) for the T likelihood
GP regression.



Method Log Likelihood RMSE No Log RMSE (×105)
Output only, Normal likelihood -1.484 (-1.482) 1.066 (1.065) 11.106 (11.105)
Output only, Laplace likelihood -1.413 (-1.412) 1.079 (1.079) 11.110 (11.110)

Output only, T likelihood -1.399 (-1.399) 1.074 (1.074) 11.109 (11.109)
Linear regression, Normal likelihood -0.813 (-0.788) 0.545 (0.532) 9.581 (9.231)
Linear regression, Laplace likelihood -0.710 (-0.685) 0.549 (0.537) 9.422 (9.397)

Linear regression, T likelihood -0.695 (-0.674) 0.547 (0.536) 9.488 (9.402)
GP regression, Normal likelihood -0.782 (-0.747) 0.531 (0.503) 9.212 (8.016)
GP regression, Laplace likelihood -0.660 (-0.620) 0.535 (0.495) 9.704 (7.609)

GP regression, T likelihood -0.629 (-0.557) 0.543 (0.502) 9.746 (5.928)
GP regression, all features -0.786 (-0.710) 0.533 (0.485) 9.243 (6.313)
Linear regression, no log -15.240 (-14.962) 1.738 (1.732) 9.260 (7.566)

GP regression, no log -15.874 (-90.589) 2.775 (0.624) 11.240 (2.889)

Table 2: Cross validation performance (and training set performance in parenthesis) of the different algorithms evaluated by
three metrics: log likelihood of the data, root mean squarederror (RMSE), and RMSE on the data before logarithmic scaling.
Items in bold indicate the best performing method, statistically significant in a pairwise t-test withp < 0.01.

Experimental Setup and Results
We evaluated the performance of the algorithms described
above using 5 fold cross validation: we divided the 6,499
data points randomly into 5 approximately equal-sized
groups, trained the above regression methods on the union
of 4 of these groups, then tested on the held out data; we
repeated this for each of the 5 groups, and report the aver-
age error and log likelihood over all the held-out examples.
To report training errors, we trained and tested on the en-
tire data set. For the GP models, since hyperparameter op-
timization is quite computationally intensive, we optimized
these parameters by maximizing marginal likelihood only
on a random subset of 700 of the training examples for each
cross validation fold; once we learned these hyperparame-
ters, however, we used the entire training set to predict the
held-out data.

Table 2 shows the performance of the different algorithms
on this data set. We evaluated the algorithms via three met-
rics: log likelihood of the data, root mean squared error
(RMSE) on the logarithmically scaled outputs, and RMSE
on the original energy consumptions (without logarithmic
scaling, noted in Table 2 by “No-Log”). For comparison, we
also present “Output only” results, which simply involve fit-
ting the T, Laplacian, and normal distributions directly to
the log of the energy data (without any regressors). Sum-
marizing the results briefly, the best-performing model we
obtain is able to explain about 75% of the variance (in the
logarithmic scale) using the features described above. This
naturally leaves a great deal of variance unexplained, but of
course this is expected, since we must imagine that some el-
ements of the energy usage are simply behaviorally based
and cannot be predicted in the normal sense; indeed, these
are precisely the situations where we want to present such
information to the user.

In greater detail, as seen in the table, the GP methods
obtain the best overall performance, with the normal like-
lihood performing best as measured by the RMSE and the
T likelihood performing best in terms of the log likelihood.
However, while the GP methods do perform better than the
simple linear regression models, we argue that the simple

linear models are in some respects preferable for this do-
main. The linear regression methods all obtain RMSE that is
only marginally worse than the GP methods, they allow for
simple descriptions of energy usage in terms of power-law
relationship, and they provide much more succinct, compu-
tationally efficient, and interpretable models. We also look
at alternative regression approaches, such as including all
the extracted features for the non-linear GP, or using the
data without logarithmic scaling to make predictions. In both
cases, the resulting approaches perform no better, and in the
case of omitting the log transformation, the resulting meth-
ods can perform much worse, both in terms of the log-based
RMSE and the RMSE in the original scale (log likelihood
terms are not directly comparable, as the data is not on the
same scale before the log transformation).

EnergyView
Based upon the models from the previous section, we have
developed an end-user application, EnergyView, that lets
companies or individuals view and compare their energy
usage, based upon how their true usage compares to the
model’s predictions. The system consists of two parts: for
the utilities or authorized organizations (anyone who may
obtain access to the individual energy records), we have de-
veloped a graphical interface that layers energy consump-
tion over a map of the area. The interface allows users to
quickly determine outliers according to the model: building
that use significantly more (or less, though presumably little
needs to be done in this case) energy than predicted by the
model (i.e., even accounting for all the observed features of
the building). Thus, these are prime candidates for buildings
where energy usage could be reduced by behavior changes,
retrofits, etc. Presenting this information to a community or-
ganization aimed at energy efficiency, for example, could
greatly help such groups decide where to focus resources.
A (simulated) screenshot of this system is shown in Figure
3. Due to privacy considerations, such a system is unlikely
to become publicly available (though users could opt in to
allow public display of their information), but could stillbe
highly valuable for authorized groups.



Figure 3: Example image of the city-level EnergyView tool.
While the image here is indicative of how the interface
looks, for privacy reasons the color codes and energy con-
sumption in this picture are generated via random sampling,
and do not correspond to the actual building consumptions
in Cambridge.

The second component of the EnergyView system is an
end-user tool that lets an owner enter the relevant informa-
tion about their own home or building, plus gas and elec-
trical consumption, in order to find where they lie in re-
lation to the model’s prediction (we refer to this process
as contextualizing energy usage, as it puts it in the con-
text of similar homes). Because such a tool does not dis-
close identifying information, it can be released publicly
and used by building owners or efficiency groups alike. A
screenshot of the resulting analysis page is shown in Figure
4, showing a building’s consumption versus expected con-
sumption for each month and displaying where the build-
ing lies in the overall distribution. A web version of the
tool is availablehttp://people.csail.mit.edu/
kolter/energyview. Although, because our approach
is fully data-driving, the validity of the model is specific to
the general area of Cambridge, MA, the techniques are quite
general, and the same system could be set up for any location
given access to similar data.

Conclusion
In this paper we presented a study and analysis of building
energy consumption in a large urban environment. To the
best of our knowledge, this represents one of the largest aca-
demic studies of individual home and building energy con-
sumption using real data for a single city. We have analyzed
the distributions of this data, and used these insights to learn
models that can predict expected energy usage given fea-
tures of the home, and which are able to explain roughly
75% of the observed variance in energy consumption ac-
cording to our logarithmic scaling of the data. Finally, we de-
scribe and release EnergyView, a tool that uses these models
to visualize both city-level information, and building-level

Figure 4: Image of the home-level EnergyView analysis.

information, allowing end-users to see where their home lies
within the expected distribution.

Looking forward, there are numerous possible directions
for future work. We are continuing to look for additional
sources of data that could be incorporated into the model,
such as home survey data or image data. Despite the fact that
spatial features did not help the predictions in our current
data set, location data seems still to be a promising source
of information, and there is a need for algorithms or features
that can better capture such relationships. We are working
to expand the EnergyView application to allow for opt-in
data sharing and incorporation of entered data into the inter-
nal models. More broadly speaking, the models and Ener-
gyView tool we present here represents just one facet of the
building energy problem; equally important is how we use
these models to produce actionable information to the proper
groups that can actually lead to energy savings. Understand-
ing how to best achieve these savings using the model’s
predictions and determining how the predictions correlate
with changeable behaviors in a community, remains a cru-
cial question for further work.
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