
New Sublinear Methods in the Struggle

Against Classical Problems

by

Krzysztof Onak

Magister, Uniwersytet Warszawski (2005)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

c© Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Sep 6, 2010

Certified by. .

Ronitt Rubinfeld
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Terry P. Orlando

Chair of the Committee on Graduate Students

2

New Sublinear Methods in the Struggle

Against Classical Problems

by

Krzysztof Onak

Submitted to the Department of Electrical Engineering and Computer Science
on Sep 6, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

We study the time and query complexity of approximation algorithms that access
only a minuscule fraction of the input, focusing on two classical sources of problems:
combinatorial graph optimization and manipulation of strings. The tools we develop
find applications outside of the area of sublinear algorithms. For instance, we obtain
a more efficient approximation algorithm for edit distance and distributed algorithms
for combinatorial problems on graphs that run in a constant number of communication
rounds.

Combinatorial Graph Optimization Problems: The graph optimization prob-
lems considered by us include vertex cover, maximum matching, and dominating set.
A graph algorithm is traditionally called a constant-time algorithm if it runs in time
that is a function of only the maximum vertex degree, and in particular, does not
depend on the number of vertices in the graph.

We show a general local computation framework that allows for transforming many
classical greedy approximation algorithms into constant-time approximation algo-
rithms for the optimal solution size. By applying the framework, we obtain the first
constant-time algorithm that approximates the maximum matching size up to an ad-
ditive εn, where ε is an arbitrary positive constant, and n is the number of vertices
in the graph.

It is known that a purely additive εn approximation is not computable in constant
time for vertex cover and dominating set. We show that nevertheless, such an ap-
proximation is possible for a wide class of graphs, which includes planar graphs (and
other minor-free families of graphs) and graphs of subexponential growth (a common
property of networks). This result is obtained via locally computing a good partition
of the input graph in our local computation framework.

The tools and algorithms developed for these problems find several other applica-
tions:

3

• Our methods can be used to construct local distributed approximation algo-
rithms for some combinatorial optimization problems.

• Our matching algorithm yields the first constant-time testing algorithm for
distinguishing bounded-degree graphs that have a perfect matching from those
far from having this property.

• We give a simple proof that there is a constant-time algorithm distinguishing
bounded-degree graphs that are planar (or in general, have a minor-closed prop-
erty) from those that are far from planarity (or the given minor-closed property,
respectively). Our tester is also much more efficient than the original tester of
Benjamini, Schramm, and Shapira (STOC 2008).

Edit Distance. We study a new asymmetric query model for edit distance. In this
model, the input consists of two strings x and y, and an algorithm can access y in an
unrestricted manner (without charge), while being charged for querying every symbol
of x.

We design an algorithm in the asymmetric query model that makes a small number
of queries to distinguish the case when the edit distance between x and y is small
from the case when it is large. Our result in the asymmetric query model gives
rise to a near-linear time algorithm that approximates the edit distance between two
strings to within a polylogarithmic factor. For strings of length n and every fixed
ε > 0, the algorithm computes a (log n)O(1/ε) approximation in n1+ε time. This is an
exponential improvement over the previously known near-linear time approximation
factor 2Õ(

√
log n) (Andoni and Onak, STOC 2009; building on Ostrovsky and Rabani,

J. ACM 2007). The algorithm of Andoni and Onak was the first to run in O(n2−δ)
time, for any fixed constant δ > 0, and obtain a subpolynomial, no(1), approximation
factor, despite a sequence of papers.

We provide a nearly-matching lower bound on the number of queries. Our lower
bound is the first to expose hardness of edit distance stemming from the input strings
being “repetitive”, which means that many of their substrings are approximately
identical. Consequently, our lower bound provides the first rigorous separation on
the complexity of approximation between edit distance and Ulam distance.

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor of Electrical Engineering and Computer Science

4

Acknowledgments

This thesis would not have happened without the support and help of many people.

I am grateful to my advisor Ronitt Rubinfeld for her guidance and all the trust she put

in me. She is probably the most encouraging person I know, and she has always been

an inexhaustible source of new research ideas. Ronitt has never put any constraints

on me, but she has always let me freely explore topics I found interesting at a given

moment, and she has never complained about the time I spent collaborating with

other people.

I would like to thank Piotr Indyk for all the feedback and support I received from

him. Piotr largely participated in creating the positive and friendly atmosphere in

the MIT theory group. I am grateful to Piotr Indyk and Silvio Micali for serving on

my thesis committee.

I owe a lot to my collaborators: Alex Andoni, Artur Czumaj, Ilias Diakonikolas,

Gereon Frahling, Nick Harvey, Avinatan Hassidim, Piotr Indyk, David Karger, Jon

Kelner, Phil Klein, Robi Krauthgamer, Homin Lee, Kevin Matulef, Andrew McGre-

gor, Morteza Monemizadeh, Shay Mozes, Jelani Nelson, Huy Nguyen, Rina Panigrahy,

Pawel Parys, Ronitt Rubinfeld, Rocco Servedio, Tasos Sidiropoulos, Christian Sohler,

Andrew Wan, Oren Weimann, and Ning Xie. I learned a lot from them, and needless

to say, many of the ideas in this thesis come from them.

I can hardly imagine a better environment for a PhD program than the MIT

theory group. It was very vibrant and friendly. In particular, I am greatly indebted

to Alex and David. We started the PhD program in the same year and shared many

of its enjoyments and hardships. It is next to impossible to list all people who made

my stay at MIT enjoyable. Let me personally express my gratefulness to Agata,

Anh and Huy, Ankur, Anton, Arnab, Avinatan, Ben, Chih-yu, Jacob, Jelani, Kamila

and Olek, Kevin, Mieszko, MinJi, Mira and Mihai, Ning, Rotem, Szymon, Tasos,

and Violeta. If your name is missing from here, I owe you at least a dinner. I am

also happy to say that I managed to keep in touch with a few friends from college,

occasionally meeting them in the real world. Let me just mention Andrzej, Artur,

5

Basia, Marcin, Piotr, Szymek, Tomek (×2), Tunia, and Zosia. I always felt I could

count on you, and you were often the first witnesses to how studying abroad affected

my command of Polish.

I would not be here if several people from my home country had not influenced my

life. I am greatly indebted to (as I later found out, relatively poorly paid) translators

of foreign computer science books into Polish as well as authors of Polish books on

the topic. Those books helped me establish my interests in (theoretical) computer

science. I am grateful to the organizers of the Polish Olympiad in Informatics. The

Olympiad helped me further develop my interests and was a great platform for meet-

ing people with similar interests in high school. I would like to thank Krzysztof Diks,

my undergraduate advisor at Warsaw University. His enthusiasm about computer

science and optimistic approach to life have always been contagious, and he was one

of the main reasons why I decided to study at Warsaw University.

Finally, I would like to thank all my family for their love and support. My parents

showed a lot of understanding when I told them that I was considering going to

graduate school in the US, and they have constantly been making sure that I was

not lacking anything here. They also had a huge influence on my professional life

by providing my first computational environment at home and teaching me how to

program in LOGO on the ZX Spectrum.

6

Contents

1 Introduction 9

1.1 Graph Optimization Problems . 10

1.1.1 General Graphs . 11

1.1.2 Better Algorithms for Important Subclasses 15

1.1.3 Follow-Up Work . 21

1.1.4 A Note on Bounded Average-Degree Instances 21

1.2 Edit Distance . 22

1.2.1 Historical Background . 22

1.2.2 Results . 24

1.2.3 Connections of the Asymmetric Query Model to Other Models 27

2 Combinatorial Problems on Graphs 29

2.1 Definitions and the Model . 29

2.2 Simple Example: Vertex Cover via Maximal Matching 30

2.3 A Local Computation Method . 32

2.3.1 The Method . 32

2.3.2 Non-Adaptive Performance . 33

2.3.3 Adaptive Performance . 35

2.3.4 Recent Improvements . 38

2.4 General Transformation for Greedy Algorithms 39

2.4.1 Technique High-Level Description 39

2.4.2 Maximum Matching . 40

2.4.3 Maximum Weight Matching 45

7

2.4.4 Set Cover . 52

2.5 Better Algorithms for Hyperfinite Graphs 54

2.5.1 A Generic Partitioning Oracle 59

2.5.2 An Efficient Partitioning Oracle for Minor-Free Graphs 63

2.6 Other Applications of Our Methods 67

2.6.1 Local Distributed Algorithms 67

2.6.2 Testing the Property of Having a Perfect Matching 68

2.6.3 Testing Minor-Closed Properties 68

2.6.4 Approximating Distance to Hereditary Properties For Hyperfi-

nite Graphs . 71

3 Edit Distance 77

3.1 Outline of Our Results . 77

3.1.1 Outline of the Upper Bound 77

3.1.2 Outline of the Lower Bound 82

3.2 Fast Algorithms via Asymmetric Query Complexity 89

3.2.1 Edit Distance Characterization: the E-distance 90

3.2.2 Sampling Algorithm . 95

3.2.3 Near-Linear Time Algorithm 105

3.3 Query Complexity Lower Bound . 106

3.3.1 Preliminaries . 106

3.3.2 Tools for Analyzing Indistinguishability 108

3.3.3 Tools for Analyzing Edit Distance 116

3.3.4 The Lower Bound . 122

8

Chapter 1

Introduction

Over the last two decades, computation has spread across all areas of our lives. The

decreasing cost of information storage enables collecting more and more data by

various sensors and monitoring tools. For instance, the Large Hadron Collider was

predicted to produce 15 petabytes1 of data annually [57]. How can one store this

amount of data to enable fast processing later? How can one efficiently access and

process data that has already been collected?

Traditionally, theoretical computer science identified efficiency with polynomial-

time computability in the model where the algorithm freely accesses input. Compu-

tational challenges emerging nowadays are not always captured by this model due to

either limitations on how data can be accessed, or simply due to the amount of data,

which cannot be efficiently processed. Multiple frameworks and models have been

developed to address this issue, and one of them is sublinear-time algorithms.

Sublinear-time algorithms and more generally, sublinear-query algorithms attempt

to infer information from a dataset by accessing only a miniscule fraction of informa-

tion in it. A classical example of a sublinear-time algorithm is binary search, in which

one checks if an element appears in a sorted array in time logarithmic in the array

length. Another example is uniform sampling from a set of items to estimate the

fraction of those with a given property. For the latter problem, the Hoeffding bound

implies that the fraction of elements with the property in a sample of size O(1/ε2)

11 petabyte equals 1015 bytes.

9

differs from the fraction of elements in the entire set by at most an additive ε with

probability 99/100.

The modern study of sublinear algorithms was initiated by the paper of Blum,

Luby, and Rubinfeld [20]. They show an algorithm for approximately verifying that a

function is a linear function. This algorithm played an important role in the original

proof of the PCP theorem [11, 12]. The Blum-Luby-Rubinfeld paper together with

papers of Rubinfeld and Sudan [75], and Goldreich, Goldwasser, and Ron [39] gave

a rise to the field of property testing. In property testing, the goal is to distinguish

inputs that have a specific property from those that are significantly different from

any input that has the property. More formally, one says that an input is ε-far from

a given property, if at least an ε-fraction of the input bits (or other units constituting

the input, say, words, integers, etc.) need to be modified to obtain the property. A

tester for the property distinguishes inputs with the property from those that are

ε-far from having the property with probability at least 2/3.

The property testing field can be seen as a study of relaxed versions of decision

problems. In this thesis, we mostly focus on approximation problems (studied before

in the sublinear-time framework by, for instance, [39, 44, 22, 29, 13, 70, 62]), where

we want to output an approximate value of a parameter of the input as opposed to

making a single binary YES/NO decision. Nevertheless, some of our techniques find

applications in constructing testers for natural properties.

This thesis focuses on two kinds of problems in the sublinear-query model: com-

binatorial graph optimization problems and edit distance. We describe our results

with motivation in the next two sections.

1.1 Graph Optimization Problems

There has been an enormous amount of work on maximum matching, vertex cover,

and set cover in the classical computation model, where the whole input is read. It

is obviously not possible to compute a solution to these problems in time sublinear

in the input size, since an optimal solution may itself have linear size. The question

10

we ask is whether it is possible to approximate just the optimal solution size in time

sublinear in the input size. This question has been asked before for various graph

problems (see for instance [39, 22, 13, 70, 62]).

Our algorithms work best for sparse graphs. Some examples of graphs for which

our algorithms would work well are social networks and the World Wide Web. The

following facts show that these graphs have a huge number of vertices:

• In July 2008, Google employees announced that the Google search engine had

discovered one trillion unique URLs [6].

• The number of webpages indexed by the most popular search engines was esti-

mated at the beginning of August 2010 to be more than 55 billion [1].

• In July 2010, it was announced that the social networking website Facebook

had more than 500 million active users2 [80].

However, despite the size of the above graphs, most vertices in them have relatively

low degree. If only a small fraction of vertices have high degree, one can modify the

graph in most cases so that the problem has to be solved only for a subgraph of small

degree without modifying the solution size significantly. We discuss this issue in more

detail in Section 1.1.4.

1.1.1 General Graphs

We say that a graph algorithm runs in constant time if its running time is bounded

by a function of the maximum degree. We show a general technique that can be used

to transform multiple classical greedy approximation algorithms into constant-time

approximation algorithms for sparse graphs.

Our results belong to a line of research initiated by Parnas and Ron [70]. They

show a randomized constant-time algorithm that with probability close to 1, outputs

a value x such that VC(G) ≤ x ≤ 2 · VC(G) + εn, for any fixed ε > 0, where n

is the number of vertices in the graph. Their algorithm stems from the observation

2A user is considered active by Facebook if he or she has visited the website in the last 30 days.

11

that if there is a distributed algorithm that in a constant number of rounds computes

a good solution to a problem, then it is possible to approximate the size of such

a solution efficiently. It suffices to compute the output of the algorithm on a few

randomly selected vertices (or, for some problems, edges) to estimate the fraction of

vertices (or edges) included in the solution. Since the distributed algorithm runs in a

constant number of rounds the simulation can be done with a number of queries (and

usually also in time) that is only a function of the maximum degree. It is crucial that

the number of communication rounds the distributed algorithm uses be small. For

instance, if there are more than log n communication rounds, then in an expander,

the output for a given vertex may depend on the entire graph and it may not be

possible to compute the distributed algorithm’s output even for a single vertex.

As opposed to the approach of Parnas and Ron, ours does not rely on distributed

algorithms. Moreover, for maximum matching, our method overcomes limitations of

the previously known distributed algorithms.

Definitions and the Model

Before we formally state our results, let us introduce the approximation notion that

we use.

Definition 1.1.1. We say that a value ŷ is an (α, β)-approximation to y, if

y ≤ ŷ ≤ α · y + β.

We say that an algorithm A is an (α, β)-approximation algorithm for a value V (x)

if it computes an (α, β)-approximation to V (x) with probability at least 2/3 for any

proper input x.

For simplicity, whenever we talk about an (α, β)-approximation algorithm for prob-

lem X in this part of the thesis, we, in fact, mean an (α, β)-approximation algorithm

for the optimal solution size to problem X .

With a small exception, the input to problems considered in this part of the thesis

is a graph. We make the following assumptions about how an algorithm can access

12

the input.

• The algorithm can select a vertex in the graph uniformly at random. The

operation takes constant time.

• The algorithm can query the adjacency list of each vertex. It can make two

types of queries, both answered in constant time. In the degree query, the

algorithm finds out the degree of a vertex it specifies. By making a neighbor

query, the algorithm learns the identity of the i-th neighbor of v, where both i

and v are specified by the algorithm. Additionally, if the graph is weighted, the

algorithm learns the weight of the edge connecting v with its i-th neighbor.

We also consider the set cover problem. Let U be the set of all elements and let

Si be the sets with which we cover U . In this case we assume that the algorithm

can uniformly select a random set Si. Furthermore, for every element x ∈ U , the

algorithm can query the list of the sets Si that contain x, and for every set Si, the

algorithm can query the list of the elements of Si.

Overview of Graph Problems

We now list our results, and compare them with previous work in related areas. We

express the complexity of our algorithms in terms of the number of queries they make,

but the corresponding running time is independent of the size of input and is greater

by at most an additional logarithmic factor, compared to the query complexity.

Maximum Matching. The only results on approximation of the maximum match-

ing size in sublinear time that have been known before are the algorithms of Parnas

and Ron [70], and Marko and Ron and [62]. Since their algorithms give a constant

factor approximation to the minimum vertex cover size, they also give a constant fac-

tor approximation to the maximum matching size. The main obstacle to applying the

general reduction of Parnas and Ron from distributed algorithms is that the known

distributed algorithms [30, 32] for maximum matching run in a number of rounds

that is polylogarithmic in the graph size, not constant.

13

Nevertheless, we show that there exists a constant-time (1, εn)-approximation

algorithm for maximum matching for graphs of maximum degree bounded by d ≥ 2

with query complexity 2dO(1/ε)
.

Maximum Weight Matching. For bounded-degree weighted graphs of all weights

in [0, 1], we show a constant-time algorithm that computes a (1, εn)-approximation

to the maximum weight matching. This can be achieved by combining our techniques

with a greedy algorithm based on techniques of Pettie and Sanders [72].

Vertex Cover. We show that there exists a (2, εn)-approximation algorithm of

query complexity 2O(d)/ε2, for graphs of maximum degree bounded by d. Combin-

ing the results of Parnas and Ron [70] and Marko and Ron [62] yields a (2, εn)-

approximation algorithm for the minimum vertex cover size of running time and

query complexity dO(log(d/ε)). Our algorithm has better dependency on ε, but worse

on d. Furthermore, Trevisan showed that for any constant c ∈ [1, 2), a (c, εn)-

approximation algorithm must use at least Ω(
√

n) queries (the result appeared in

[70]). Parnas and Ron [70] also showed that any (O(1), εn)-approximation algorithm

must make Ω(d) queries as long as n/d is greater than some other constant (unless d

is sufficiently close to n).

Set Cover. We also show an approximation algorithm for sparse instances of set

cover. Let H(i) be the i-th harmonic number
∑

1≤j≤i 1/j. Recall that H(i) ≤ 1+ln i.

We show that there is an (H(s), εn)-approximation algorithm of query complexity
(

2(st)4

ε

)O(2s)

for the minimum set cover size, for instances with n sets Si, each of size

at most s, and with each element in at most t different sets. As a special case of the set

cover problem, we get an (H(d+1), εn)-approximation algorithm of query complexity
(

2d8

ε

)O(2d)

for the minimum dominating set size for graphs of degree bounded by d.

Previously by combining the results of Parnas and Ron [70] and Kuhn, Moscibroda

and Wattenhofer [52], one could obtain an (O(log d), εn)-approximation algorithm for

minimum dominating set of query complexity dO(log d)/ε2.

14

Other Problems. An example of a problem in the same framework (i.e., for

bounded degree graphs) is the approximation of the minimum spanning tree weight

for graphs of degree bounded by d. Chazelle, Rubinfeld and Trevisan [22] show that

if all edge weights are in {1, 2, . . . , w}, then there is an algorithm that computes a

multiplicative (1 + ε)-approximation to the minimum weight spanning tree problem

in time O(dw
ε2 log w

ε
). Due to the nature of this problem, it does not fit into our

framework, and a constant-time approximation algorithm cannot be obtained via our

general reduction.

An External Application to Property Testing

Our constant-time algorithm for approximating the maximum matching size has an

application to property testing in the sparse graph model [40]. For graphs with

an even number of vertices, it can be used for distinguishing graphs that have a

perfect matching from those that need to have at least εdn edges added to achieve

this property (these are the graphs that are ε-far from having a perfect matching).

Clearly all graphs that have a perfect matching have a maximum matching of size n/2,

while the graphs that are ε-far have no matching of size greater than (1/2 − εd)n.

It therefore suffices to approximate the maximum matching size up to an additive

εdn/3 to solve the promise property testing problem, which can be done in constant

time.

1.1.2 Better Algorithms for Important Subclasses

For many graph problems, we encounter a multiplicative barrier α > 1 such that

we do not know how to compute an (α, εn)-approximation in constant time. The

results of Alon [3] and Trevisan [70] show that in fact, there are no constant-time

(1, εn)-approximation algorithm for some for maximum independent set, dominating

set, and vertex cover. We therefore turn to a large class of natural graph families,

for which we show constant-time (1, εn)-approximation algorithms for the problems

mentioned above.

15

As an example, consider planar graphs. Lipton and Tarjan [58] discovered the sep-

arator theorem, which implies the following. Any planar graph with maximum degree

bounded by d can be partitioned into small components of size at most poly(d, 1/ε) by

removing only an ε-fraction of edges for any ε > 0. Alon, Seymour, and Thomas [4]

show a generalization of the separator theorem to any excluded minor.

We develop techniques for computing such a partition for minor-free families of

graphs and other families of graphs with similar properties by looking only at a

constant radius neighborhood of each vertex before deciding which component it is

assigned to. We construct a partitioning oracle that given query access to a graph

from a specific family of graphs, provides query access to a fixed partition, and queries

a fraction of the graph independent of the graph size.

Just as knowing the entire partition is useful for finding a good approximate

solution [59], our local version is useful for approximating the size of the optimal

solution in time independent of the actual graph size. Our partitioning oracles also

find applications to other approximating and testing problems that we describe in

more detail later in this section.

Graph families

We construct partitioning oracles for hyperfinite families of graphs with bounded

degree. Informally, hyperfinite graphs are those that can be partitioned into constant-

size components by removing a small fraction of edges. A formal definitions follows.

Definition 1.1.2.

• Let G = (V, E) be a graph. G is (ε, k)-hyperfinite if it is possible to remove ε|V |
edges of the graph such that the remaining graph has connected components of

size at most k.

• Let ρ be a function from R+ to R+. A graph G is ρ-hyperfinite if for every

ε > 0, G is (ε, ρ(ε))-hyperfinite.

• Let C be a family of graphs. C is ρ-hyperfinite if every graph in C is ρ-hyperfinite.

16

Examples of bounded-degree hyperfinite families of graphs include bounded-degree

graphs with an excluded minor [4] (for instance, bounded-degree planar graphs,

bounded-degree graphs with constant tree-width), bounded-degree graphs of subex-

ponential growth3 [34], and the family of non-expanding bounded-degree graphs con-

sidered by Czumaj, Shapira, and Sohler [28].

Previous Results

Recall that Trevisan [70] shows that there is no constant-time (2−δ, εn)-approximation

algorithm for vertex cover, for any δ > 0, for sufficiently high constant degree d.

Alon [3] shows similar lower bounds for maximum independent set (no constant-

time (o(d/ log d), εn)-approximation algorithm) and dominating set (no constant-time

(o(log d), εn)-approximation algorithm). We show that these lower bounds can be

overcome for any bounded-degree hyperfinite family of graphs.

Czygrinow, Hańćkowiak, and Wawrzyniak [33] show that one can construct constant-

time distributed (1 + ε)-approximation algorithms for planar graphs for the above

problems. This implies the existence of constant-time (1, εn)-approximation algo-

rithms for planar graphs via the connection observed by Parnas and Ron [70]. One

can show that their construction implies algorithms that run in 2quasipoly(1/ε) time for

most standard problems.

Elek [35] proves the existence of constant-time (1, εn)-approximation algorithms

for minimum vertex cover, minimum dominating set, and maximum independent set

for bounded-degree graphs of subexponential growth. His paper does not provide any

explicit bounds on the running time.

Our Results

We show that the lower bounds of Alon and Trevisan can be overcome for any

bounded-degree hyperfinite family of graphs. In fact, this is true for a slightly larger

family of graph families with bounded average degree, which includes any family of

3The growth of a graph or a family of graphs is a function g : Z+ → Z+ such that g(d) equals
the maximum number of vertices at distance at most d from any vertex d.

17

(unbounded degree) graphs with an excluded minor. More precisely, for any such

family of graphs, there are constant-time (1, εn)-approximation algorithms for min-

imum vertex cover, minimum dominating set, and maximum independent set. For

any family of graphs with an excluded minor, the running time of our algorithms

is 2poly(1/ε). Note that finding algorithms of running time 2(1/ε)o(1)
is unlikely, since

by setting ε = 1/(3n), this would yield subexponential randomized algorithms for

NP-hard problems. The above three problems are NP-hard for planar graphs, even

with degree bounded by 3 [37, 38].

External Applications to Property Testing

Testing minor-closed properties. Another application of our techniques is to

property testing in the bounded-degree model [40]. We say that a graph property4

is minor closed if it is closed under removal of edges, removal of vertices, and edge

contraction. Examples of minor-closed families of graphs include planar graphs, outer-

planar graphs, graphs of genus bounded by a constant, graphs of tree-width bounded

by a constant, and series-parallel graphs.

In the case being considered, the goal of an ε-tester for a given minor-closed

property P is to distinguish, with probability 2/3, graphs that satisfy P from those

that need to have at least εn edges deleted to satisfy P, where ε > 0. Goldreich

and Ron [40] show an O(1/ε3) tester for the property that the input graph is a

forest, i.e., does not have K3 as a minor. For a long time this was the only minor-

closed property known to be testable in constant-time. The breakthrough result of

Benjamini, Schramm, and Shapira [18] shows that any minor-closed property can be

tested in constant time, this was the only minor-closed property that was known to

be testable in constant time. However, the running time of the tester of Benjamini,

Schramm, and Shapira is 222poly(1/ε)

, and the analysis is quite involved. We give a

simple proof of their result, and present a tester that runs in 2poly(1/ε) time.

4In this thesis, all graph properties are defined for graphs with no labels and are therefore closed
under permutation of vertices.

18

Approximation of distance to hereditary properties. A graph property is

hereditary if it is closed under removal of vertices. Many natural graph families are

hereditary, including all minor-closed graph families, perfect graphs, bipartite graphs,

k-colorable graphs, graphs with an excluded induced subgraph (see the appendix of

[28] for a longer list of hereditary properties). All those properties are known be

testable in constant time for dense graphs in the adjacency matrix model even with

one-sided error [5], i.e., a graph having a given property cannot be rejected. This

is not the case in the bounded-degree model. For instance, testing bipartiteness

requires Ω(
√

n) queries [40], and testing three-colorability requires Ω(n) queries [21].

Motivated by these lower bounds, Czumaj, Shapira, and Sohler [28] turned to testing

properties of specific bounded-degree non-expanding families of graphs, which include

minor-closed families of graphs. For those graphs, they show that all hereditary

properties are testable in constant-time (with one-sided error). Their proof holds

true for any hyperfinite family of bounded-degree graphs.

We say that a hereditary property P is degenerate if there is an empty graph on

some number of vertices that does not have P. For every non-degenerate hereditary

P, every hyperfinite family C of bounded-degree graphs, and every ε > 0, one can

additively approximate the number of edges that must be modified (i.e., inserted or

removed) up to εn to achieve P in time independent of the graph size for graphs in

C. It is impossible to specify the running time even for a fixed family of graphs, since

P need not even be computable. Nevertheless, if a non-degenerate P can be specified

via a (potentially infinite) set of forbidden connected induced graphs, and there is an

T (n)-time algorithm that checks if a graph on n vertices has P, we show that the

distance to P to can be approximated in any fixed bounded-degree family of graphs

with an excluded minor in 2poly(1/ε) · T (poly(1/ε)) time.

The reason behind excluding degenerate hereditary properties is the following.

Every degenerate P excludes an empty graph on k vertices, for some constant k,

which implies that if a graph G has P, then it does not have an independent set

of size k, and therefore, has Ω(n2) edges. Since the input graph has O(n) edges, a

large number of edges must be inserted. On the contrary, for every non-degenerate

19

hereditary property, the distance to the property is always of order O(n), since it

suffices to remove all edges to achieve the property.

A sample application of our result is a (1, εn)-approximation algorithm for the

number of edges that must be removed from the input bounded-degree planar graph

to make it 3-colorable. The running time of the algorithm can be made 2poly(1/ε). The

result of Czumaj et al. [28] only guarantees the existence of a constant-time algorithm

that for planar bounded-degree graphs, can tell 3-colorable graphs from those that

need to have at least εn edges removed, for every ε > 0.

Independently, Elek [35] proves the existence of constant-time approximation algo-

rithms for distance approximation to union-closed monotone properties in bounded-

degree graphs of subexponential growth. Even though a union-closed monotone prop-

erty need not be hereditary, all natural union-closed monotone properties are heredi-

tary5. On the other hand, the perfectness property of graphs is hereditary, but is not

monotone.

For general bounded degree graphs, Marko and Ron [62] give a constant-time

(O(1), ε)-approximation algorithm for the distance to H-freeness, where H is an ar-

bitrary fixed graph. They also show a constant-time (1, ε)-approximation algorithm

for the distance to cycle-freeness.

Local distributed approximation algorithms. A distributed algorithm is local

if it runs in a number of rounds that is independent of the size of the underlying

graph.

Our partitioning oracles, which provide query access to a partition of vertices, can

also be simulated locally by a distributed algorithm. In the distributed algorithm,

every vertex collects a constant-radius neighborhood and their random bits. Then

each vertex simulates the oracle’s computation and partition. Given the partition,

one can compute a good approximate solution to many combinatorial problems.

The paper of Czygrinow, Hańćkowiak, and Wawrzyniak [33] shows that local ran-

domized (1 + ε)-approximation distributed algorithms can be constructed for planar

5If a union-closed monotone property is closed under removing an isolated vertex, then it is hered-
itary. All union-closed monotone properties listed by Elek [35] are hereditary and non-degenerate.

20

graphs, for every ε > 0, for all problems considered by us (i.e., minimum vertex

cover, maximum independent set, and dominating set). Their techniques work for

any family of minor-free graphs. Earlier research on efficient distributed algorithms

for minor-free graphs includes papers of Czygrinow and Hańćkowiak [31], and Lenzen,

Oswald, and Wattenhofer [55]

1.1.3 Follow-Up Work

Our paper [66] proposes a pruning heuristic that can be applied to many of our

algorithms. However, despite experimental evidence suggesting a much better perfor-

mance, we were unable to show a better theoretical bound. This issue is addressed by

Yoshida, Yamamoto, and Ito [79], who show a better theoretical bound for the method

with the heuristic. In particular, they show that there is a (2, εn)-approximation algo-

rithm for vertex cover running in Õ(d4/ε2) time. This is the first algorithm for vertex

cover that runs in time polynomial in both d and 1/ε. For maximum matching, their

improved analysis yields a (1, εn)-approximation algorithm that runs in dO(1/ε2) time.

In a recent unpublished manuscript [67], we further improve the algorithm for

vertex cover. We reduce the number of neighbors read from each neighborhood list

by sampling to only access a small fraction of them. The running time of our (2, εn)-

approximation algorithm is Õ(d2/ε2).

Inspired by our research, Alon [3] shows a constant-time (O(d log log d/ log d), εn)-

approximation algorithm for maximum independent set, and showed that there is no

constant-time (o(d/ log d), εn)-approximation algorithm for this problem. For domi-

nating set, he shows that there is no constant-time (ln d, εn)-approximation algorithm.

1.1.4 A Note on Bounded Average-Degree Instances

Parnas and Ron [70] observe that one can easily turn some algorithms for bounded

maximum-degree graphs into algorithms for bounded average-degree graphs. Con-

sider the maximum matching problem. If the average degree is at most d̂, then there

are at most εn vertices of degree higher than d̂/ε. Removing them from the graph

21

changes the maximum matching size by at most εn. Therefore, running the algo-

rithm for bounded maximum degree and ignoring all vertices of degree greater than

d̂/ε gives a (1, 2ε)-approximate solution.

For vertex cover, it is also safe to remove the high degree vertices. This changes

the vertex cover size by at most εn as well. For dominating set, one can assume that

the vertices of high degree belong to the dominating set. Again, this changes the

solution size by at most εn, but this time, we cannot simply remove them from the

graph. Instead whenever we see one of them from one their neighbors, we know that

the given neighbor is already covered in the execution of the constant-time set cover

algorithm, which we use for approximating the dominating set size.

Additionally, the above reductions can be performed in a similar way for dense

graphs with few vertices of high degree. It suffices to find a bound dε such that all

but an ε fraction of vertex degrees are bounded by dε. Then all vertices of degree

higher than dε are considered to have high degree.

1.2 Edit Distance

In the second part of the thesis, we study an asymmetric query model for edit distance.

In this model, the input consists of two strings x and y, and an algorithm can access

y in an unrestricted manner, while being charged for querying every symbol of x. We

both design an algorithm that makes a small number of queries in this model, and

provide a nearly matching lower bound on the number of queries.

By using our sublinear-query algorithm, which also has relatively low running

time, we obtain the first algorithm that approximates edit distance up to a polylog-

arithmic factor in O(nc) time, where c is a constant less than 2.

1.2.1 Historical Background

Manipulation of strings has long been central to computer science, arising from the

high demand to process texts and other sequences efficiently. For example, for the

simple task of comparing two strings (sequences), one of the first methods emerged

22

to be the edit distance (aka the Levenshtein distance) [56], defined as the minimum

number of character insertions, deletions, and substitutions needed to transform one

string into the other. This basic distance measure, together with its more elaborate

versions, is widely used in a variety of areas such as computational biology, speech

recognition, and information retrieval. Consequently, improvements in edit distance

algorithms have the potential of major impact. As a result, computational problems

involving edit distance have been studied extensively (see [65, 41] and references

therein).

The most basic problem is that of computing the edit distance between two strings

of length n over some alphabet. It can be solved in O(n2) time by a classical algorithm

[78]; in fact this is a prototypical dynamic programming algorithm, see, e.g., the

textbook [24] and references therein. Despite significant research over more than three

decades, this running time has so far been improved only slightly to O(n2/ log2 n) [63],

which remains the fastest algorithm known to date.6

Still, a near-quadratic runtime is often unacceptable in modern applications that

must deal with massive datasets, such as the genomic data. Hence practitioners tend

to rely on faster heuristics [41, 65]. This has motivated the quest for faster algorithms

at the expense of approximation, see, e.g., [45, Section 6] and [46, Section 8.3.2]. In-

deed, the past decade has seen a serious effort in this direction.7 One general approach

is to design linear time algorithms that approximate the edit distance. A linear-time
√

n-approximation algorithm immediately follows from the exact algorithm of [54],

which runs in time O(n + d2), where d is the edit distance between the input strings.

Subsequent research improved the approximation factor, first to n3/7 [15], then to

n1/3+o(1) [17], and finally to 2Õ(
√

log n) [10] (building on [68]). Predating some of this

work was the sublinear-time algorithm of [16] achieving nε approximation, but only

when the edit distance d is rather large.

6The result of [63] applies to constant-size alphabets. It was recently extended to arbitrarily large
alphabets, albeit with an O(log log n)2 factor loss in runtime [19].

7We shall not attempt to present a complete list of results for restricted settings (e.g., average-
case/smoothed analysis, weakly-repetitive strings, and bounded distance-regime), for variants of the
distance function (e.g., allowing more edit operations), or for related computational problems (such
as pattern matching, nearest neighbor search, and sketching). See also the surveys of [65] and [76].

23

Better progress has been obtained on variants of edit distance, where one either

restricts the input strings, or allows additional edit operations. An example from

the first category is the edit distance on non-repetitive strings (e.g., permutations

of [n]), termed the Ulam distance in the literature. The classical Patience Sorting

algorithm computes the exact Ulam distance between two strings in O(n log n) time.

An example in the second category is the case of two variants of the edit distance

where certain block operations are allowed. Both of these variants admit an Õ(log n)

approximation in near-linear time [27, 64, 26, 25].

Despite the efforts, achieving a polylogarithmic approximation factor for the clas-

sical edit distance has eluded researchers for a long time. In fact, this is has been the

case not only in the context of linear-time algorithms, but also in the related tasks,

such as nearest neighbor search, ℓ1-embedding, or sketching. From a lower bounds

perspective, only a sublogarithmic approximation has been ruled out for the latter

two tasks [50, 51, 8], thus giving evidence that a sublogarithmic approximation for

the distance computation might be much harder or even impossible to attain.

1.2.2 Results

Our first and main result is an algorithm that runs in near-linear time and approx-

imates edit distance within a polylogarithmic factor. Note that this is exponentially

better than the previously known factor 2Õ(
√

log n) (in comparable running time), due

to [68, 10].

Theorem 1.2.1 (Main). For every fixed ε > 0, there is an algorithm that ap-

proximates the edit distance between two input strings x, y ∈ Σn within a factor of

(log n)O(1/ε), and runs in n1+ε time.

This development stems from a principled study of edit distance in a computa-

tional model that we call the asymmetric query model, and which we shall define

shortly. Specifically, we design a query-efficient procedure in the said model, and

then show how this procedure yields a near-linear time algorithm.

We also provide a query complexity lower bound for this model, which matches or

24

nearly-matches the performance of our procedure. A conceptual contribution of our

query complexity lower bound is that it is the first one to expose hardness stemming

from “repetitive substrings”, which means that many small substrings of a string may

be approximately equal. Empirically, it is well-recognized that such repetitiveness

is a major obstacle for designing efficient algorithms. All previous lower bounds

(in any computational model) failed to exploit it, while in our proof the strings’

repetitive structure is readily apparent. More formally, our lower bound provides

the first rigorous separation of edit distance from Ulam distance (edit distance on

non-repetitive strings). Such a separation was not previously known in any studied

model of computation, and in fact all the lower bounds known for the edit distance

hold to (almost) the same degree for the Ulam distance. These models include: non-

embeddability into normed spaces [50, 51, 8], lower bounds on sketching complexity [8,

7], and (symmetric) query complexity [16, 9].

Asymmetric Query Complexity. Before stating the results formally, we define the

problem and the model precisely. Consider two strings x, y ∈ Σn for some alphabet Σ,

and let ed(x, y) denote the edit distance between these two strings. The computational

problem is the promise problem known as the Distance Threshold Estimation Problem

(DTEP) [77]: distinguish whether ed(x, y) > R or ed(x, y) ≤ R/α, where R > 0 is a

parameter (known to the algorithm) and α ≥ 1 is the approximation factor. We use

DTEPβ to denote the case of R = n/β, where β ≥ 1 may be a function of n.

In the asymmetric query model, the algorithm knows in advance (has unrestricted

access to) one of the strings, say y, and has only query access to the other string, x.

The asymmetric query complexity of an algorithm is the number of coordinates in x

that the algorithm has to probe in order to solve DTEP with success probability at

least 2/3.

We now give complete statements of our upper and lower bound results. Both ex-

hibit a smooth tradeoff between approximation factor and query complexity. For sim-

plicity, we state the bounds in two extreme regimes of approximation (α = polylog(n)

and α = poly(n)). See Theorem 3.2.1 for the full statement of the upper bound, and

Theorems 3.3.15 and 3.3.16 for the full statement of the lower bound.

25

Theorem 1.2.2 (Query complexity upper bound). For every β = β(n) ≥ 2 and

fixed 0 < ε < 1 there is an algorithm that solves DTEPβ with approximation α =

(log n)O(1/ε), and makes βnε asymmetric queries. This algorithm runs in time O(n1+ε).

For every β = O(1) and fixed integer t ≥ 2 there is an algorithm for DTEPβ

achieving approximation α = O(n1/t), with O(logt−1 n) queries into x.

It is an easy observation that our general edit distance algorithm in Theorem 1.2.1

follows immediately from the above query complexity upper bound theorem, by run-

ning the latter for all β that are a power of 2.

Theorem 1.2.3 (Query complexity lower bound). For a sufficiently large constant

β > 1, every algorithm that solves DTEPβ with approximation α = α(n) > 2 has

asymmetric query complexity 2Ω(log n
log α+log log n). Moreover, for every fixed non-integer

t > 1, every algorithm that solves DTEPβ with approximation α = n1/t has asymmet-

ric query complexity Ω(log⌊t⌋ n).

We summarize in Table 1.1 our results and previous bounds for DTEPβ under

edit distance and Ulam distance. For completeness, we also present known results

for a common query model where the algorithm has query access to both strings

(henceforth referred to as the symmetric query model). We point out two implications

of our bounds on the asymmetric query complexity:

• There is a strong separation between edit distance and Ulam distances. In

the Ulam metric, a constant approximation is achievable with only O(log n)

asymmetric queries (see [2], which builds on [36]). In contrast, for edit distance,

we show an exponentially higher complexity lower bound, of 2Ω(log n/ log log n), even

for a larger (polylogarithmic) approximation.

• Our query complexity upper and lower bounds are nearly-matching, at least for

a range of parameters. At one extreme, approximation O(n1/2) can be achieved

with O(log n) queries, whereas approximation n1/2−ε already requires Ω(log2 n)

queries. At the other extreme, approximation α = (log n)1/ε can be achieved

using nO(ε) queries, and requires nΩ(ε/ log log n) queries.

26

Model Metric Approx. Complexity Remarks

Near-linear
time

Edit (log n)O(1/ε) n1+ε Theorem 1.2.1

Edit 2Õ(
√

log n) n1+o(1) [10]

Symmetric
query
complexity

Edit nε Õ(nmax{1−2ε,(1−ε)/2}) [16] (fixed β > 1)

Ulam O(1) Õ(β +
√

n) [9]

Ulam+edit O(1) Ω̃(β +
√

n) [9]

Asymmetric
query
complexity

Edit n1/t O(logt−1 n) Theorem 1.2.2 (fixed t ∈ N, β > 1)

Edit n1/t Ω(log⌊t⌋ n) Theorem 1.2.3 (fixed t /∈ N, β > 1)
Edit (log n)1/ε βnO(ε) Theorem 1.2.2
Edit (log n)1/ε nΩ(ε/ log log n) Theorem 1.2.3 (fixed β > 1)
Ulam 2 + ε Oε(β log log β · log n) [2]

Table 1.1: Known results for DTEPβ and arbitrary 0 < ε < 1.

1.2.3 Connections of the Asymmetric Query Model to Other

Models

The asymmetric query model is related and has implications for two previously studied

models, namely the communication complexity model and the symmetric query model

(where the algorithm has query access to both strings). Specifically, the former is

less restrictive than our model (i.e., easier for algorithms) while the latter is more

restrictive (i.e., harder for algorithms). Our upper bound gives an O(βnε) one-way

communication complexity protocol for DTEPβ for polylogarithmic approximation.

Communication Complexity. In this setting, Alice and Bob each have a string,

and they need to solve the DTEPβ problem by way of exchanging messages. The

measure of complexity is the number of bits exchanged in order to solve DTEPβ with

probability at least 2/3.

The best non-trivial upper bound known is 2Õ(
√

log n) approximation with constant

communication via [68, 53]. The only known lower bound says that approximation α

requires Ω(log n / log log n
α

) communication [8, 7].

The asymmetric model is “harder”, in the sense that the query complexity is at

least the communication complexity, up to a factor of log |Σ| in the complexity, since

Alice and Bob can simulate the asymmetric query algorithm. In fact, our upper

bound implies a communication protocol for the same DTEPβ problem with the

same complexity, and it is a one-way communication protocol. Specifically, Alice can

27

just send the O(βnε) characters queried by the query algorithm in the asymmetric

query model. This is the first communication protocol achieving polylogarithmic

approximation for DTEPβ under edit distance with o(n) communication.

Symmetric Query Complexity. In another related model, the measure of com-

plexity is the number of characters the algorithm has to query in both strings (rather

than only in one of the strings). Naturally, the query complexity in this model is at

least as high as the query complexity in the asymmetric model. This model has been

introduced (for the edit distance) in [16], and its main advantage is that it leads to

sublinear-time algorithms for DTEPβ. The algorithm of [16] makes Õ(n1−2ε+n(1−ε)/2)

queries (and runs in the same time), and achieves nε approximation. However, it only

works for β = O(1).

In the symmetric query model, the best query lower bound is of Ω(
√

n/α) for

any approximation factor α > 1 for both edit and Ulam distance [16, 9]. The lower

bound essentially arises from the birthday paradox. Hence, in terms of separating edit

distance from the Ulam metric, this symmetric model can give at most a quadratic

separation in the query complexity (since there exists a trivial algorithm with 2n

queries). In contrast, in our asymmetric model, there is no lower bound based on the

birthday paradox, and, in fact, the Ulam metric admits a constant approximation

with O(log n) queries [36, 2]. Our lower bound for edit distance is exponentially

bigger.

28

Chapter 2

Combinatorial Problems on Graphs

In this chapter, we prove the graph approximation results described in the introduc-

tion (Section 1.1). For instance, we show a general transformation that turns many

classical greedy algorithms into constant-time algorithms for the optimal solution size.

2.1 Definitions and the Model

We first restate relevant definitions from the introduction and recall the query model

that we assume.

Constant-Time Algorithms. We say that a graph algorithm runs in constant

time if its running time is bounded by a function of the maximum degree.

The Approximation Notion. We say that a value ŷ is an (α, β)-approximation

to y if

y ≤ ŷ ≤ α · y + β.

We say that an algorithm A is an (α, β)-approximation algorithm for a value V (x)

if it computes an (α, β)-approximation to V (x) with probability at least 2/3 for any

proper input x.

For simplicity, whenever we talk about an (α, β)-approximation algorithm for prob-

lem X in this part of the thesis, we, in fact, mean an (α, β)-approximation algorithm

29

for the optimal solution size to problem X .

The Query Model. With a small exception, the input to problems considered in

this part of the thesis is a graph. We make the following assumptions about how an

algorithm can access the input.

• The algorithm can select a vertex in the graph uniformly at random. The

operation takes constant time.

• The algorithm can query the adjacency list of each vertex. It can make two types

of queries, both answered in constant time. In the degree query, the algorithm

finds out the degree of a vertex it specifies. By making a neighbor query, the

algorithm learns the identity of the i-th neighbor of a vertex v, where both i

and v are specified by the algorithm. Additionally, if the graph is weighted, the

algorithm learns the weight of the edge connecting v with its i-th neighbor.

We also consider the set cover problem. Let U be the set of all elements and let

Si be the sets with which we conver U . In this case we assume that the algorithm

can uniformly select a random set Si. Furthermore, for every element x ∈ U , the

algorithm can query the list of the sets Si that contain x, and for every set Si, the

algorithm can query the list of the elements of Si.

2.2 Simple Example: Vertex Cover via Maximal

Matching

We start with an example illustrating a few of the main ideas behind our algorithms.

We show how to compute a (2, εn)-approximation to the minimum vertex cover size

by locally computing a maximal independent set.

Algorithm. Our graph approximation algorithms follow a general framework of

Parnas and Ron [70]. We construct an oracle that provides query access to a good

30

solution for the problem, and then make a few random queries to the oracle to estimate

the size of the solution it provides.

To compute a (2, εn)-approximation to vertex cover, we first design an oracle O
that provides query access to a fixed maximal matching M . More precisely, the oracle

answers queries of the form “Does (u, v) belong to M?” for every edge (u, v) of the

graph. Using the connection discovered by Gavril [38] and Yannakakis [69], the set of

vertices matched by any maximal matching is a vertex cover of size at most twice the

optimum. Let us denote this set by S. We can construct an oracle O′ that provides

query access to S. For every query of the form “Does v belong to S?”, O′ queries O
to find out if any of the edges incident to v belongs to M .

Given query access to O′, we can now approximate the size of of S, and indirectly,

the size of the optimal vertex cover. We select uniformly and independently at random

O(1/ε2) vertices V ′. We query O′ to compute the fraction of vertices in V ′ that belong

to S. Via the Hoeffding bound, with large constant probability (say, 99/100), this

value is also an additive ε/2 approximation to the fraction of all vertices that belong

to the vertex cover. By first adding to this value ε/2, and then multiplying it by n,

we obtain the desired (2, εn)-approximation to the minimum vertex cover size.

Our main contribution is a new way of implementing oracles such as the above for

several problems. We now present our implementation of O, the oracle for Maximal

Matching. A random number r(e) ∈ [0, 1] is assigned to each edge e of the graph1.

In order to decide if an edge q is in the matching, the oracle first determines the set

of edges adjacent to q of numbers r(e) smaller than that of q, and recursively checks

if any of them is in the matching. If at least one of the adjacent edges is in the

matching, q is not in the matching; otherwise, it is.

Why does this work? Consider first the following trivial greedy algorithm for

finding a maximal matching. The algorithm starts with an empty matching M . For

1In an implementation, we do not assign all numbers r(e) at the beginning. We can postpone
the assignment of the random number r(e) to an edge e until we need it. After learning r(e), we
store it in case we need it later again. Moreover, arbitrary random real numbers in [0, 1] cannot be
generated in practice. Nevertheless, it suffices to discretize the range [0, 1] so that two edges are
assigned the same number with negligibly small probability. For instance, it suffices to assign to
each edge a random integer between 0 and 100 · n4.

31

each edge e, it checks if there is already an adjacent edge in M . If there is no such

edge, it adds e to M . The final M is clearly a maximal matching, since every edge

not in M is adjacent to at least one of the edges in M . Our oracle simulates this

algorithm, considering edges in random order (which is generated by the random

numbers r(e)).

Query Complexity. It remains to bound the query complexity of the algorithm.

We analyze the above method in the next section, and show that the above algorithm

runs in 2O(d)/ε2 time and outputs a (2, εn)-approximation to the minimum vertex

cover size with probability at least 2/3.

2.3 A Local Computation Method

We now formalize and generalize the local computation method that we saw in the

previous section. We used it to determine locally whether a given edge was in a fixed

maximal matching that was not a function of queries.

2.3.1 The Method

Now instead of focusing on edges as in the previous section, we want to run the

recursive method on vertices to compute a maximal independent set. The maximal

matching is simply a maximal independent set in the line graph2 of the input graph,

and the input graph can easily be remapped into its line graph locally. That is, every

query to the line graph can be simulated with O(1) queries to the input graph. We

present this procedure for locally computing a maximal independent set as Local MIS

(see Algorithm 1).

The procedure for computing a maximal independent set has a generalization,

which we need for some applications. As before, we independently and uniformly

assign a random number r(v) ∈ [0, 1] (after a proper discretization) to each vertex v.

2The line graph GL of a graph G = (V, E) is the graph with every vertex corresponding to an
edge in E, and two vertices connected if the corresponding edges in E share an endpoint.

32

Algorithm 1: The recursive procedure Local MIS(v) for locally computing a
maximal independent set. The set is a function of random number r(w) assigned
to each vertex w. The procedure outputs TRUE on a vertex v if and only if v
is in the maximal independent set.

lower neighbors := the set of neighbors w of v such that r(w) < r(v)1

in the set := TRUE2

for w ∈ lower neighbors do3

if Local MIS(w) then4

in the set := FALSE5

return in the set6

Algorithm 2: The generic version Generic Local(v) of the recursive local
computation procedure. The procedure outputs a single value for each vertex.
It uses a function f to compute the value for v out of the values for neighbors.

lower neighbors := the set of neighbors w of v such that r(w) < r(v)1

neighbor value set := ∅2

for w ∈ lower neighbors do3

neighbor value set := neighbor value set ∪ {w, Generic Local(w)};4

return f(v, neighbor value set)5

These numbers provide a random ordering of all vertices. We compute a value x(v)

for each vertex v. The value for a given vertex is a function of the vertex and the

values computed for the neighbors w of v with numbers r(w) < r(v). We present the

modified procedure Generic Local as Algorithm 2.

This procedure can be used to simulate locally a generic greedy algorithm that

consider vertices one by one. We employ it later in the chapter. A notable use of

this version of the procedure is described in Section 2.5.1, where it is used for locally

computing a partition of the input graph.

2.3.2 Non-Adaptive Performance

We now bound the expected number of recursive calls that the local computation

method needs for a fixed vertex.

Lemma 2.3.1. Let G be a graph of maximum degree at most d. For any fixed vertex,

the expected number of recursive calls of the local computation method is bounded by

33

ed/d.

Proof. The probability that the local computation method follows a specific path of

length k is exactly 1/(k +1)!, which is the probability that random numbers assigned

to vertices on the path are in decreasing order. The number of vertices reachable

via paths of length k is bounded by dk. Therefore, the expected number of visited

vertices at distance k is bounded by dk/(k + 1)! via the linearity of expectation. By

summing over all non-negative integers, which correspond to all possible distances,

we obtain a bound on the expected number of recursive calls of the local computation

method
∞∑

k=0

dk

(k + 1)!
=

1

d

∞∑

k=0

dk+1

(k + 1)!
≤ ed

d
.

Using Lemma 2.3.1, we immediately obtain a bound on the number of queries that

the vertex cover algorithm from Section 2.2 uses in a graph with maximum degree

bounded by d. The algorithm selects O(1/ε2) vertices, and then, for each edge inci-

dent to these vertices, it runs the recursive local computation method. The number

of edges incident to the selected vertices is bounded by O(d/ε2), and the degree of

vertices in the line graph is bounded by d′ = 2(d − 1). Therefore, each execution

of the local computation method makes ed′/d′ recursive calls in expectation. By the

linearity of expectation, the total expected number of recursive calls is bounded by

O
(
ed′/ε2

)
. The query complexity of each recursive call is bounded by O(d). The

expected query complexity is therefore O
(
d · e2d−2/ε2

)
. By Markov’s inequality the

query complexity is bounded by O
(
d · e2d−2/ε2

)
with probability 99/100. Assuming

that the number of sampled vertices is large enough that the algorithm errs with

probability at most 99/100 (due to the Hoeffding inequality), the algorithm outputs

a (2, εn)-approximation using O
(
d · e2d−2/ε2

)
queries with probability 49/50. Ad-

ditionally, storing and accessing the random numbers r(v) that have been already

generated requires keeping a standard dictionary. This may result in an additional

logarithmic factor in the running time.

34

Corollary 2.3.2. There is a (2, εn)-approximation algorithm for the minimum vertex

cover size that makes Q = 2O(d)/ε2 queries and runs in O(Q log Q) time on graphs

with maximum degree bounded by d.

2.3.3 Adaptive Performance

In some applications, the set of vertices for which we run the local computation

algorithm is not fixed in advance. The following lemma shows that any sequence of

even adaptive queries is unlikely to result in a large number of recursive calls.

Lemma 2.3.3 (Locality Lemma). Let G be a graph of maximum degree at most

d. The local computation method is run from q vertices, where the next vertex can

be a function of the previous start vertices and the output of the local computation

method for them. The total number of recursive calls of the local computation method

is bounded by q2

δ
· Cd4

with probability at least 1 − δ, for any δ > 0, where C is an

absolute constant.

Proof. Let us start with a few auxiliary definitions. We say that a node v can be

reached or is reachable from a node w if there is a path u0 = w, u1, . . . , uk = v such

that r(ui−1) > r(ui), for all 1 ≤ i ≤ k. In other words, in order to compute the value

x(w), the local recursive computation method has to compute x(v). The reachability

radius rr(v) of a node v is the maximum length of a decreasing path of r(u)’s that

starts at v.

Consider any algorithm A adaptively selecting q vertices that are starting points

of the local recursive computation method. Let t be a non-negative integer. We give

a bound on the probability that one of the selected vertices has reachability radius

greater than t. We define the following events for each i ∈ {0, . . . , q}:

1. Ai: each of the first i selected vertices has reachability radius at most t.

2. Bi: each vertex at distance at most 2(t + 1) of the first i selected vertices has

reachability radius at most t.

35

It is clear that each Bi is a more specific version of the corresponding Ai. Therefore,

Pr[Ai] ≥ Pr[Bi]. Moreover, let Vi, 1 ≤ i ≤ q, be (a random variable representing) the

set of vertices that are at distance greater than 2(t + 1) from the first i − 1 vertices

selected by A, and are at distance at most 2(t + 1) from the i-th selected vertex.

For i ∈ {0, . . . , q − 1}, we have

Pr[¬Bi+1] = Pr[¬Bi] + Pr[Bi ∧ ¬Bi+1]

= Pr[¬Bi] + Pr[Bi ∧ ∃v ∈ Vi+1. rr(v) ≥ t]

≤ Pr[¬Bi] + Pr[Ai ∧ ∃v ∈ Vi+1. rr(v) ≥ t]

≤ Pr[¬Bi] + Pr[Ai] · Pr[∃v ∈ Vi+1. rr(v) ≥ t|Ai]

≤ Pr[¬Bi] + Pr[∃v ∈ Vi+1. rr(v) ≥ t|Ai].

We now bound Pr[∃v ∈ Vi+1. rr(v) ≥ t|Ai]. Note that if the event Ai is the case,

then the algorithm does not know any random value r(u) for vertices u at distance

more than t + 1 away from the vertices it selected earlier. For every vertex v in Vi+1,

the event that the reachability radius of v is at most t is only conditioned on the values

r(u) for u at distance at most t + 1. Therefore, if the event Ai holds, whatever the

next vertex A selects, for every vertex v in Vi+1, the event that the reachability radius

of each vertex in Vi+1 is bounded by t is independent of the algorithm’s knowledge.

What is the probability that for a given vertex v, the reachability radius is greater

than t? The probability can be bounded by the probability that there is a path of

length t + 1 that starts at v, and the values r are strictly decreasing along the path.

There are at most d · (d − 1)t such paths, and by symmetry, the probability that the

values r decrease along a given path is 1/(t + 2)! Hence the probability of the event

is at most d(d−1)t

(t+2)!
by the union bound.

The size of Vi+1 is bounded by the number of vertices at distance at most 2(t+1)

from the vertex that A selects next. It is at most

1 + d

2t+1∑

i=0

(d − 1)i ≤ 1 + d

2t+1∑

i=0

di ≤ d2t+3.

36

Applying the union bound again, we obtain

Pr[∃v ∈ Vi+1. rr(v) ≥ t|Ai] ≤ d2t+3 · d(d − 1)t

(t + 2)!
≤ d3t+4

(t + 2)!
≤
(

3d3

t + 2

)t+2

.

Finally, we have

Pr[¬Ai] ≤ Pr[¬Bi] ≤ i ·
(

3d3

t + 2

)t+2

.

Let Ei be the event that the maximum reachability radius for all selected vertices is

exactly i, and E>i the event that it is greater than i. We have, Pr[E>i] ≤ q ·
(

3d3

i+2

)i+2

.

What is the expected total number T of vertices for which the local computation

method is run? It is

T ≤
∑

i≥0

Pr[Ei] · q(1 + d ·
∑

0≤j≤i−1

(d − 1)j)

≤
∑

i≥0

Pr[Ei] · qdi+1 ≤
∑

i≥0

Pr[E>i−1] · qdi+1

≤
∑

i≥0

q

(
3d3

i + 1

)i+1

· qdi+1 ≤ q2
∑

i≥0

(
3d4

i + 1

)i+1

.

For i ≥ 6d4 − 1, we have

∑

i≥6d4−1

(
3d4

i + 1

)i+1

≤
∑

i≥6d4−1

2−(i+1) ≤ 1.

Using calculus, one can show that the term
(

3d4

i+1

)i+1

is maximized for i + 1 = 3d4

e
,

and hence,

∑

i<6d4−1

(
3d4

i + 1

)i+1

≤ (6d4 − 1) · e 3d4

e .

37

Algorithm 3: The recursive procedure Local MIS 2(v) for locally computing a
maximal independent set. The set is a function of random numbers r(w) assigned
to each vertex w. This a modified version of Local MIS(v) (see Algorithm 1) that
uses pruning to reduce the query complexity. The procedure outputs TRUE on
a vertex v if and only if v is in the maximal independent set.

lower neighbors := the set of neighbors w of v such that r(w) < r(v)1

sorted := vertices w in lower neighbors in ascending order of their r(w)2

for i = 1, . . . , length(sorted) do3

if Local MIS 2(sorted[i]) then4

return FALSE5

return TRUE6

We get

T ≤ q2
(

1 + (6d4 − 1) · e 3d4

e

)

≤ q2 · 6d4 · e 3d4

e ≤ q2Cd4

,

for some constant C. By Markov’s inequality, the probability that the number of

queries is greater than T/δ is at most δ. Hence with probability at least 1 − δ, the

number of queries is bounded by q2Cd4
/δ.

2.3.4 Recent Improvements

In our paper [66], we suggested a heuristic that prunes the search tree of the local

computation method for the problem of locally determining a maximal independent

set. For a given vertex v, we consider the neighbors w with r(w) < r(v) in order

of their random numbers r(v). As soon as we find a neighbor w in the maximal

independent set, we interrupt the exploration of neighbors, since we already know

that v is not in the maximal independent set. We give pseudocode for the modified

procedure as Algorithm 3.

Yoshida, Yamamoto, and Ito [79] prove the following fact about the behavior of

our heuristic for a random start vertex.

Theorem 2.3.4 (Theorem 2.1 in [79]). The expected number of recursive calls that

38

Algorithm 3 makes for a random start vertex v is at most 1 + m/n, where m and n

are the number of edges and vertices in the graph, respectively.

Using this theorem, Yoshida et al. show that there is a (2, εn)-approximation

algorithm for vertex cover that runs in Õ(d4/ε2) time. In a recent unpublished

manuscript [67], we improve the algorithm further. Our algorithm for approximating

the vertex cover size runs in Õ(d2/ε2) time.

2.4 General Transformation for Greedy Algorithms

2.4.1 Technique High-Level Description

We now give a high-level overview of our technique, which we applied in a specific

setting in Section 2.2. We also briefly describe conditions that must be met in order

to make our technique applicable.

Our technique transforms an algorithm A that computes an approximate solution

to a problem into a constant-time algorithm that approximates the size of an optimal

solution, provided A meets certain criteria. We require that A compute the approxi-

mate solution in a constant number of phases such that each phase is an application

of any maximal set of disjoint local improvements. (The local improvements consid-

ered in each phase may be different.) Moreover, to achieve a constant running time,

we require that each local improvement considered in a given phase intersect with at

most a constant number of other considered local improvements. For example, the

maximal matching algorithm of Section 2.2 constructs a maximal matching in just

one phase, by taking a maximal set of non-adjacent edges.

The general idea behind the new constant-time algorithm that we construct is

the following. Let k be the number of phases in the algorithm. For the i-th phase,

where 1 ≤ i ≤ k, we construct an oracle Oi that implements query access to the

intermediate solution constructed by the i-th phase of the algorithm. (O0 gives the

initial solution that the algorithm starts with.) Oi is itself given query access to Oi−1,

and simulates the i-th phase of the algorithm on the output of the (i − 1)-st phase.

39

Finally, Ok provides query access to a solution that A could output. By using random

queries to Ok, we approximate the size of the solution computed by A.

2.4.2 Maximum Matching

We start with an approximation algorithm for maximum matching.

Definitions and Notation

Let M be a matching in a graph G = (V, E), that is, a subset of nonadjacent edges

of G. A node v is M-free if v is not an endpoint of an edge in M . A path P is an

M-alternating path if it consists of edges drawn alternately from M and from E \M .

A path P is an M-augmenting path if P is M-alternating and both endpoints of P

are M-free nodes (i.e., |P ∩ M | = |P ∩ (E \ M)| + 1).

Properties of Matchings

Let ⊕ denote the symmetric difference of sets. If M is a matching and P is an M-

augmenting path, then M ⊕ P is a matching such that |M ⊕ P | = |M | + 1. Many

matching algorithms search for augmenting paths until they construct a maximum

matching, and one can show that in a non-maximum matching there is an augmenting

path.

The correctness of our algorithm relies on the properties of matchings proven by

Hopcroft and Karp [43]. The part of their contribution that is important to us is

summarized below.

Fact 2.4.1 (Hopcroft and Karp [43]). Let M be a matching with no augmenting paths

of length smaller than t. Let P ⋆ be a maximal set of vertex-disjoint M-augmenting

paths of length t. Let A be the set of all edges in the paths in P ⋆. There does not

exist an (M ⊕ A)-augmenting path of length smaller than or equal to t.

We now prove an auxiliary lemma that connects the minimum length of an aug-

menting path and the quality of the matching.

40

Lemma 2.4.2. Let M be a matching that has no augmenting paths of length smaller

than 2t + 1. Let M⋆ be a maximum matching in the same graph. It holds |M | ≥
t

t+1
|M⋆|.

Proof. Consider the set of edges ∆ = M ⊕ M⋆. There are exactly |M⋆| − |M | more

edges from M⋆ then from M in ∆. Since M and M⋆ are matchings, each vertex is

incident to at most two edges in ∆. Hence ∆ can be decomposed into paths and

cycles. Each path of even length and each cycle contain the same number of edges

from M and M⋆. Each path P of odd length contains one more edge from M⋆ than

from M . It if contained one more edge from M , it would be an M⋆-augmenting

path; an impossibility. P is then an M-augmenting path. Summarizing, we have

exactly |M⋆| − |M | odd-length vertex-disjoint paths in ∆, and each of them is an

M-augmenting path.

Since each M-augmenting path has length at least 2t− 1, this implies that |M | ≥
t(|M⋆| − |M |). Hence, |M | ≥ t

t+1
|M⋆|.

The Algorithm

Consider the maximum matching problem in an unweighted graph of bounded degree

d. It is well known that the size of any maximal matching is at least half of the max-

imum matching size. Because of that, we obtained a (2, εn)-approximation algorithm

for the maximum matching size in Corollary 2.3.2. We now show that our technique

can be used to achieve better approximations in constant time.

A Sequential Algorithm. We simulate the following sequential algorithm. The

algorithm starts with an empty matching M0. In the i-th phase, it constructs a

matching Mi from Mi−1 as follows. Let P ⋆
i−1 be a maximal set of vertex-disjoint

Mi−1-augmenting paths of length 2i − 1. Let Ai−1 be the set of all edges in the

augmenting paths in P ⋆
i−1. We set Mi = Mi−1 ⊕ Ai−1. If Mi−1 is a matching, so is

Mi. By induction, all Mi are matchings. The algorithm stops for some k, and returns

Mk.

41

We now show that Mi has no augmenting path of length smaller than 2i + 1. M1

is a maximal matching, so it has no augmenting path of length smaller than 3. Now,

for the inductive step, assume that Mi−1, i ≥ 1, has no augmenting path shorter

than 2i−1. P ⋆
i−1 is a maximal set of vertex-disjoint Mi−1-augmenting paths of length

2i−1. Therefore, it follows by Fact 2.4.1 that Mi does not have any augmenting path

shorter than 2i + 1.

Set k = ⌈1/δ⌉, and let M⋆ be a maximum matching. By Lemma 2.4.2, k
k+1

|M⋆| ≤
|Mk| ≤ |M⋆|, which yields |M⋆| ≤ k+1

k
|Mk| ≤ (1 + δ)|M⋆|. If we had an estimate α

such that 2|Mk| ≤ α ≤ 2|Mk| + εn/2, we could get a (1 + δ, εn)-approximation to

|M⋆| by multiplying α by k+1
2k

, which is at most 1.

The Constant-Time Algorithm. We construct a sequence of oracles O1, O2, . . . ,

Ok. A query to Oi is an edge e ∈ E. The oracle’s reply indicates whether e is in Mi.

To compute the required α, it suffices to estimate the fraction of vertices that are

matched in |Mk|. In order to do so, one can sample O(1/ε2) vertices, and for each

of them, check if any incident edge is in Mk or not. The correctness of the estimate

with probability 5/6 follows from the Hoeffding bound.

The oracles Oi are constructed by using our technique for transforming algorithms

into constant-time algorithms. Oi has access to Oi−1, and simulates the i-th phase

of the above algorithm. To compute P ⋆
i−1 and also Mi, the oracle uses the local com-

putation method from Section 2.3. We assume that each Mi−1-augmenting path P

of length 2i − 1 is assigned a random number r(P), which is uniformly and inde-

pendently chosen from [0, 1]. These random numbers give a random ordering of all

the Mi−1-augmenting paths. P ⋆
i−1 is the greedily constructed maximal set of vertex-

disjoint Mi−1-augmenting paths P considered in order of their r(P). To handle a

query about an edge e, the oracle first finds out if e ∈ Mi−1, and then, checks if

there is an Mi−1-augmenting path in P ⋆
i−1 that contains e. If there is such a path, the

answer of Oi to the query about e is the opposite of the answer of Oi−1. Otherwise,

it remains the same.

The oracle can easily learn all length-(2i−1) Mi−1-augmenting paths that contain

42

e by querying G and Oi−1. To find out which augmenting paths are in P ⋆
i−1, the oracle

considers the following graph Hi. All the Mi−1-augmenting paths of length 2i− 1 are

nodes of Hi. Two nodes P1 and P2 are connected in Hi if P1 and P2 share a vertex.

To check if P is in P ⋆
i−1, it suffices to check if any of the paths R corresponding to

the vertices adjacent to P in Hi is in P ⋆
i−1, for r(R) < r(P). If none, P ∈ P ⋆

i−1.

Otherwise, P is not in P ⋆
i−1. This procedure can be run recursively. This finishes the

description of the algorithm.

Query Complexity. It remains to bound the number of queries of the entire algo-

rithm to the graph. This is accomplished in the following lemma.

Lemma 2.4.3. The number of queries of the algorithm is with probability 5/6 of

order 2O(d9k)

ε2k+1 , where k = ⌈1/δ⌉, and d ≥ 2 is a bound on the maximum degree of the

input graph.

Proof. Our main algorithm queries Ok about edges adjacent to C ′/ε2 random vertices,

where C ′ is a constant. Let Qk+1 = C ′ · d/ε2 be the number of the direct queries of

the main algorithm to G. These queries are necessary to learn the edges that Ok is

queried with. Let Qi+1 be an upper bound on the number of queries of the algorithm

to Oi. We now show an upper bound Qi on the number of queries to G performed

by Oi. The upper bound holds with probability at least 1 − 1
6k

. Qi also bounds the

number of queries to Oi−1, since Oi does not query any edge it has not learnt about

from G. For each received query about an edge e, Oi first learns all edges within the

distance of 2i − 1 from e, and checks which of them are in Mi−1. For a single e, this

can be done with at most d · 2∑2i−2
j=0 (d− 1)j ≤ 2d2i queries to both G and Oi−1, and

suffices to find all length-(2i − 1) Mi−1-augmenting paths that contain e.

There are at most id2i−1 length-(2i − 1) paths in G that contain a fixed vertex

v. Each such path can be broken into two paths that start at v. The length of the

shorter is between 0 and i − 1, and there are at most dt paths of length t that start

at t.

The number of length-(2i− 1) Mi−1-augmenting paths that contain e is therefore

at most id2i−1. Moreover, the maximum degree of Hi can be bounded by the number

43

of length-(2i−1) paths that intersect a given length-(2i−1) augmenting path. Hence,

the degree of Hi is at most 2i · id2i−1 = 2i2d2i−1. Finally, to find augmenting paths

adjacent in Hi to a given augmenting path P , it suffices to learn whether e′ is in

Mi−1, for each edge e′ within the radius of 2i from any of the vertices of P . This can

be accomplished with at most 2i · d∑2i−1
j=0 dj ≤ 2id2i+1 queries to both G and Oi−1.

In total, to answer queries about all, at most Qi+1 edges e, Oi must check mem-

bership in P ⋆
i−1 for at most Qi+1 · 2id2i−1 augmenting paths. By the Locality Lemma

(Lemma 2.3.3), the number of augmenting paths for which we recursively check mem-

bership in P ⋆
i−1 is with probability 1 − 1

6k
at most

(Qi+1 · id2i−1)2 · C(2i2d2i−1)
4

· 6k ≤ 2O(d8i) · kQ2
i+1.

For each of them we compute all adjacent paths in Hi. Therefore, with probability

1 − 1
6k

, the total number of Oi’s queries to both Oi−1 and G is bounded by

Qi+1 · 2d2i + 2O(d8i) · kQ2
i+1 · 2id2i+1

≤ 2O(d8i) · kQ2
i+1 =: Qi.

The total number of queries to G in the entire algorithm can be bounded by

k+1∑

j=1

Qj ≤ 2Q1 ≤
(

C ′ · d · k
ε2

)2k

· 2O(d8k)·2k

≤ 2O(d9k)

ε2k+1 .

We summarize the whole algorithm in the following theorem.

Theorem 2.4.4. There is a (1 + δ, εn)-approximation algorithm for the maximum

matching size that uses 2O(d9k)

ε2k+1 queries, where d ≥ 2 is a bound on the maximum

degree, and k = ⌈1/δ⌉.

Proof. We run the algorithm described above. If the algorithm exceeds the num-

44

ber of queries guaranteed in Lemma 2.4.3, we terminate it, and return an arbitrary

result. The algorithm returns a (1 + δ, εn)-approximation with probability at least

2/3, because the sampling can return a wrong estimate with probability at most 1/6,

and the algorithm can exceed the allowed number of queries with probability at most

1/6.

Finally, we can easily remove the multiplicative factor.

Corollary 2.4.5. There is a (1, εn)-approximation algorithm of query complexity

2dO(1/ε)
for the maximum matching size, where d ≥ 2 is a bound on the maximum

degree.

Proof. Using the algorithm of Theorem 2.4.4, we can get a (1+ε, εn/2)-approximation

for the maximum matching size, using 2dO(1/ε)
queries. Since the size of the maximum

matching is at most n/2, this approximation is also a (1, εn)-approximation for the

maximum matching size.

2.4.3 Maximum Weight Matching

We now show a generalization of the previous result. If the input is a weighted graph

with the weight of every edge in [0, 1] and maximum degree at most d = O(1), we

can approximate the maximum matching weight in the graph in constant time.

Definitions and Notation

Let G = (V, E, w) be a weighted graph with maximum degree bounded by d, where

w : E → [0, 1] is a weight function for edges of G. We use the following definitions

and notation:

• For any collection S ⊂ E of edges, we write w(S) to denote the total weight of

edges in S. That is, w(S) =
∑

e∈S w(e).

• We write MWM(G) to denote the maximum weight of a matching in G.

• Let S ⊂ E be a subset of edges. The gain gM(S) of S on a matching M equals

w(S ∩ (E \ M)) − w(S ∩ M).

45

• Let P = {(v0, v1), (v1, v2), (v2, v3), . . . , (vt−1, vt)} be a path in G. We say that P

is an M-augmenting path for a matching M if:

– P is M-alternating,

– M ⊕ P is a matching,

– no vertex in P appears twice except that v0 may equal vt (in which case

the path is a simple cycle),

– gM(P) > 0.

We say that P is a (k, M)-augmenting path if it is an M-augmenting path and

has at most k edges.

Let S be a collection of edges in G, w(S) is the total weight of all edges in S,

gM(S) is the gain of S on matching M , gM(S) = w(S ∩ (E \ M)) − w(S ∩ M). P is

an M-augmenting path if P is M-alternating and gM(P) > 0. P is k⋆-M-augmenting

path if P has at most k edges.

The Existence of a Constant Factor Improvement

The correctness of our algorithm relies on the following lemma proven by Pettie and

Sanders [72].

Lemma 2.4.6 (Pettie and Sanders [72]). For any matching M and any constant k,

there exists a collection of vertex-disjoint (k, M)-augmenting paths such that gM(A) =

w(M ⊕ A) ≥ w(M) + k+1
2k+1

(
k

k+1
MWM(G) − w(M)

)
.

Edge Rounding

Let ε and δ be two real numbers in (0, 1) to be fixed later. We set the weight of all

edges of weight less than ε/2 to 0, and round the weight of each other edge down to

the closest integer power of (1 − δ/3). Let G′ = (V, E, w′) be the resulting graph. It

holds

MWM(G′) ≥ (1 − δ/3)MWM(G) − εn/2.

46

For simplicity, we write w and g from now on to denote the weight and gain

functions for G′, respectively. The weight function w can easily be turned into w′

on the fly. Whenever we read a weight w(e) for an edge e, we substitute it with the

rounded weight w′(e).

Now, clearly, there are at most W = ⌈log(ε/2)/ log(1 − δ/3)⌉ + 2 distinct edge

weights in G. It follows that for any k, there are at most W k possible values for

the gain of any (M, k)-augmenting path. Let g1, g2, . . ., gTk
(where Tk is an integer

bounded by W k) be the sequence of these values in decreasing order.

A Sequential Greedy Algorithm

Our goal is to show that our framework can be used to obtain a (1+δ, εn)-approximation

algorithm for MWM(G) in constant time. In order to do so, we will locally simulate

Algorithm 4. The algorithm is a modified version of the deterministic algorithm for

finding a heavy matching due to Pettie and Sanders [72].

Algorithm 4: Sequential algorithm

M := ∅1

k := ⌈3/δ⌉2

L := log(δ/3)/ log
(
1 − 1

2k+1

)

3

for i := 1 to L do4

for j := 1 to Tk do5

P ⋆
i,j := { a maximal set of (k, M)-augmenting paths with gain gj}6

M := M ⊕ S7

return M8

We show that the algorithm has the following property.

Theorem 2.4.7. Algorithm 4 outputs a matching of weight W such that

(1 − δ) · MWM(G) − εn/2 ≤ W ≤ MWM(G).

Proof. Let Mi be the matching at the end of the i-th iteration of the outer loop (Lines

4–7), and let P ⋆
i =

⋃T
j=1 P ⋆

i,j be the set of all (k, Mi−1)-augmenting paths chosen in

47

that iteration (these paths need not be vertex disjoint). We prove the following

inequality, which holds for all iterations:

w(Mi) ≥ w(Mi−1) +
1

2k + 1

(
k

k + 1
MWM(G′) − w(Mi−1)

)

.

By Lemma 2.4.6, there exists a collection of vertex-disjoint (k, Mi−1)-augmenting

paths Ai such that

gMi−1
(Ai) ≥

k + 1

2k + 1

(
k

k + 1
MWM(G′) − w(Mi−1)

)

.

For each augmenting path P in Ai, P must intersect with at least one augmenting

path P ′ in P ⋆
i such that the gain of P ′ when it is chosen is at least the gain gMi−1

(P)

of P on Mi−1. In addition, since each (k, Mi−1)-augmenting path in P ⋆
i intersects

with at most k + 1 paths in Ai, the total gain of all augmenting paths in P ⋆
i is at

least 1
k+1

gMi−1
(Ai). Thus,

w(Mi) − w(Mi−1) ≥
1

k + 1
gMi−1

(Ai) ≥
1

2k + 1

(
k

k + 1
MWM(G′) − w(Mi−1)

)

.

By induction, for any i ∈ {1, . . . , L},

k

k + 1
MWM(G′) − w(Mi) <

(

1 − 1

2k + 1

)i

· MWM(G′).

Therefore,

w(ML) ≥
(

1 −
(

1 − 1

2k + 1

)L
)

· k

k + 1
· MWM(G′)

≥ (1 − δ/3) · (1 − δ/3) · MWM(G′)

≥ (1 − δ/3)3 · MWM(G) − εn/2

≥ (1 − δ) · MWM(G) − εn/2.

48

The Constant-Time Algorithm.

We approximate the weight W of the output of Algorithm 4 for δ = ε/2. Then

MWM(G) − 3

4
εn ≤ W ≤ MWM(G).

Therefore, it suffices to approximate W up to an additive εn/8, and add 7
8
εn to the

approximation, we obtain a (1, εn)-approximation for MWM(G).

As before, we construct an oracle that provides query access to a matching that

could be an output of Algorithm 4. Once we have such an oracle, it suffices to sample

O(1/ε2) vertices v and sum the weights of the edges in the matching incident to these

vertices. By the Hoeffding bound, this gives an additive εn/4 approximation to 2W

with probability 99/100. (The factor of 2 comes from the fact that we count the

weight of each edge in the matching twice, once for each endpoint. Clearly, it suffices

to divide this estimate by 2 to obtain the desired approximation to W .)

We now describe the construction of the oracle. We consider each inner iteration

in the sequential algorithm as a phase. Let Mi,j be the matching M at the end of the

(i, j)-th phase (jth iteration of inner loop in the i-th iteration of the outer loop). We

construct a sequence of oracles O1,1, O1,2, . . ., O1,Tk
, O2,1, O2,2, . . ., O2,Tk

, . . ., OL,1,

OL,2, . . ., OL,Tk
. Each oracle provides query access to a single phase. A query to Oi,j

is an edge e ∈ E. The oracle’s reply indicates whether e is in Mi,j. It is easy to observe

that each oracle Oi,j essentially works in the same way as each oracle in the constant-

time algorithm in Section 2.4.2. They both compute a maximal set of vertex-disjoint

alternating paths of constant-length that have some additional properties and apply

them to the matching returned by the previous oracle.

How does the oracle Oi,j work? Let O⋆ be the previous oracle, that is, let O⋆ =

Oi,j−1 if j > 1, and let O⋆ = Oi−1,Tk
, otherwise. O⋆ provides query access to the

matching that is the result of the previous phase. The oracle Oi,j works as follows.

To answer a query about e, the oracle first makes queries to O⋆ and G′ to learn the

graph structure and the matching provided by O⋆ in a constant-radius neighborhood

of e. Then the local computation method from Section 2.3 is applied in order to find

49

out recursively whether e belongs to an augmenting path selected in this phase. If

yes, e belongs to the matching provided by Oi,j if and only if it does not belong to a

matching provided by O⋆. Otherwise, the reply of Oi,j for e is the same as the reply

of O⋆.

Clearly, OL,Tk
provides query access to a potential output of Algorithm 4.

Query Complexity

The following lemma gives a bound on the number of queries made by the constant-

time algorithm.

Lemma 2.4.8. The number of queries of the algorithm is with probability 5/6 of

order W 2k2
2

O

„

d6k2Wk
«

ε2k+1 , where k = ⌈3/δ⌉, W = ⌈log(ε)/ log(1 + δ/3)⌉ + 2, and d ≥ 2 is

an upper bound on the maximum degree of the input graph.

Proof. Our main algorithm queries OL,Tk
about the edges adjacent to C ′/ε2 random

vertices, where C ′ is constant. Let QL+1,1 = C ′d/ε2 be the number of direct queries of

the main algorithm to both G′ and OL,W k . We now show a sequence of upper bounds

on the number of queries Qi,j generated for every i and j by the oracle Oi,j to both

the previous oracle and directly to the input graph. The probability that any of the

upper bounds fails is bounded by 1/6.

For each received query about an edge e, Oi,j first learns all edges within the

distance k − 1 from e in G′ and Mi,j−1 by making at most d · 2∑k−1
i=0 (d− 1)i ≤ 2dk+1

queries to both G′ and the oracle for the previous phase of the algorithm. Let M ′

be the matching computed in the previous phase. For any edge e, the number of

(k, M ′)-augmenting paths that contain e is at most 2dk. For every fixed path length,

every path of this length can be described as a sequence of edges starting at one of

the endpoints, a special symbol marking the end of the first part of the path, and

then a sequence of edges starting at the other endpoint. There are always at most

d − 1 edges one can follow in the next step, and together with the special symbol

marking the end of the first path, we never have more than d choices. Therefore, for

paths of a given length t, the number of augmenting paths going through e is at most

50

dt, and summing over all lengths, we obtain the bound
∑k

t=1 dt ≤ 2dk.

Let Hi,j be the intersection graph of augmenting paths in the (i, j)-th phase (i.e.,

all gain-gj (k, M ′)-augmenting paths are nodes in Hi,j and two nodes P1 and P2 are

connected if and only if the corresponding paths share at least a vertex). The degree

of Hi,j is at most (k + 1)
∑k

i=1 (i + 1)di ≤ (k + 1)2dk+1. Finding all augmenting

paths adjacent to a given augmenting path in Hi,j can be accomplished with at most

(k + 1)
∑k

i=0 di ≤ (k + 1)dk+1 queries to G′ and Oi,j−1.

Let Q̃ equal Qi,j+1 if i < Tk, and Qi+1,1 otherwise. To answer queries about all, at

most Q̃ edges e, Oi,j must check membership in P ⋆
i,j for at most Qi,j+1 ·2dk augmenting

paths. By the Locality Lemma (Lemma 2.3.3), the number of augmenting path for

which we have to check membership in P ⋆
i,j is with probability 1 − 1

6LW k at most

(Qi,j+1 · 2dk)2 · C((k+1)2dk+1)4 · 6LW k ≤ 2O(d5k)W kQ2
i,j+1.

For each of them we compute all adjacent paths in Hi,j. Therefore, with proba-

bility 1 − 1
6LW k , the total number of Oi,j’s queries to both Oi,j−1 and G′ is bounded

by

Qi,j+1 · kdk + 2O(d5k)W kQ2
i,j+1 · (k + 1)dk+1

≤ 2O(d5k)W kQ2
i,j+1 =: Qi,j

The total number of queries to G in the entire algorithm with probability 5/6 can be

bounded by

L∑

i=1

W k
∑

j=1

Qi,j + QL+1,1 ≤ 2Q1,1 ≤
(

C ′ · d · W k

ε2

)2LWk

· 2O(d5k)·2LWk

≤ W 2k2
2O(d6k2Wk

)

ε2k+1
.

We summarize the algorithm in the following corollary, which is true because the

running time and the query complexity are polynomially related.

Corollary 2.4.9. There is a constant-time (1 + δ, εn)-approximation algorithm for

the weight of the heaviest matching in graphs with maximum degree d and all edge

51

weights in [0, 1]. The algorithm runs in W 2k2
2O(d6k2Wk

)

ε2k+1 time, where k =
⌈

3
δ

⌉
, W =

⌈log(ε)/ log(1 + δ/3)⌉ + 1, and d ≥ 2 is a bound on the maximum degree.

This directly implies the following theorem.

Theorem 2.4.10. There is a constant-time (1, εn)-approximation algorithm for the

weight of the heaviest matching in graphs with maximum degree d and all edge weights

in [0, 1]. The algorithm runs in 2dO(1/ε)·2(1/ε)O(1/ε)

time.

2.4.4 Set Cover

In the minimum set cover problem, an input consists of subsets S1 to Sn of U =

{1, . . . , m}. Each element of U belongs to at least one of the sets Si. The goal is to

cover U with the minimum number of sets Si, that is, to find a minimum size set I of

indices such that
⋃

i∈I Si = U . Here, we want to approximate the optimal size of I.

We assume that for each set Si, we have query access to a list of elements of Si,

and that for each element u ∈ U , we have query access to a list of indices of sets Si

that contain u.

The Classical Greedy Algorithm

Theorem 2.4.11. Let H(i) be the i-th harmonic number. There is an (H(s), εn)-

approximation algorithm with query complexity and running time
(

2(st)4

ε

)O(2s)

for the

minimum set cover size for instances with all n sets Si of size at most s, and each

element in at most t different sets.

Proof. We simulate the classical greedy algorithm [48, 60] for the set cover problem.

The algorithm starts from an empty cover, and keeps adding the set Si which covers

most elements that have not yet been covered, until the whole set U is covered. The

approximation factor of the algorithm is at most H(s) ≤ 1 + ln s.

As in the local computation method from Section 2.3, we first consider all sets in

random order and add to the cover those that cover s new elements at the time they

are considered. Let C1 be the set of sets that were already included into the cover.

52

We then consider the remaining sets, also in random order, and we add to the cover

those that cover s − 1 new elements. This way we get C2, the set of all sets already

included in the cover. We keep doing this until we cover the whole set U , and Cs is

the final cover.

We create a sequence of oracles O1, O2, . . . , Os that correspond to the process

described above. A query to an oracle Oj is an index i of a set Si. The oracle’s reply

indicates whether Si is in Cj .

How is Oj implemented? We use the local computation method from Section 2.3.

We assume that each set Si is assigned a random number rji, which is uniformly and

independently chosen from [0, 1]. These random numbers give a random ordering of

sets Si. To handle a query about a set Sk, we first ask Oj−1 if Sk was already included

in Cj−1. (For j = 1, we assume that Cj−1 = C0 = ∅, so no query is necessary in this

case.) If Sk was already in Cj−1, then it is also in Cj . Otherwise, we learn first the

elements of Sk (at most s queries) and what sets Si they belong to (at most st further

queries). Then, we check for each of these Si if it was already in Cj−1 (at most st

queries to Oj−1), and for all of the Si’s that have rji < rjk, we recursively check if

they are in Cj . Finally, using this knowledge, we can verify what number of elements

of Sk is not yet covered, when Sk is considered. If the number of these elements is

s − j + 1, then Sk is in Cj . Otherwise, the number of the elements is lower than

s − j + 1, and Sk is not in Cj .

It is obvious that the above procedure simulates the classical greedy algorithm.

Our sublinear approximation algorithm queries Os for C ′/ε2 sets chosen at random,

where C ′ is a sufficiently large constant, to estimate the fraction of sets which are in

the cover to within εn/2 with probability 5/6. By adding εn/2 to the estimate, we

get the desired approximation. We want to bound the number of queries. We set Qs

to (C ′/ε2)2 · 6s ·C(st)4 , and define Qj, for 1 ≤ j ≤ s− 1, to be Qj ≤ (Qj+1 · (st+1))2 ·
6s ·C(st)4 . By Lemma 2.3.3, each Qi bounds the number of sets for which we check if

they are in Ci with probability 1 − s · 1
6s

= 1 − 1
6

= 5
6
. It can be shown by induction

53

that

Qs−i =

(

6s · (st + 1) · C(st)4

ε

)O(2i)

=

(

2(st)4

ε

)O(2i)

with probability at least 5/6. So with probability 5/6, the total number of queries is

at most

(s + st) ·
s∑

i=1

Qs =

(

2(st)4

ε

)O(2s)

.

Summarizing, with probability 2/3, the algorithm uses the above number of queries,

and returns the desired approximation.

Application to Dominating Set

In the dominating set problem, one is given a graph, and chooses a minimum-

cardinality subset S of its vertices such that each vertex v of the graph is either

in S or is adjacent to a vertex in S.

Theorem 2.4.12. There is an (H(d + 1), εn)-approximation algorithm with query

complexity and running time
(

2d8

ε

)O(2d)

, for the minimum dominating set size for

graphs with the maximum degree bounded by d.

Proof. The problem can be trivially expressed as an instance of the set cover problem.

For each vertex v, we have a set Sv of size at most d + 1 that consists of v and all

neighbors of v. We want to cover the set of vertices of the graph with the minimum

number of sets Sv. To approximate the minimum set cover size, we use the algorithm

of Theorem 2.4.11.

2.5 Better Algorithms for Hyperfinite Graphs

In this section, we construct better approximation algorithms for graphs that can be

partitioned into components of constant-size by removing an arbitrarily small fraction

of edges. We call families of such graphs hyperfinite. For completeness, we restate

the definitions from the introduction:

54

• Let G = (V, E) be a graph. G is (ε, k)-hyperfinite if it is possible to remove ε|V |
edges of the graph such that the remaining graph has connected components of

size at most k.

• Let ρ be a function from R+ to R+. A graph G is ρ-hyperfinite if for every

ε > 0, G is (ε, ρ(ε))-hyperfinite.

• Let C be a family of graphs. C is ρ-hyperfinite if every graph in C is ρ-hyperfinite.

Recall that examples of hyperfinite families of graphs include bounded-degree graphs

with an excluded minor, and graphs of subexponential growth (see Section 1.1.2 for

more details).

We now define the main tool used in this part of the thesis. A partitioning oracle

provides query access to a global partition of the graph into small components.

Definition 2.5.1. We say that O is an (ε, k)-partitioning oracle for a family C of

graphs if given query access to a graph G = (V, E) in the adjacency-list model, it

provides query access to a partition P of V . For a query about v ∈ V , O returns

P [v]. The partition has the following properties:

• P is a function of the graph and random bits of the oracle. In particular, it does

not depend on the order of queries to O.

• For every v ∈ V , |P [v]| ≤ k and P [v] induces a connected graph in G.

• If G belongs to C, then |{(v, w) ∈ E : P [v] 6= P [w]}| ≤ ε|V | with probability

9/10.

The most important property of our oracles is that they compute answers in time

independent of the graph size by using only local computation. We give two methods

for constructing partitioning oracles for different classes of graphs. We briefly describe

them below.

A Generic Partitioning Oracle for Hyperfinite Graphs (Section 2.5.1).

We give a generic oracle that works for any hyperfinite family of graphs.

55

Theorem 2.5.2. Let G be an (ε, ρ(ε))-hyperfinite graph with degree bounded by

d ≥ 2. Suppose that the value ρ(ε3/3456000) is known, that is, it can either be

efficiently computed, or is hard-wired for a given ε > 0 of interest. There is an

(εd, ρ(ε3/3456000))-partitioning oracle with the following properties. The oracle

answers every query, using 2dO(ρ(ε3/3456000))
/ε queries to the graph. If q is the total

number of queries to the oracle, the total amount of the oracle’s computation is

bounded by q log q · 2dO(ρ(ε3/3456000))
/ε.

The oracle’s construction is based on locally simulating a greedy global par-

titioning procedure. The procedure repeatedly selects a random vertex v and

tries to remove a small component containing it by cutting few edges. If there is

no such component, only v is removed. This procedure can easily be simulated

locally using a local computation paradigm of Nguyen and Onak [66].

An Efficient Partitioning Oracle for Minor-Free Graphs (Section 2.5.2).

It follows from the Separator Theorem (in particular from Proposition 4.1 in

[4]) that every minor-free family of graphs with maximum degree bounded by

d is (ε, O(d2/ε2))-hyperfinite. The direct application of Theorem 2.5.2 gives an

oracle that makes 2dpoly(1/ε)
queries to the graph, for every query to the oracle.

We give a more efficient oracle that uses only dpoly(1/ε) queries.

Theorem 2.5.3. Let H be a fixed minor. For every H-minor-free graph G with

degree bounded by d ≥ 2, there is an (ε, C ·d2/ε2)-partitioning oracle, where C is

a constant that only depends on H. Let q be the number of non-adaptive queries

to the oracle. The oracle makes dpoly(1/ε) queries to the input graph per query,

and the total amount of the oracle’s computation is q log q · dpoly(1/ε).

The construction of the oracle is based on a deterministic clustering method of

Czygrinow, Hańćkowiak, and Wawrzyniak [33, Section 2].

We also note that for graphs with polynomial growth, Jung and Shah [49] provide

methods that can be used to construct a partitioning oracle that makes poly(1/ε)

queries to the graph for each query to the oracle.

56

Constant-Time Approximation Algorithms

We first describe an application of partitioning oracles to approximating the size of an

optimal solution for combinatorial problems on hypefinite families of graphs. As an

example, consider the minimum vertex cover problem. We use a partitioning oracle

to obtain access to a partition of the input graph. The union of optimal vertex covers

over all connected components constitutes a set of size within an additive O(εn) of

the minimum vertex cover size of the original graph. By sampling O(1/ε2) vertices

and computing the fraction of those that belong to the optimal vertex cover in their

component, we obtain a (1, O(εn))-approximation to the minimum vertex cover size

of the original graph.

A formal theorem and proof follow. To achieve a good approximation, a bound

on the average degree is needed. Note that every family of graphs with an excluded

minor has average degree bounded by a constant.

Theorem 2.5.4. Let C be a family of graphs with average degree bounded by d̃. Let

ε > 0. Let O be an (ε/3, k)-partitioning oracle for the family C|3d̃/ε. There is a (1, εn)-

approximation algorithm for the minimum vertex cover size in any graph G = (V, E)

in C. The algorithm

• gives O query access to the graph G|3d̃/ε,

• makes O(1/ε2) uniformly distributed queries to O,

• uses 2O(k)/ε2 + O(d̃k/ε3) time for computation.

The same holds for the maximum independent set problem, and the minimum domi-

nating set problem.

Proof. All edges from G missing in G|3d̃/ε can be covered by vertices of degree greater

than 3d̃/ε in G. We write G′ = (V, E ′) to denote G|3d̃/ε. Note that the number of

such vertices is by Markov’s inequality at most εn/3. Therefore, we have

VC(G) − εn/3 ≤ VC(G′) ≤ VC(G).

57

The adjacency list of every vertex v in G′ can easily be computed in O(3d̃/ε)

time. If the degree of v is greater than 3d̃/ε in G, then v is an isolated vertex in G′.

Otherwise, we go over the neighbors of v in G, and each neighbor w in G remains a

neighbor in G′ if and only if w has degree at most 3d̃/ε in G. We give O query access

to G′. With probability 9/10, O provides query access to a partition P such that the

number of edges (v, w) ∈ E ′ with P [v] 6= P [w] is at most εn/3. Let G′′ = (V, E ′′) be

G′ with those edges removed. Since they can be covered with εn/3 vertices, we have

VC(G′) − εn/3 ≤ VC(G′′) ≤ VC(G′),

that is,

VC(G) − 2εn/3 ≤ VC(G′′) ≤ VC(G).

To get a (1, εn)-approximation to VC(G), it suffices to estimate VC(G′′) up to ±εn/6.

By the Chernoff bound, we achieve this with probability 9/10 by sampling O(1/ε2)

vertices and computing the fraction of them in a fixed minimum vertex cover of

G′′. Such a vertex cover can be obtained by computing a minimum vertex cover

for each connected component of G′′ independently. Therefore, for every vertex v in

the sample, we obtain P [v] from O. We compute a minimum vertex cover for the

component induced by P [v] in such a way that the vertex cover does not depend

on which vertex in P [v] was the query point. Finally, we check if the query point

v belongs to the computed vertex cover for the component. In total, our procedure

takes at most O
(

k · d̃/ε3
)

+ 2O(k)/ε2 time.

To prove the same statement for minimum dominating set, we assume that all the

high degree nodes are in the dominating set, and we take this into account when we

compute optimal solutions for each connected component in the partition. This can

increase the solution size by εn/3 at most. For maximum independent set, it suffices

to recall that the sum of the size of the maximum independent set and the size of the

minimum vertex cover equals n, so a (1, εn)-approximation to one of the problems

immediately implies a (1, εn)-approximation to the other one.

58

We now use the fact that the average degree of a graph with an excluded minor

is O(1). We combine Theorem 2.5.3 and Theorem 2.5.4, and achieve the following

corollary.

Corollary 2.5.5. For every H-minor free family of graphs (with no restriction on the

maximum degree), there are (1, εn)-approximation algorithms for the optimal solution

size for minimum vertex cover, maximum independent set, and minimum dominating

set that run in 2poly(1/ε) time.

2.5.1 A Generic Partitioning Oracle

Local Computation

We start by presenting a partitioning oracle that works for any family of hyperfinite

graphs. We later show more efficient oracles for specific families of hyperfinite graphs.

We reuse a general method for local computation that was introduced by Nguyen

and Onak [66]. Consider a graph with random numbers in [0, 1] independently as-

signed to each of its vertices. Suppose that to compute a specific function f of a

vertex v, you first need to compute recursively the same function for neighbors of v

that were assigned a smaller number than that of v. The following lemma gives a

bound on the expected number of vertices for which f must be computed.

Lemma 2.5.6 ([66], proof of Lemma 12). Let G = (V, E) be a graph of degree bounded

by D ≥ 2, and let g : V ×(V ×A)⋆ → A be a function. A random number r(v) ∈ [0, 1]

is independently and uniformly assigned to each vertex v of G. A function fr : V → A

is defined recursively, using g. For each vertex v, we have

fr(v) = g(v, {(w, fr(w)) : r(w) < r(v)}).

Let S ⊆ V be a set of vertices v selected independently of r, for which we want

to learn fr(v). The expected number of vertices w for which we have to recursively

compute fr(w) in order to compute fr(v) for v ∈ S is at most |S| · 2O(D).

59

Algorithm 5: The global partitioning algorithm with parameters k and δ

(π1, . . . , πn) := random permutation of vertices1

P := ∅2

for i = 1, . . . , n do3

if πi still in the graph then4

if there exists a (k, δ)-isolated neighborhood of πi in the remaining graph5

then
S := this neighborhood6

else7

S := {πi}8

P := P ∪ {S}9

remove vertices in S from the graph10

The Oracle

We introduce an auxiliary definition of a small subset S of vertices that contains a

specific node, and has a small number of outgoing edges relatively to S.

Definition 2.5.7. Let G = (V, E) be a graph. For any subset S ⊂ V , we write eG(S)

to denote the number of edges in E that have exactly one endpoint in S.

We say that S ⊆ V is a (k, δ)-isolated neighborhood of v ∈ V if v ∈ S, the

subgraph induced by S is connected, |S| ≤ k, and eG(S) ≤ δ|S|.

We now show that a random vertex has an isolated neighborhood of required

properties with high probability.

Lemma 2.5.8. Let G = (V, E) be a ρ(ε)-hyperfinite graph with degree bounded by d,

where ρ(ε) is a function from R+ to R+. Let G′ = (V ′, E ′) be a subgraph of G that

is induced by at least δn vertices. For any ε ∈ (0, 1), the probability that a random

vertex in G′ does not have a (ρ(ε2δ/28800), ε/120)-isolated neighborhood in G′ is at

most ε/120.

Proof. Any induced subgraph of G can still be partitioned into components of size at

most ρ(ε) by removing at most εn edges. Since G′ has at least δn vertices, it is still

(ε/δ, ρ(ε))-hyperfinite for any ε > 0, or equivalently, it is (ε, ρ(ε · δ))-hyperfinite for

any ε > 0.

60

Therefore, there is a set S ′ ⊆ E ′ of at most (ε2/28800)|V ′| edges such that if all

the edges in S ′ are removed, the number of vertices in each connected component

is at most ρ(ε2δ/28800). Denote the achieved partition of vertices into connected

components by P . We have

Ev∈V ′

[
eG(P [v])

|P [v]|

]

=
∑

S∈P

|S|
|V ′| ·

eG(S)

|S| =
2|S ′|
|V ′| ≤ ε2

14400
.

By Markov’s inequality, the probability that a random v ∈ V ′ is such that e(P [v])/|P [v]| >

ε
120

is at most ε/120. Otherwise, P [v] is an (ρ(ε2δ/28800), ε/120)-isolated neighbor-

hood of v.

Finally, we now use the above lemma to construct a partitioning oracle.

Proof of Theorem 2.5.2. We set k = ρ(ε3/3456000) and δ = ε/120. Consider the

global Algorithm 5 with these parameters. The algorithm partitions the vertices of

the input graph into sets of size at most k. We define a sequence of random variables

Xi, 1 ≤ i ≤ n, as follows. Xi corresponds to the i-th vertex removed by Algorithm 5

from the graph. Say, the remaining graph has n − t vertices, and the algorithm is

removing a set S of r vertices. Then we set Xt+1 = . . . = Xt+r = eG′(S)/r, where G′

is the graph before the removal of S. Note that
∑n

i=1 Xi equals the number of edges

between different parts in P . For every i, if Xi corresponds to a set S that was a

(k, δ)-isolated neighborhood of the sampled vertex, then Xi ≤ δ = ε/120. Otherwise,

we only know that Xi ≤ d. However, by Lemma 2.5.8, if i ≤ n − εn/120, this does

not happen with probability greater than ε/120. Therefore, for every i ≤ n−εn/120,

we have

E[Xi] ≤ ε/120 + d · ε/120 ≤ 2εd/120.

For i > n − εn/120, we again use the bound Xi ≤ d. Altogether, this gives that

the expected number of edges connecting different parts of P is at most 2εdn/120 +

εdn/120 < εdn/40. Markov’s inequality implies that the number of such edges is at

most εdn/2 with probability 1 − 1/20.

Algorithm 5 can be simulated locally as follows. For each vertex v, we want to

61

compute P [v]. Instead of a random permutation, we independently assign a random

number r(v) uniformly selected from the range [0, 1]. We only generate r(v)’s when

they are necessary, and we store them as they may be needed later again. The numbers

generate a random ordering of vertices. To compute P [v], we first recursively compute

P [w] for each vertex w with r(w) < r(v) and distance to v at most 2 · k. If v ∈ P [w]

for one of those w, then P [v] = P [w]. Otherwise, we search for a (k, δ)-isolated

neighborhood of v, keeping in mind that all vertices in P [w] that we have recursively

computed are no longer in the graph. If we find such an neighborhood, we set P [v]

to it. Otherwise, we set P [v] = {v}.

We now analyze the above local simulation procedure, using Lemma 2.5.6. Our

computation graph is G⋆ = (V, E⋆), where E⋆ connects all pairs of vertices that are at

distance at most 2 · k in the input graph. The degree of G⋆ is bounded by D = dO(k).

The expected number of vertices w for which we have to compute P [w] to obtain

P [v] for a fixed vertex v is at most T = 2dO(k)
. Suppose that we run the procedure

for every vertex in the graph, but we never recursively compute P [w] for more than

T ′ = 40T/ε vertices w. The probability that we do not compute P [v] for a given v is

by Markov’s inequality at most ε/40. The expected number of vertices that we fail

for is bounded by εn/40. Using Markov’s inequality again, with probability 1−1/20,

the number of such vertices is bounded by εn/2.

The oracle works as follows for a given query vertex v. It first checks whether

there is at least one vertex u for which we compute P [u] using at most T ′ recursive

calls, and v ∈ P [u]. This can be done by running the recursive simulation procedure

for every vertex u at distance less than k from v. If there is such vertex u, the oracle

returns P [u]. Otherwise, it returns the singleton {v}. This procedure clearly provides

query access to a partition P ′ of the vertex set with all components of size at most k.

Let us show now that the number of edges cut in P ′ is likely to be small. First,

we know that P cuts at most εdn/2 vertices with probability at least 1 − 1/20. P ′

additionally partitions components of in P in which the recursive evaluation does not

finish in T ′ recursive calls for any vertex. The number of such vertices, and also the

number of vertices in such components, is at most εn/2 with probability 1 − 1/20.

62

This means that with probability 1− 1/20, at most εdn/2 additional edges are cut in

P ′. Therefore, with probability at least 1 − 1/20− 1/20 = 9/10, the P ′ cuts at most

εdn edges.

Let us now bound the number of graph queries that the oracle makes to answer

a single query. It simulates the recursive procedure starting at dO(k) vertices with at

most T ′ = 2dO(k)
/ε recursive calls each time. Each recursive call has query complexity

dO(k) associated with reading the neighborhood of radius O(k) at every vertex. In

total, this gives a bound of 2dO(k)
/ε queries. For q queries, the amount of computation

the oracle uses is q log q·2dO(k)
/ε. The extra logarithmic factor comes from a dictionary

that is necessary to store random numbers r(v) assigned to vertices v of the graph,

once they are generated.

2.5.2 An Efficient Partitioning Oracle for Minor-Free Graphs

In this section, we describe an efficient partitioning oracle for minor-free graphs. The

construction is inspired by a superconstant-time partitioning algorithm of Czygrinow,

Hańćkowiak, and Wawrzyniak [33, Section 2].

We describe a local distributed partitioning algorithm that builds the required

partition. Recall that a distributed algorithm is local if it runs in a constant number

of rounds. Such an algorithm can be used to construct an efficient partitioning oracle,

since for every query point, one can compute the distributed algortihm’s output by

simulating it for nodes within a constant radius around the query point. See the

paper of Parnas and Ron [70] for more details.

Preliminaries

We use the following facts. The second of them follows from the first fact and the

Nash-Williams Theorem.

Fact 2.5.9. Let H be an arbitrary fixed minor. There is a constant c⋆
H > 1 such that

1. In every H-minor-free graph G = (V, E), |E| ≤ c⋆
H · |V |.

63

Algorithm 6: A single contraction step for weighted minor-free graphs G′ =
G/(V1, . . . , Vk)

Every vertex wi, 1 ≤ i ≤ k, in G′ selects a random color among red, blue, and1

green.
Every vertex wi, 1 ≤ i ≤ k, in G′ selects a neighbor w′i such that (wi, w

′
i) is the2

heaviest edge wi is incident with.
For every red vertex wi, 1 ≤ i ≤ k, construct the set Qi ⊆ [k] that consists of j3

such that wj is blue, and w′j = wi.

For every such Qi, merge Vi with all Vj, j ∈ Qi.4

2. The edge set E of every H-minor-free graph G = (V, E) can be partitioned into

at most c⋆
H forests.

Throughout the section we use graph contractions. A graph contraction is a

weighted graph that is a result of contracting some subsets of vertices. Graph con-

tractions preserve weights of edges going between the contracted subsets of vertices.

Definition 2.5.10. Let V1, . . . , Vk be a partition of the set of vertices V of a weighted

graph G = (V, E, ω). We define the contraction G/(V1, . . . , Vk) of G with respect to

the partition V1, . . . , Vk as the following weighted graph G′ = (V ′, E ′, ω′). G′ has k

vertices wi, 1 ≤ i ≤ k. An edge (wi, wj) belongs to G′ if and only if i 6= j, and there

are vi ∈ Vi, and vj ∈ Vj such that (vi, vj) ∈ E. The weight ω′((wi, wj)) of such an

edge equals
∑

x∈Vi

∑

y∈Vj
ω((x, y)).

Note that the following holds by definition for minor-free graphs.

Fact 2.5.11. Let V1, . . . , Vk be a partition of the set of vertices V of an H-minor-

free graph G. If every set Vi of vertices induces a connected component in G, then

G/(V1, . . . , Vk) is H-minor-free as well.

Single Local Contraction

We now describe a single step of the partitioning algorithm. We assume we have

a weighted planar graph with non-negative weights. Algorithm 6 finds a number of

disjoint stars in the graph and contracts them. We prove the following fact.

64

Lemma 2.5.12. Let H be a fixed minor, and let c⋆
H be the constant from Fact 2.5.9.

Let G be a weighted H-minor-free graph with non-negative weights.

Let V1, . . . , Vk be a partition of vertices of an H-minor-free graph G = (V, E, ω)

such that each Vi, 1 ≤ i ≤ k, induces a connected component in G. Algorithm 6 turns

G1 = G/(V1, . . . , Vk) into a graph G2 = G/(V ′1 , . . . , V
′
k′) such that with probability

1/(36c⋆
H − 1), the total weight of edges in G2 is at most (1 − 1/(36c⋆

H)) of the weight

of G1.

Proof. Let w be the total weight of edges in G1. By Fact 2.5.9, the edge set of G1

can be decomposed into at most c⋆
H forests. At least one of them has weight at least

w/c⋆
H. Root every tree in this forest, and direct each edge towards the corresponding

root. The outdegree of each vertex v is at most 1. For vertices v with outdegree 1,

let av be the weight of the outgoing edge, and let av = 0, otherwise.

Let us move back to G1. If every vertex v selects the heaviest incident edge as in

Step 2 of Algorithm 6, then the weight of this edge is at least av. Since every edge can

be selected at most twice (by its both endpoints), the total weight of selected edges is

at least w/(2c⋆
H). Each of these edges is then contracted with probability at least 1/9,

if its endpoints are assigned the right configuration of colors. Therefore, the expected

weight of contracted edges is at least w/(18c⋆
H). This implies that the expected weight

of edges that are not contracted is at most w(1− 1/(18c⋆
H)). By Markov’s inequality,

the weight of edges that are not contracted is greater than w(1 − 1/(36c⋆
H)) with

probability at most
1 − 1/(18c⋆

H)

1 − 1/(36c⋆
H)

=
36c⋆

H − 2

36c⋆
H − 1

.

Additionally, note that the number of communication rounds Algorithm 6 needs

is constant with respect to G′.

Full Distributed Algorithm

We now show a local distributed algorithm that computes a good partition by running

Algorithm 6 multiple times.

65

Lemma 2.5.13. Let H be a fixed minor, and let ε ∈ (0, 1). There is a distributed

partitioning algorithm that runs in poly(1/ε) rounds on every H-minor-free graphs

G = (V, E), and determines a partition of the graph such that:

• The diameter of each connected component is bounded by poly(1/ε).

• With probability 9/10, the number of cut edges is at most ε|V |.

If the degree of the graph is bounded by d ≥ 2, then the total amount of computation

per node is bounded by dpoly(1/ε).

Proof. We assume that the weight of each edge of the input graph is 1. In the initial

partition each vertex belongs to a separate set. The distributed algorithm simulates

Algorithm 6 exactly M = 7 · (36c⋆
H − 1) · ⌈log(1−1/(36c⋆

H))(ε/c
⋆
H)⌉ = O(log(1/ε)) times.

Each execution of Algorithm 6 is conducted on the latest partition of the graph and

produces a new partition. The diameter of each connected component in the i-th

partition is bounded by Ci
1, where C1 is a constant. Therefore, simulating the i-th

execution of the algorithm only requires Ci
2 communication rounds, for some constant

C2. For any fixed constant C, CM = poly(1/ε), so the diameter of each component is

bounded by poly(1/ε), and the total number of communication rounds is poly(1/ε).

Recall now Lemma 2.5.12. With probability 1/(36c⋆
H − 1), a single execution of

Algorithm 6 decreases the number of edges of the orginal graph that are cut by the

current partition by a factor of 1 − 1/(36c⋆
H). The expected number of times this

happens is at least 7 · ⌈log(1−1/(36c⋆
H))(ε/c

⋆
H)⌉. By the Chernoff bound, the probability

that this happens fewer than ⌈log(1−1/(36c⋆
H))(ε/c

⋆
H)⌉ times is bounded by exp(−7 ·

(6/7)2/2) < 1/10. Hence the final partition cuts ε|V | edges with probability less than

9/10.

If the maximum vertex degree of the input graph is bounded by d, then the size

of each component and the degree of each vertex in the current graph contraction is

always of order dpoly(1/ε). This enables computing the partition with at most dpoly(1/ε)

computation per vertex.

66

Partitioning Oracle

We now finish the construction of our oracle.

Proof of Theorem 2.5.3. For every query the oracle locally simulates the distributed

algorithm from Lemma 2.5.13 with the algorithm’s ǫ set to ε/2. See the paper of

Parnas and Ron [70] for details how to conduct such simulation. The required number

of queries to the graph is dpoly(1/ε) for every query to the oracle. The oracle needs to

store previous coin tosses for each seen vertex in the graph. The total computation

time for q queries is at most q log q · dpoly(1/ε), where the extra log q factor comes from

the use of a dictionary.

This way the oracle determines the connected component Q = (V ′, E ′) that con-

tains the query point. The oracle further subpartitions the component by using the

algorithm from Proposition 4.1 of [4] to determine at most ε|V ′|/(2d) vertices V ′′ ⊆ V ′

such that removing them leaves connected components of size at most O(d/ε2). The

running time of this algorithm is polynomial in the size of Q. It is important that V ′′

is computed in such a way that it does not depend on which of the vertices in V ′ is

the query point. By cutting at most ε|V ′|/2 edges incident to the vertices in V ′′, we

finally achieve the required partition.

With probability 9/10, the distributed algorithm from Lemma 2.5.13 cuts at most

ε|V |/2 edges, and then the algorithm from Proposition 4.1 of [4] for each component

cuts in total at most another ε|V |/2 edges.

2.6 Other Applications of Our Methods

2.6.1 Local Distributed Algorithms

Our technique can be used to construct distributed algorithms that with constant

probability produce a good solution for graph problems that we have considered. For

instance, for the maximum matching problem, there is an algorithm that in c = c(ε, d)

communication rounds collects information about all vertices and edges in the radius

c, and random numbers assigned to each prospective augmenting path. For all but a

67

constant fraction of edges, the knowledge suffices to decide if they are in the matching

or not. If the radius-c neighborhood does not suffice to decide if an edge is in the

matching, we decide it is not. With high probability, only a small fraction of edges

that should be in the matching is not included.

2.6.2 Testing the Property of Having a Perfect Matching

We consider the class Cd of graphs of the maximum degree bounded by d. In property

testing of graphs in the bounded degree model [40], one wants to distinguish two

subsets of Cd: graphs that have a property P and those that need to have at least

εdn edges added or removed to have P , where ε > 0 is a parameter.

Consider the property of having a perfect matching (we focus on graphs with an

even number of nodes). Clearly, for a graph with a perfect matching, the maximum

matching size is n/2. On the other hand, for any graph that must have at least

εdn edges added or removed to have P , the maximum matching size is smaller than

n/2−Ω(εdn). Our maximum matching algorithm can then be used to efficiently solve

the testing problem in constant time.

2.6.3 Testing Minor-Closed Properties

We now describe how partitioning oracles can be used for testing if a bounded-degree

graph has a minor-closed property. The constant-time testability of minor-closed

properties was first established by Benjamini, Schramm, and Shapira [18].

We now recall the definition of property testing in the bounded degree model

[40]. A graph G is ε-far from a property P if it must undergo at least εdn graph

operations to satisfy P, where a single graph operation is either an edge removal or

an edge insertion. An ε-tester T for property P is a randomized algorithm that has

query access to G in the sense defined in the preliminaries, and:

• if G satisfies P, T accepts with probability at least 2/3,

• if G is ε-far from P, T rejects with probability at least 2/3.

68

Algorithm 7: Tester for H-Minor Freeness (for sufficiently large graphs)

Input: query access to a partition P given by an (εd/4, k)-partitioning oracle
for H-minor free graphs with degree bounded by d for the input graph

f := 01

for j = 1, . . . , t1 (where t1 = O(1/ε2)) do2

Pick a random v ∈ V and a random i ∈ [d]3

if v has ≥ i neighbors, and the i-th neighbor of v not in P [v] then4

f := f + 1

if f/t1 ≥ 3
8
ε then REJECT5

Select independently at random a set S of t2 = O(1/ε) vertices of the graph6

if the graph induced by
⋃

x∈S P [x] is not H-minor free then REJECT7

else ACCEPT8

Lemma 2.6.1. Let H be a fixed graph. Let O be an (εd/4, k)-partitioning oracle for

the family of H-minor free graphs with degree bounded by d. There is an ε-tester

for the property of being H-minor free in the bounded-degree model that provides O
with query access to the input graph, makes O(1/ε2) uniform queries to O, and uses

O((dk log k)/ε + k3/ε6) = poly(d, k, 1/ε) time for computation.

Proof. For sufficiently large graphs, our tester is Algorithm 7. The value t1 equals

C1/ε
2 for a sufficiently high constant C1 such that by the Chernoff bound the number

of edges cut by the partition P is approximated up to ±εdn/8 with probability 9/10.

Let t3 = C2/ε be an upper bound on the expected time to hit a set of size ε|X|
by independently taking random samples from X, where C2 is a sufficiently large

constant. We set t2 in the algorithm to 10 · q · t3, where q is the number of connected

components in H . Finally, we set t4 to C3 · k · t22 for a sufficiently high constant C3

such that for graphs on more than t4 nodes, the probability that two samples from S

belong to the same component P [v] is at most 1/10.

If the number of vertices in the graph is at most t4 = O(k/ε2), we read the

entire graph, and check if the input is H-minor free in O((k/ε2)3) time via the cubic

algorithm of Robertson and Seymour [73]. For larger graphs, we run Algorithm 7.

The loop in Lines 2–4 takes at most O(d/ε2) time. In Line 7, the induced graph can

be read in O((dk log k)/ε) time, and then O((k/ε)3) time suffices to test whether it

is H-minor free. Therefore, the amount of computation that the algorithm uses is

69

O((dk log k)/ε + (k/ε2)3).

If G is H-minor free, then the fraction of edges cut by P is with probability 1−1/10

at most εdn/4. If this is the case, the estimate on the number of cut edges edges is

at most 3εdn/8 with probability 1 − 1/10. Moreover, every induced subgraph of G

is also H-minor free, so G cannot be rejected in the loop in Line 5 of the algorithm.

Hence, G is accepted with probability at least 8/10 > 2/3.

Consider now the case when G is ε-far. If the partition P cuts more than εdn/2

edges, the graph is rejected with probability 1 − 1/10 > 2/3. Suppose now that P

cuts fewer than εdn/2 edges and the tester does not reject in Line 5. Let G′ be the

new graph after the partition. G′ remains ε/2-far from H-minor freeness, and there

are at least εdn/2 edges that must be removed to get an H-minor free graph. This

implies that G′ is ε/2-far from Hi-minor freeness also for every connected component

Hi, 1 ≤ i ≤ q, of H . For every i, at least an εdn/2 edges belong to a component

of G′ that is not Hi-minor free. It follows that at least εn vertices are incident to

such an edge. Therefore, it suffices to pick in expectation t3 random nodes to find a

component that is not Hi-minor free. For q connected components of H , it suffices

to pick in expectation q · t3 random nodes to find each of them. By picking, 10 · q · t3
random nodes, we find the components with probability 1−1/10. Furthermore, since

the considered graph is large, i.e., has at least t4 nodes, the components for each i are

different with probability 1 − 1/10, and the graph is rejected in Line 7. Therefore,

the probability that a graph that is ε-far is accepted is at most 3/10 < 1/3.

By combining Theorem 2.5.3 with Lemma 2.6.1, we obtain a 2poly(1/ε)-time tester

for H-minor freeness for graphs of degree O(1). Since every minor-closed property

can be expressed via a finite set of excluded minors H [74], it suffices to test if the

input is ε/s-far from being minor free for each of them, where s is their number. We

arrive at the following theorem.

Theorem 2.6.2. For every minor-closed property P, there is a uniform ε-tester for

P in the bounded-degree model that runs in 2poly(1/ε) time.

70

Algorithm 8: Approximating distance to not having a set of connected graphs
as induced subgraphs

Input: set H of connected graphs (does not include the graph on one vertex)
Input: query access to a partition P given by an (εd/4, k)-partitioning oracle

for a family C of graphs
f := 01

for j = 1, . . . , t (where t = O(1/ε2)) do2

Pick a random v ∈ V3

q := the minimum number of edge operations to make the graph induced4

by P [v] have no graph in H as an induced subgraph
f := f + q

d·|P [v]|5

Return f/t + ε/2.6

2.6.4 Approximating Distance to Hereditary Properties For

Hyperfinite Graphs

Parnas, Ron, and Rubinfeld [71] studied generalizations of property testing: tolerant

testing and distance approximation. For a given property P, and an appropriately

defined distance to P, an (ε1, ε2)-tolerant tester for P distinguishes inputs at distance

at most ε1 from P and those at distance at least ε2 from P with probability at least

2/3, where 0 ≤ ε1 < ε2. An (α, β)-distance approximation algorithm for P computes

an (α, β)-approximation to the distance of the input to P with probability 2/3. In

the following, we study constant-time (1, δ)-distance approximation algorithms with δ

being a parameter. Such algorithms immediately yield constant-time (ε1, ε2)-tolerant

testers by setting δ to (ε2 − ε1)/2.

In the bounded-degree model, the distance to a given property P is k/(dn), where

k is the minimum number of graph operations (edge insertions and deletions) that

are needed to make the graph achieve P. All input graphs have the maximum degree

bounded by d, but the closest graph with property P need not have the maximum

degree bounded by d.

As a warmup, we construct an algorithm for the case when the hereditary property

can be expressed as a finite set of forbidden induced subgraphs. The algorithm

illustrates basic ideas behind distance approximation. We will later use it to construct

an algorithm for general hereditary properties.

71

Lemma 2.6.3. Let H be a fixed set of connected graphs that does not contain the one-

vertex graph. Let O be an (εd/4, k)-partitioning oracle for a family C of graphs with

degree bounded by d, where k is a function of only ε. There is a (1, ε)-approximation

algorithm for the distance to the property of not having any graph in H as an induced

subgraph, for graphs in C. The algorithm provides O with query access to the input

graph, makes O(1/ε2) random uniformly distributed queries to O, and uses (O(dk)+

2O(k2))/ε2 time for computation.

Proof. We use Algorithm 8. The partition P cuts at most εdn/4 edges with proba-

bility 1 − 1/10, which implies that the distance to the property changes by at most

±ε/4. Consider the new graph G′ with connected components corresponding to the

partition of P . Every graph in H ∈ H is connected, so H can only appear as an

induced subgraph of a connected component of G′. Therefore, it does not make sense

to add edges connecting components of G′. This would not exclude any existing in-

duced graph from H. Hence, any shortest sequence of operations that removes from

G′ all induced copies of graphs in H, does this for each connected component in G′

separately.

The value t = O(1/ε2) in the algorithm is chosen such that we estimate the number

of edge operations divided by dn up to ±ε/4 with probability 1−1/10 by the Chernoff

bound. Therefore, the algorithm returns a correct estimate with probability at least

1 − 1/10 − 1/10 = 4/5. The best set of edge operations can be found for a single

component in 2O(k2) time by enumerating all possible modifications, and verifying that

none of the graphs in H on at most k nodes are present as an induced subgraph.

We now construct an approximation algorithm that works for any non-degenerate

hereditary property. Recall that a property is degenerate if it prohibits an empty

graph on some number of nodes. The proof reuses some ideas of Czumaj, Shapira,

and Sohler [28], who showed a one-sided tester for hereditary properties of hyperfinite

families of bounded-degree graphs.

Lemma 2.6.4. Let P be a non-degenerate hereditary property. Let O be an (εd/16, k)-

partitioning oracle for a family C of graphs with degree bounded by d. There is a

72

(non-uniform) (1, ε)-approximation algorithm for the distance to P for graphs in C.

The algorithm provides O with query access to the input graph, and makes a constant

number of uniformly distributed queries to the oracle. Its running time is independent

of the graph size.

Proof. Let H be the set of all graphs that do not have P. Since P is hereditary, if a

graph has any of the graphs in H as an induced subgraph, it does not have P. Consider

a subset H′ of H that only consists of graphs H ∈ H that have all components of size

at most k. There are at most t = 2O(k2) different connected graphs A1, . . . , At on at

most k vertices. Every graph in H′ can be represented as a vector a ∈ N
t, where ai

is the number of times Ai appears as a connected component. For a graph H ∈ H′,
its configuration is the vector c ∈ {0, 1}t such that for each i, 1 ≤ i ≤ t, ci = 0 if

and only if ai = 0. We say that a configuration c ∈ {0, 1}t is present if there is a

graph in H′ with configuration c. We call the one-vertex graph trivial. Recall that H
is non-degenerate. This implies that for each present configuration c, there is i such

that ci = 1, and Ai is non-trivial. A subset X of A = {Ai : 1 ≤ i ≤ t} is hitting if

it does not contain the trivial graph, and for every present configuration c, there is j

such that cj = 1 and Aj ∈ X . For non-degenerate H, there always exists at least one

hitting subset of A.

Since there exists a (εd/16, k)-partitioning oracle for the input graph G, G is

(εd/16, k)-hyperfinite, and there is a graph G′ with components of size at most k

that can be created by removing at most εdn/16 edges from G. G′ is at distance at

most ε/16 from G. The distance of G′ to P is bounded from above by the minimum

distance from having no induced subgraph in a hitting set X , where the minimum

is taken over all hitting sets X . If we exclude at least one connected component for

every graph in H′, we get a graph that satisfies P. We write M to denote the above

minimum distance to excluding a hitting set from G′. Note that the shortest sequence

of operations that exclude a given hitting set X does not add edges between different

connected components of G. These edges do not remove any existing copy of a graph

in X . Note that M is bounded by 1, since it suffices to remove all edges in G′ to

achieve P.

73

We now claim that in fact, we have to exclude some hitting set almost entirely for

sufficiently large graphs, or a sequence of operations turning the graph into a graph

that has P is long. For every present configuration c ∈ {0, 1}t (the number of them

is finite), we fix an arbitrary graph Hc ∈ H′ with this configuration. Consider any

sequence of at most (M − ε/4) · dn operations that turns G′ into a graph G′′. We

will show that for n greater than some constant (which depends on ε, d, k, and P),

G′′ has an induced copy of one of the graphs Hc. Let G⋆ be G′′ with only edges

that connect vertices in the same connected component in G′. By the definition of

M , G⋆ must be ε/4-far from having any of the hitting sets excluded. We claim that

there is a present configuration c such that for every non-trivial Ai with ci = 1, the

distance of G⋆ to not having Ai as an induced subgraph is at least ε/(8k2t). Suppose

for contradiction that for every present configuration c, there is i such that Ai is a

non-trivial graph, ci = 1, and the distance of G⋆ from not having Ai as an induced

subgraph is less than ε/(8k2t). For every present configuration c, removing such an

Ai from G⋆ requires a sequence of fewer than εdn/(8k2t) graph operations. For every

inserted or deleted edge (u, v) by such an sequence of operations, let us delete from G⋆

all edges incident to both u and v. This is fewer than εdn/(4 · 2t) graph deletions for

every present configuration c, and this way we do not introduce any new connected

induced subgraph. By going over all present configurations, we can entirely remove

all induced copies of at least one graph in each configuration with fewer than εdn/4

graph deletions. This implies that we can exclude a hitting set with fewer than εdn/4

graph operations. This yields a contradiction.

We proved that there is a present configuration c such that for every i such that

ci = 1 and Ai is non-trivial, the distance of G⋆ to not having Ai as an induced

subgraph is at least ε/(8k2t). Note that because each connected component in G⋆

has at most k vertices, the number of vertex disjoint copies of Hc is Ωε,d,k(n) in G⋆.

Let q be the number of connected components in Hc. We can pick sets Ii, 1 ≤ i ≤ q,

of subgraphs of G⋆ such that each Ii, 1 ≤ i ≤ q, is a set of induced copies of the i-th

connected component of Hc, |Ii| ≥ ⌊n/C⌋ (where C only depends on ε, d, k, and the

choice of graphs Hc), and the graphs in
⋃

i Ii are pairwise vertex disjoint. Note that

74

each induced subgraph of G⋆ that appears in Ii is also an induced graph in G′′. There

are at least ⌊n/C⌋q ways of selecting one subgraph from each Ii. Consider one of such

choices. If there were no additional edges between the selected subgraphs, this would

give us an induced copy of Hc. The total number of edges in G′′ is at most 2dn, and

each edge connects at most 2 subgraphs in
⋃

Ii. This means that each edge can make

at most nq−2 choices of one subgraph from each Ii not give an induced copy of Hc.

For sufficiently large n, we have 2dn · nq−2 < ⌊n/C⌋q, and there is an induced copy

of Hc. Summarizing, for sufficiently large graphs, the distance of G′ to P is at least

M − ε/4.

Therefore, the distance of G to P is between M −5ε/16 and M +ε/16. Moreover,

M is approximated up to ±ε/16 by M ′, which we define as the distance of G to entirely

excluding one of the hitting sets. Therefore, to get a sufficiently good approximation

to the distance of G to P, it suffices to compute (1, εn/4)-approximation to M ′ for

sufficiently large graphs. This can be done by using the algorithm of Lemma 2.6.3

for all hitting sets, and amplifying the probability of its success in the standard way.

For small graphs, we hard-wire the exact solution to the problem.

75

76

Chapter 3

Edit Distance

In this section, we study the asymmetric query model for edit distance. Recall that

the input in this model consists of two strings x and y. An algorithm can access y in

an unrestricted manner (without charge), and it is charged only for querying every

symbol of x.

We prove both upper and lower bounds on the number of queries necessary to

distinguish pairs of close strings from pairs of strings far apart. In particular, we

prove a more general version of the results (Theorem 1.2.2, Theorem 1.2.3) we stated

in Section 1.2. Our upper bound leads to the first algorithm that computes a mul-

tiplicative logO(1/ε) n-approximation to edit distance between two strings of length n

in n1+ε time, for any constant ε > 0.

3.1 Outline of Our Results

Before we give full proofs, we first sketch the main ideas behind our proofs.

3.1.1 Outline of the Upper Bound

In this section, we provide an overview of our algorithmic results, in particular of

the proof of Theorem 1.2.2. Full statements and proofs of the results appear in

Section 3.2.

77

Our proof has two major components. The first one is a characterization of edit

distance by a different “distance”, denoted E , which approximates edit distance well.

The second component is a sampling algorithm that approximates E up to a constant

factor by making a small number of queries into x. We describe each of the compo-

nents below. In the following, for a string x and integers s, t ≥ 1, x[s : t] denotes the

substring of x comprising of x[s], . . . , x[t − 1].

Edit Distance Characterization: the E-distance

Our characterization of ed(x, y) may be viewed as computation on a tree, where the

nodes correspond to substrings x[s : s + l], for some start position s ∈ [n] and length

l ∈ [n]. The root is the entire string x[1 : n + 1]. For a node x[s : s + l], we obtain its

children by partitioning x[s : s+l] into b equal-length blocks, x[s+j·l/b : s+(j+1)·l/b],
where j ∈ {0, 1, . . . b − 1}. Hence b ≥ 2 is the arity of the tree. The height of the

tree is h
def
= logb n. We also use the following notation: for level i ∈ {0, 1, . . . h}, let

li
def
= n/bi be the length of strings at that level. Let Bi

def
= {1, li + 1, 2li + 1, . . .} be the

set of starting positions of blocks at level i.

The characterization is asymmetric in the two strings and is defined from a node

of the tree to a position u ∈ [n] of the string y. Specifically, if i = h, then the

E-distance of x[s] to a position u is 0 only if x[s] = y[u] and u ∈ [n], and 1 otherwise.

For i ∈ {0, 1, . . . h − 1} and s ∈ Bi, we recursively define the E-distance E(i, s, u)

of x[s : s + li] to a position u as follows. Partition x[s : s + li] into b blocks of

length li+1 = li/b, starting at positions s + tj , where tj
def
= j · li+1, j ∈ {0, 1, . . . b − 1}.

Intuitively, we would like to define the E-distance E(i, s, u) as the summation of the

E-distances of each block x[s+ tj : s+ tj + li+1] to the corresponding position in y, i.e.,

u + tj . Additionally, we allow each block to be displaced by some shift rj , incurring

an additional charge of |rj| in the E-distance. The shifts rj are chosen such as to

minimize the final distance. Formally,

E(i, s, u)
def
=

b−1∑

j=0

min
rj∈Z

E(i + 1, s + tj , u + tj + rj) + |rj| . (3.1)

78

The E-distance from x to y is just the E-distance from x[1 : n + 1] to position 1, i.e.,

E(0, 1, 1).

We illustrate the E-distance for b = 4 in Fig. 3-1. Notice that without the shifts

(i.e., when all rj = 0), the E-distance is exactly equal to the Hamming distance

between the corresponding strings. Hence the shifts rj are what differentiates the

Hamming distance and E-distance.

x[s+li+1:s+2li+1]x[s:s+li+1] x[s+3li+1:s+4li+1]

r2 r3

x[s+2li+1:s+3li+1]

x

︸ ︷︷ ︸

x[s:s+li]

y[u:u+li]
︷ ︸︸ ︷

y

r0 r1

Figure 3-1: Illustration of the E-distance E(i, s, u) for b = 4. The pairs of blocks of
the same shading are the blocks whose E-distance is used for computing E(i, s, u).

We prove that the E-distance is a O(bh) = O(b
log b

log n) approximation to ed(x, y)

(see Theorem 3.2.3). For b = 2, the E-distance is a O(log n) approximation to ed(x, y),

but unfortunately, we do not know how to compute it or approximate it well in bet-

ter than quadratic time. It is also easy to observe that one can compute a 1 + ε

approximation to E-distance in Õε(n
2) time via a dynamic programming that con-

siders only rj ’s which are powers of 1 + ε. Instead, we show that, using the query

algorithm (described next), we can compute a 1 + ε approximation to E-distance for

b = (log n)O(1/ε) in n1+ε time.

Sampling Algorithm

We now describe the ideas behind our sampling algorithm. The sampling algorithm

approximates the E-distance between x and y up to a constant factor. The query

79

complexity is Q ≤ β · (log n)O(h) = β · (log n)logb n for distinguishing E(0, 1, 1) > n/β

from E(0, 1, 1) ≤ n/(2β). For the rest of this overview, it is instructive to think about

the setting where β = n0.1 and b = n0.01, although our main result actually follows

by setting b = (log n)O(1/ε).

The idea of the algorithm is to prune the characterization tree, and in particular

prune the children of each node. If we retain only polylog n children for each node,

we would obtain the claimed Q ≤ (log n)O(h) leaves at the bottom, which correspond

to the sampled positions in x. The main challenge is how to perform this pruning.

A natural idea is to uniformly subsample polylog n out of b children at each node,

and use Chernoff-type concentration bounds to argue that Equation (3.1) may be

approximated only from the E-distance estimates of the subsampled children. Note

that, since we use the minimum operator at each node, we have to aim, at each node,

for an estimate that holds with high probability.

How much do we have to subsample at each node? The “rule of thumb” for a

Chernoff-type bound to work well is as follows. Suppose we have quantities a1, . . . am ∈
[0, ρ] respecting an upper bound ρ > 0, and let σ =

∑

j∈[m] aj . Suppose we subsample

several j ∈ [m] to form a set J . Then, in order to estimate σ well (up to a small

multiplicative factor) from aj for j ∈ J , we need to subsample essentially a total of

|J | ≈ ρ
σ
· m log m positions j ∈ [m]. We call this Uniform Sampling Lemma (see

Lemma 3.2.11 for complete statement).

With the above “sampling rule” in mind, we can readily see that, at the top of

the tree, until a level i, where li = n/β, there is no pruning that may be done (with

the notation from above, we have ρ = li = n/β and σ = n/β). However, we hope to

prune the tree at the subsequent levels.

It turns out that such pruning is not possible as described. Specifically, consider a

node v at level i and its children vj , for j = 0, . . . b−1. Suppose each child contributes

a distance aj to the sum E at node v (in Equation (3.1), for fixed u). Then, because

of the bound on length of the strings, we have that aj ≤ li+1 = (n/β)/b. At the

same time, for an average node v, we have
∑b−1

j=0 aj ≈ li/β = n/β2. By the Uniform

Sampling Lemma from above, we need to take a subsample of size |J | ≈ n/(βb)
n/β2 ·b log b =

80

β log b. If β were constant, we would obtain |J | ≪ b and hence prune the tree (and,

indeed, this approach works for β ≪ b). However, once β ≫ b, such pruning does not

seem possible. In fact, one can give counter-examples where such pruning approach

fails to approximate the E-distance.

To address the above challenge, we develop a way to prune the tree non-uniformly.

Specifically, for different nodes we will subsample its children at different, well-

controlled rates. In fact, for each node we will assign a “precision” w with the

requirement that a node v, at level i, with precision w, must estimate its E-distances

to positions u up to an additive error li/w. The pruning and assignment of precision

will proceed top-bottom, starting with assigning a precision 4β to the root node. In-

tuitively, the higher the precision of a node v, the denser is the subsampling in the

subtree rooted at v.

Technically, our main tool is a Non-uniform Sampling Lemma, which we use to

assign the necessary precisions to nodes. It may be stated as follows (see Lemma 3.2.12

for a more complete statement). The lemma says that there exists some distribution

W and a reconstruction algorithm R such that the following two conditions hold:

• Fix some aj ∈ [0, 1] for j ∈ [m], with σ =
∑

j aj . Also, pick wj i.i.d. from the

distribution W for each j ∈ [m]. Let âj be estimators of aj , up to an additive

error of 1/wj, i.e., |aj − âj | ≤ 1/wj. Then the algorithm R, given âj and wj for

j ∈ [m], outputs a value that is inside [σ − 1, σ + 1], with high probability.

• Ew∈W [w] = polylog m.

To internalize this statement, fix σ = 10, and consider two extreme cases. At one

extreme, consider some set of 10 j’s such that aj = 1, and all the others are 0. In this

case, the previous uniform subsampling rule does not yield any savings (to continue

the parallel, uniform sampling can be seen as having wj = m for the sampled j’s

and wj = 1 for the non-sampled j’s). Instead, it would suffice to take all j’s, but

approximate them up to “weak” (cheap) precision (i.e., set wj ≈ 100 for all j’s). At

the other extreme is the case when aj = 10/m for all j. In this case, subsampling

would work but then one requires a much “stronger” (expensive) precision, of the

81

order of wj ≈ m. These examples show that one cannot choose all wj to be equal. If

wj’s are too small, it is impossible to estimate σ. If wj’s are too big, the expectation

of w cannot be bounded by polylog m, and the subsampling is too expensive.

The above lemma is somewhat inspired by the sketching and streaming technique

introduced by Indyk and Woodruff [47] (and used for the Fk moment estimation),

where one partitions elements aj by weight level, and then performs corresponding

subsampling in each level. Although related, our approach to the above lemma dif-

fers: for example, we avoid any definition of the weight level (which was usually the

source of some additional complexity of the use of the technique). For completeness,

we mention that the distribution W is essentially the distribution with probability

distribution function f(x) = ν/x2 for x ∈ [1, m3] and a normalization constant ν. The

algorithm R essentially uses the samples that were (in retrospect) well-approximated,

i.e., âj ≫ 1/wj, in order to approximate σ.

In our E-distance estimation algorithm, we use both uniform and non-uniform

subsampling lemmas at each node to both prune the tree and assign the precisions

to the subsampled children. We note that the lemmas may be used to obtain a

multiplicative (1 + ε′)-approximation for arbitrary small ε′ > 0 for each node. To

obtain this, it is necessary to use ε ≈ ε′/ log n, since over h ≈ log n levels, we collect a

multiplicative approximation factor of (1 + ε)h, which remains constant only as long

as ε = O(1/h).

3.1.2 Outline of the Lower Bound

In this section we outline the proof of Theorem 1.2.3. The full proof appears in

Section 3.3. Here, we focus on the main ideas, skipping or simplifying some of the

technical issues.

As usual, the lower bound is based on constructing “hard distributions”, i.e., dis-

tributions (over inputs) that cannot be distinguished using few queries, but are very

different in terms of edit distance. We sketch the construction of these distributions

in Section 3.1.2. The full construction appears in Section 3.3.4. In Section 3.1.2, we

sketch the machinery that we developed to prove that distinguishing these distribu-

82

tions requires many queries; the details appear in Section 3.3.2. We then sketch in

Section 3.1.2 the tools needed to prove that the distributions are indeed very different

in terms of edit distance; the detailed version appears in Section 3.3.3.

The Hard Distributions

We shall construct two distributions D0 and D1 over strings of a given length n. The

distributions satisfy the following properties. First, every two strings in the support of

the same distribution Di, denoted supp(Di), are close in edit distance. Second, every

string in supp(D0) is far in edit distance from every string in supp(D1). Third, if

an algorithm correctly distinguishes (with probability at least 2/3) whether its input

string is drawn from D0 or from D1, it must make many queries to the input.

Given two such distributions, we let x be any string from supp(D0). This string

is fully known to the algorithm. The other string y, to which the algorithm only has

query access, is drawn from either D0 or D1. Since distinguishing the distributions

apart requires many queries to the string, so does approximating edit distance between

x and y.

Randomly Shifted Random Strings. The starting point for constructing these

distributions is the following idea. Choose at random two base strings z0, z1 ∈ {0, 1}n.

These strings are likely to satisfy some “typical properties”, e.g. be far apart in edit

distance (at least n/10). Now let each Di be the distribution generated by selecting

a cyclic shift of zi by r positions to the right, where r is a uniformly random integer

between 1 and n/1000. Every two strings in the same supp(Di) are at distance at

most n/500, because a cyclic shift by r positions can be produced by r insertions and

r deletions. At the same time, by the triangle inequality, every string in supp(D0)

and every string in supp(D1) must be at distance at least n/10 − 2 · n/500 ≥ n/20.

How many queries are necessary to learn whether an input string is drawn from

D0 or from D1? If the number q of queries is small, then the algorithm’s view is close

to a uniform distribution on {0, 1}q under both D0 and D1. Thus, the algorithm is

unlikely to distinguish the two distributions with probability significantly higher than

83

1/2. This is the case because each base string zi is chosen at random and because

we consider many cyclic shifts of it. Intuitively, even if the algorithm knows z0 and

z1, the random shift makes the algorithm’s view a nearly-random pattern, because

of the random design of z0 and z1. Below we introduce rigorous tools for such an

analysis. They prove, for instance, that even an adaptive algorithm for this case, and

in particular every algorithm that distinguishes edit distance ≤ n/500 and ≥ n/20,

must make Ω(log n) queries.

One could ask whether the Ω(log n) lower bound for the number of queries in

this construction can be improved. The answer is negative, because for a sufficiently

large constant C, by querying any consecutive C log n symbols of z1, one obtains a

pattern that most likely does not occur in z0, and therefore, can be used to distinguish

between the distributions. This means that we need a different construction to show

a superlogarithmic lower bound.

Substitution Product. We now introduce the substitution product, which plays

an important role in our lower bound construction. Let D be a distribution on strings

in Σm. For each a ∈ Σ, let Ea be a distribution on (Σ′)m′

, and denote their entire

collection by E def
= (Ea)a∈Σ. Then the substitution product D ⊛ E is the distribution

generated by drawing a string z from D, and independently replacing every symbol

zi in z by a string Bi drawn from Ezi
.

Strings generated by the substitution product consist of m blocks. Each block is

independently drawn from one of the Ea’s, and a string drawn from D decides which

Ea each block is drawn from.

Recursive Construction. We build on the previous construction with two random

strings shifted at random, and extend it by introducing recursion. For simplicity, we

show how this idea works for two levels of recursion. We select two random strings

z0 and z1 in {0, 1}
√

n. We use a sufficiently small positive constant c to construct two

distributions E0 and E1. E0 and E1 are generated by taking a cyclic shift of z0 and z1,

respectively, by r symbols to the right, where r is a random integer between 1 and

84

c
√

n. Let E def
= (Ei)i∈{0,1}.

Our two hard distributions on {0, 1}n are D0
def
= E0 ⊛ E , and D1

def
= E1 ⊛ E . As

before, one can show that distinguishing a string drawn from E0 and a string drawn

from E1 is likely to require Ω(log n) queries. In other words, the algorithm has to

know Ω(log n) symbols from a string selected from one of E0 and E1. Given the

recursive structure of D0 and D1, the hope is that distinguishing them requires at

least Ω(log2 n) queries, because at least intuitively, the algorithm “must” know for at

least Ω(log n) blocks which Ei they come from, each of the blocks requiring Ω(log n)

queries. Below, we describe techniques that we use to formally prove such a lower

bound. It is straightforward to show that every two strings drawn from the same Di

are at most 4cn apart. It is slightly harder to prove that strings drawn from D0 and

D1 are far apart. The important ramification is that for some constants c1 and c2,

distinguishing edit distance < c1n and > c2n requires Ω(log2 n) queries, where one

can make c1 much smaller than c2. For comparison, under the Ulam metric, O(log n)

queries suffice for such a task (deciding whether distance between a known string and

an input string is < c1n or > c2n, assuming 2c1 < c2 [2]).

To prove even stronger lower bounds, we apply the substitution product several

times, not just once. Pushing our approach to the limit, we prove that distinguishing

edit distance O(n/ polylog n) from Ω(n) requires nΩ(1/log log n) queries. In this case,

Θ (log n/log log n) levels of recursion are used. One slight technical complication arises

in this case. Namely, we need to work with a larger alphabet (rather than binary).

Our result holds true for the binary alphabet nonetheless, since we show that one can

effectively reduce the larger alphabet to the binary alphabet.

Bounding the Number of Queries

We start with definitions. Let D0, . . . , Dk be distributions on the same finite set Ω

with p1, . . . , pk : Ω → [0, 1] as the corresponding probability mass functions. We say

that the distributions are α-similar, where α ≥ 0, if for every ω ∈ Ω,

(1 − α) · max
i=1,...,k

pi(ω) ≤ min
i=1,...,k

pi(ω).

85

For a distribution D on Σn and Q ⊆ [n], we write D|Q to denote the distribution

created by projecting every element of Σn to its coordinates in Q. Let this time

D1, . . . , Dk be probability distributions on Σn. We say that they are uniformly

α-similar if for every subset Q of [n], the distributions D1|Q, . . . , Dk|Q are α|Q|-
similar. Intuitively, think of Q as a sequence of queries that the algorithm makes.

If the distributions are uniformly α-similar for a very small α, and |Q| ≪ 1/α, then

from the limited point of view of the algorithm (even an adaptive one), the difference

between the distributions is very small.

In order to use the notion of uniform similarity for our construction, we prove the

following three key lemmas.

Uniform Similarity Implies a Lower Bound on the Number of Queries

(Lemma 3.3.4). This lemma formalizes the ramifications of uniform α-similarity

for a pair of distributions. It shows that if an algorithm (even an adaptive one)

distinguishes the two distributions with probability at least 2/3, then it has to make

at least 1/(6α) queries. The lemma implies that it suffices to bound the uniform

similarity in order to prove a lower bound on the number of queries.

The proof is based on the fact that for every setting of the algorithm’s random bits,

the algorithm can be described as a decision tree of depth q, if it always makes at most

q queries. Then, for every leaf, the probability of reaching it does not differ by more

than a factor in [1 − αq, 1] between the two distributions. This is enough to bound

the probability the algorithm outputs the correct answer for both the distributions.

Random Cyclic Shifts of Random Strings Imply Uniform Similarity (Lemma 3.3.7).

This lemma constructs block-distributions that are uniformly similar using cyclic

shifts of random base strings. It shows that if one takes n random base strings in

Σn and creates n distributions by shifting each of the strings by a random number of

indices in [1, s], then with probability at least 2/3 (over the choice of the base strings)

the created distributions are uniformly O(1/ log|Σ|
s

log n
)-similar.

It is easy to prove this lemma for any set Q of size 1. In this case, every shift

gives an independent random bit, and the bound directly follows from the Chernoff

86

bound. A slight obstacle is posed by the fact that for |Q| ≥ 2, sequences of |Q|
symbols produced by different shifts are not necessarily independent, since they can

share some of the symbols. To address this issue, we show that there is a partition of

shifts into at most |Q|2 large sets such that no two shifts of Q in the same set overlap.

Then we can apply the Chernoff bound independently to each of the sets to prove the

bound.

In particular, using this and the previous lemmas, one can show the result claimed

earlier that shifts of two random strings in {0, 1}n by an offset in [1, cn] produce

distributions that require Ω(log n) queries to be distinguished. It follows from the

lemma that the distributions are likely to be uniformly O(1/ logn)-similar.

Substitution Product Amplifies Uniform Similarity (Lemma 3.3.8). Perhaps

the most surprising property of uniform similarity is that it nicely composes with the

substitution product. Let D1, . . . , Dk be uniformly α-similar distributions on Σn.

Let E = (Ea)a∈Σ, where Ea, a ∈ Σ, are uniformly β-similar distributions on (Σ′)n′

.

The lemma states that D1 ⊛ E , . . . , Dk ⊛ E are uniformly αβ-similar.

The main idea behind the proof of the lemma is the following. Querying q locations

in a string that comes from Di ⊛ E , we can see a difference between distributions in

at most βq blocks in expectation. Seeing the difference is necessary to discover which

Ej each of the blocks comes from. Then only these blocks can reveal the identity of

Di ⊛ E , and the difference in the distribution if q′ blocks are revealed is bounded by

αq′.

The lemma can be used to prove the earlier claim that the two-level construction

produces distributions that require Ω(log2 n) queries to be told apart.

Preserving Edit Distance

It now remains to describe our tools for analyzing the edit distance between strings

generated by our distributions. All of these tools are collected in Section 3.3.3. In

most cases we focus in our analysis on ed, which is the version of edit distance that

only allows for insertions and deletions. It clearly holds that ed(x, y) ≤ ed(x, y) ≤
2 · ed(x, y), and this connection is tight enough for our purposes. An additional

87

advantage of ed is that for any strings x and y, 2 LCS(x, y) + ed(x, y) = |x| + |y|.
We start by reproducing a well known bound on the longest common substring of

randomly selected strings (Lemma 3.3.9). It gives a lower bound on LCS(x, y) for two

randomly chosen strings. The lower bound then implies that the distance between

two strings chosen at random is large, especially for a large alphabet.

Theorem 3.3.10 shows how the edit distance between two strings in Σn changes

when we substitute every symbol with a longer string using a function B : Σ → (Σ′)n′

.

The relative edit distance (that is, edit distance divided by the length of the strings)

shrinks by an additive term that polynomially depends on the maximum relative

length of the longest common string between B(a) and B(b) for different a and b. It

is worth to highlight the following two issues:

• We do not need a special version of this theorem for distributions. It suffices to

first bound edit distance for the recursive construction when instead of strings

shifted at random, we use strings themselves. Then it suffices to bound by how

much the strings can change as a result of shifts (at all levels of the recursion)

to obtain desired bounds.

• The relative distance shrinks relatively fast as a result of substitutions. This

implies that we have to use an alphabet of size polynomial in the number of

recursion levels. The alphabet never has to be larger than polylogarithmic,

because the number of recursion levels is always o(log n).

Finally, Theorem 3.3.12 and Lemma 3.3.14 effectively reduce the alphabet size,

because they show that a lower bound for the binary alphabet follows immediately

from the one for a large alphabet, with only a constant factor loss in the edit distance.

It turns out that it suffices to map every element of the large alphabet Σ to a random

string of length Θ(log |Σ|) over the binary alphabet.

The main idea behind proofs of the above is that strings constructed using a substi-

tution product are composed of rather rigid blocks, in the sense that every alignment

between two such strings, say x ⊛ E and y ⊛ E , must respect (to a large extent) the

block structure, in which case one can extract from it an alignment between the two

88

initial strings x and y.

3.2 Fast Algorithms via Asymmetric Query Com-

plexity

In this section we describe our near-linear time algorithm for estimating the edit

distance between two strings. As we mentioned in the introduction, the algorithm is

obtained from an efficient query algorithm.

The main result of this section is the following query complexity upper bound

theorem, which is a full version of Theorem 1.2.2. It implies our near-linear time

algorithm for polylogarithmic approximation (Theorem 1.2.1).

Theorem 3.2.1. Let n ≥ 2, β = β(n) ≥ 2, and integer b = b(n) ≥ 2 be such that

(logb n) ∈ N.

There is an algorithm solving DTEPβ with approximation α = O(b logb n) and

β · (log n)O(logb n) queries into x. The algorithm runs in n · (log n)O(logb n) time.

For every constant β = O(1) and integer t ≥ 2, there is an algorithm for solving

DTEPβ with O(n1/t) approximation and O(logn)t−1 queries. The algorithm runs in

Õ(n) time.

In particular, note that we obtain Theorem 1.2.1 by setting b = (log n)c/ε for a

suitably high constant c > 1.

The proof is partitioned in three stages. (The first stage corresponds to the first

“major component” mentioned in Introduction, and Section 3.1.1, and the next two

stages correspond to the second “major component”.) In the first stage, we describe

a characterization of edit distance by a different quantity, namely E-distance, which

approximates edit distance well. The characterization is parametrized by an integer

parameter b ≥ 2. A small b leads to a small approximation factor (in fact, as small as

O(log n) for b = 2), whereas a large b leads to a faster algorithm. In the second stage,

we show how one can design a sampling algorithm that approximates E-distance for

some setting of the parameter b, up to a constant factor, by making a small number of

89

queries into x. In the third stage, we show how to use the query algorithm to obtain

a near-linear time algorithm for edit distance approximation.

The three stages are described in the following three sections, and all together

give the proof of Theorem 3.2.1.

3.2.1 Edit Distance Characterization: the E-distance

Our characterization may be viewed as computation on a tree, where the nodes cor-

respond to substrings x[s : s + l], for some start position s ∈ [n] and length1 l ∈ [n].

The root is the entire string x[1 : n + 1]. For a node x[s : s + l], the children are

blocks x[s + j · l/b : s + (j + 1) · l/b], where j ∈ {0, 1, . . . b − 1}, and b is the arity of

the tree. The E-distance for the node x[s : s + l] is defined recursively as a function

of the distances of its children. Note that the characterization is asymmetric in the

two strings.

Before giving the definition we establish further notation. We fix the arity b ≥ 2

of the tree, and let h
def
= logb n ∈ N be the height of the tree. Fix some tree level i

for 0 ≤ i ≤ h. Consider some substring x[s : s + li] at level i, where li
def
= n/bi. Let

Bi
def
= {1, li + 1, 2li + 1, . . .} be the set of starting positions of blocks at level i.

Definition 3.2.2 (E-distance). Consider two strings x, y of length n ≥ 2. Fix i ∈
{0, 1, . . . h}, s ∈ Bi, and a position u ∈ Z.

If i = h, then the E-distance of x[s : s + li] to the position u is 1 if u 6∈ [n] or

x[s] 6= y[u], and 0 otherwise.

For i ∈ {0, 1, . . . h − 1}, we recursively define the E-distance Ex,y(i, s, u) of x[s :

s + li] to the position u as follows. Partition x[s : s + li] into b blocks of length

li+1 = li/b, starting at positions s + jli+1, where j ∈ {0, 1, . . . b − 1}. Then

Ex,y(i, s, u)
def
=

b−1∑

j=0

min
rj∈Z

Ex,y(i + 1, s + jli+1, u + jli+1 + rj) + |rj | .

1We remind that the notation x[s : s + l] corresponds to characters x[s], x[s + 1], . . . x[s + l − 1].
More generally, [s : s + l] stands for the interval {s, s + 1, . . . , s + l − 1}. This convention simplifies
subsequent formulas.

90

The E-distance from x to y is just the E-distance from x[1 : n + 1] to position 1,

i.e., Ex,y(0, 1, 1).

We illustate the E-distance for b = 4 in Figure 3-1. Since x and y will be clear

from the context, we will just use the notation E(i, s, u) without indices x and y.

The main property of the E-distance is that it gives a good approximation to the

edit distance between x and y, as quantified in the following theorem, which we prove

below.

Theorem 3.2.3 (Characterization). For evry b ≥ 2 and two strings x, y ∈ Σn, the E-

distance between x and y is a 6 · b
log b

· log n approximation to the edit distance between

x and y.

We also give an alternative, equivalent definition of the E-distance between x and

y. It is motivated by considering the matching (alignment) induced by the E-distance

when computing E(0, 1, 1). In particular, when computing E(0, 1, 1) recursively, we

can consider all the “matching positions” (positions u + jli+1 + rj for rj ’s achieving

the minimum). We denote by Z a vector of integers zi,s, indexed by i ∈ {0, 1, . . . h}
and s ∈ Bi, where z0,1 = 1 by convention. The coordinate zi,s should be understood

as the position to which we match the substring x[s : s + li] in the calculation of

E(0, 1, 1). Then we define the cost of Z as

cost(Z)
def
=

h−1∑

i=0

∑

s∈Bi

b−1∑

j=0

|zi,s + jli+1 − zi+1,s+jli+1
|.

The cost of Z can be seen as the sum of the displacements |rj| that appear in the

calculation of the E-distance from Definition 3.2.2. The following claim asserts an

alternative definition of the E-distance.

Claim 3.2.4 (Alternative definition of E-distance). The E-distance between x and y

is the minimum of

cost(Z) +
∑

s∈[n]

H(x[s], y[zh,s]) (3.2)

91

over all choices of the vector Z = (zi,s)i∈{0,1,...h},s∈Bi
with z0,1 = 1, where H(·, ·) is the

Hamming distance, namely H(x[s], y[zh,s]) is 1 if zh,s 6∈ [n] or x[s] 6= y[zh,s], and 0

otherwise.

Proof. The quantity (3.2) simply unravels the recursive formula from Definition 3.2.2.

The equivalence between them follows from the fact that |zi,s + jli+1 − zi+1,s+jli+1
|

directly corresponds to quantities |rj| in the Ex,y(i, s, zi,s) definition, which appear in

the computation on the tree, and the
∑

s∈[n] H(x[s], y[zh,s]) term corresponds to the

summation of Ex,y(h, s, zh,s) over all s ∈ [n].

We are now ready to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. Fix n, b ≥ 2 and let h
def
= logb n. We break the proof into

two parts, an upper bound and a lower bound on the E-distance (in terms of edit

distance). They are captured by the following two lemmas, which we shall prove

shortly.

Lemma 3.2.5. The E-distance between x and y is at most 3hb · ed(x, y).

Lemma 3.2.6. The edit distance ed(x, y) is at most twice the E-distance between x

and y.

Combining these two lemmas gives 1
2
ed(x, y) ≤ Ex,y(0, 1, 1) ≤ 5hb · ed(x, y), which

proves Theorem 3.2.3.

We proceed to prove these two lemmas.

Proof of Lemma 3.2.5. Let A : [n] → [n]∪{⊥} be an optimal alignment from x to y.

Namely A is such that:

• If A(s) 6= ⊥, then x[s] = y[A(s)].

• If A(s1) 6= ⊥, A(s2) 6= ⊥, and s1 < s2, then A(s1) < A(s2).

• L
def
= |A−1(⊥)| is minimized.

92

Note that n − L is the length of the Longest Common Subsequence (LCS) of x and

y. It clearly holds that 1
2
ed(x, y) ≤ L ≤ ed(x, y).

To show an upper bound on the E-distance, we use the alternative characterization

from Claim 3.2.4. Specifically, we show how to construct a vector Z proving that the

E-distance is small.

At each level i ∈ {1, 2, . . . h}, for each block x[s : s + li] where s ∈ Bi, we set

zi,s
def
= A(j), where j is the smallest integer j ∈ [s : s + li] such that A(j) 6= ⊥ (i.e.,

to match a block we use the first in it that is aligned under the alignment A). If no

such j exists, then zi,s
def
= zi−1,s′ + (s− s′), where s′

def
= li−1 · ⌊(s − 1)/li−1⌋ + 1, that is,

s′ is such that x[s′ : s′ + li−1] is the parent of x[s : s + li] in the tree.

Note that it follows from the definition of zh,s and L that
∑

s∈[n] H(x[s], y[zh,s]) =

L. It remains to bound the other term cost(Z) in the alternative definition of E-

distance.

To accomplish this, for every i ∈ {0, 1, 2, . . . , h − 1} and s ∈ Bi, we define di,s as

the maximum of |zi,s +jli+1−zi+1,s+jli+1
| over j ∈ {0, . . . , b−1}. Although we cannot

bound each di,s separately, we bound the sum of di,s for each level i.

Claim 3.2.7. For each i ∈ {0, 1, . . . h}, we have that
∑

s∈Bi
di,s ≤ 2L.

Proof. We shall prove that each di,s is bounded by Xi,s + Yi,s, where Xi,s and Yi,s

are essentially the number of unmatched positions in x and in y, respectively, that

contribute to di,s. We then argue that both
∑

s∈Bi
Xi,s and

∑

s∈Bi
Yi,s are bounded

by L, thus completing the proof of the claim.

Formally, let Xi,s be the number of positions j ∈ [s : s + li] such that A(j) = ⊥.

If Xi,s = li, then clearly di,s = 0. It is also easily verified that if Xi,s = li − 1, then

di,s ≤ li − 1. In both cases, di,s ≤ Xi,s, and we also set Yi,s
def
= 0.

If Xi,s ≤ li − 2, let j′ be the largest integer j′ ∈ [s : s + li] for which A(j′) 6= ⊥
(note that j′ exists and it is different from the smallest such possible integer, which

was called j when we defined zi,s, because Xi,s ≤ li − 2). In this case, let Yi,s be

A(j′) − zi,s + 1 − (li − Xi,s), which is the number of positions in y between zi,s and

A(j′) (inclusive) that are not aligned under A. Let ∆i,s,j
def
= zi,s +jli+1−zi+1,s+jli+1

for

93

j ∈ {0, . . . , b− 1}. By definition, it holds di,s = maxj |∆i,s,j|. Now fix j. If ∆i,s,j 6= 0,

then there is an index k ∈ [s + jli+1 : s + (j + 1)li+1] such that A(k) = zi+1,s+jli+1
.

If ∆i,s,j > 0 (which corresponds to a shift to the left), then at least ∆i,s,j indices

j′ ∈ [s : k] are such that A(j′) = ⊥, and therefore, |∆i,s,j| ≤ Xi,s. If ∆i,s,j < 0 (which

corresponds to a shift to the right), then at least |∆i,s,j| positions in y between zi,s

and zi+1,s+jli+1
are not aligned in A. Thus, |∆i,s,j| ≤ Yi,s.

In conclusion, for every s ∈ Bi, di,s ≤ Xi,s + Yi,s. Observe that
∑

s∈Bi
Xi,s = L

and
∑

s∈Bi
Yi,s ≤ L (because they correspond to distinct positions in x and in y that

are not aligned by A). Hence, we obtain that
∑

s∈Bi
di,s ≤

∑

s∈Bi
Xi,s +Yi,s ≤ 2L.

We now claim that cost(Z) ≤ 2hbL. Indeed, consider a block x[s : s+ li] for some

i ∈ {0, 1, . . . h− 1} and s ∈ Bi, and one of its children x[s + jli+1 : s + (j + 1)li+1] for

j ∈ {0, 1, . . . b−1}. The contribution of this child to the sum cost(Z) is |zi,s + jli+1 −
zi+1,s+jli+1

| ≤ di,s by definition. Hence, using Claim 3.2.7, we conclude that

cost(Z) ≤
h−1∑

i=0

∑

s∈Bi

b−1∑

j=0

di,s ≤
h−1∑

i=0

∑

s∈Bi

di,s · b ≤ h · 2L · b.

Finally, by Claim 3.2.4, we have that the E-distance between x and y is at most

2hbL + L ≤ 2hb · ed(x, y) + ed(x, y) ≤ 3hb · ed(x, y).

Proof of Lemma 3.2.6. We again use the alternative characterization given by Claim 3.2.4.

Let Z be the vector obtaining the minimum of Equation (3.2). Define, for i ∈
{0, 1, . . . h} and s ∈ Bi,

δi,s
def
=

∑

s′∈[s:s+li]

H(x[s′], y[zh,s′])+
∑

i′:i≤i′<h

∑

s′∈Bi′∩[s:s+li]

b−1∑

j=0

∣
∣zi′,s′ + jli′+1 − zi′+1,s′+jli′+1

∣
∣ .

Note that δ0,1 equals the E-distance by Claim 3.2.4. Also, we have the following

inductive equality for i ∈ {0, 1, . . . h − 1} and s ∈ Bi:

δi,s =

b−1∑

j=0

(
δi+1,s+jli+1

+ |zi,s + jli+1 − zi+1,s+jli+1
|
)
. (3.3)

94

We now prove inductively for i ∈ {0, 1, 2 . . . h} that for each s ∈ Bi, the length of

the LCS of x[s : s + li] and y[zi,s : zi,s + li] is at least li − δi,s.

For the base case, when i = h, the inductive hypothesis is trivially true. If

x[s] = y[zi,s], then the LCS is of length 1 and δh,s = 0. If x[s] 6= y[zi,s], then the LCS

is of length 0 and δh,s = 1.

Now we prove the inductive hypothesis for i ∈ {0, 1, . . . h − 1}, assuming it holds

for i + 1. Fix a string x[s : s + li], and let sj = s + jli+1 for j ∈ {0, 1, . . . b − 1}. By

the inductive hypothesis, for each j ∈ {0, 1, . . . b− 1}, the length of the LCS between

x[sj : sj + li+1] and y[zi+1,sj
: zi+1,sj

+ li+1] is at least li+1 − δi+1,sj
. In this case, the

substring in y starting at zi,s + jli+1, namely y[zi,s + jli+1 : zi,s + (j + 1)li+1], has an

LCS with x[sj : sj + li+1] of length at least li+1 − δi+1,sj
− |zi,s + jli+1 − zi+1,sj

|. Thus,

by Equation (3.3), the LCS of x[s : s + li] and y[zi,s : zi,s + li] is of length at least

b−1∑

j=0

(
li+1 − δi+1,sj

− |zi,s + jli+1 − zi+1,sj
|
)

= li − δi,s,

which finishes the proof of the inductive step.

For i = 0, this implies that ed(x, y) ≤ 2δ0,1 = 2Ex,y(0, 1, 1).

3.2.2 Sampling Algorithm

We now describe the sampling and estimation algorithms that are used to obtain our

query complexity upper bounds. In particular, our algorithm approximates the E-

distance defined in the previous section. The guarantee of our algorithms is that the

output Ê satisfies (1 − o(1))E(0, 1, 1)− n/β ≤ Ê ≤ (1 + o(1))E(0, 1, 1) + n/β. This is

clearly sufficient to distinguish between E(0, 1, 1) ≤ n/β and E(0, 1, 1) ≥ 4n/β. After

presenting the algorithm, we prove its correctness and prove that it only samples

β · nO(ε) positions of x in order to make the decision.

95

Algorithm Description

We now present our sampling algorithm, as well as the estimation algorithm, which

given y and the sample of x, decides DTEPβ.

Sampling algorithm. To subsample x, we start by partitioning x recursively into

blocks as defined in Definition 3.2.2. In particular, we fix a tree of arity b, indexed

by pairs (i, s) for i ∈ {0, 1, . . . h}, and s ∈ Bi. At each level i = 0, . . . h, we have a

subsampled set Ci ⊆ Bi of vertices at that level of the tree. The set Ci is obtained

from the previous one by extending Ci−1 (considering all the children), and a careful

subsampling procedure. In fact, for each element in Ci, we also assign a number

w ≥ 1, representing a “precision” and describing how well we want to estimate the E
distance at that node, and hence governing the subsampling of the subtree rooted at

the node.

Our sampling algorithm works as follows. We use a (continuous) distribution W
on [1, n3], which we define later, in Lemma 3.2.12.

Algorithm 9: Sampling Algorithm

Take C0 to be the root vertex (indexed (i, s) = (0, 1)), with precision w(0,1) = β.1

for each level i = 1, . . . , h, we construct Ci as follows do2

Start with Ci being empty.3

for each node v = (i − 1, s) ∈ Ci−1 do4

Let wv be its precision, and set pv = wv

b
· O(log3 n).5

If pv ≥ 1, then set Jv = {(i, s + jli) | 0 ≤ j < b} to be the set of all the b6

children of v, and add them to Ci, each with precision pv.
Otherwise, when pv < 1, sample each of the b children of v with7

probability pv, to form a set Jv ⊆ {i} × ([s : s + li−1] ∩ Bi). For each
v′ ∈ Jv, draw wv′ i.i.d. from W, and add node v′ to Ci with precision
wv′ .

Query the characters x[s] for all (h, s) ∈ Ch — this is the output of the8

algorithm.

Estimation Algorithm. We compute a value τ(v, z), for each node v ∈ ∪iCi and

position z ∈ [n], such that τ(v, z) is a good approximation (1 + o(1) factor) to the

E-distance of the node v to position z.

96

We also use a “reconstruction algorithm” R, defined in Lemma 3.2.12. It takes as

input at most b quantities, their precision, and outputs a positive number.

Algorithm 10: Estimation Algorithm

For each sampled leaf v = (h, s) ∈ Ch and z ∈ [n] we set τ(v, z) = H(x[s], y[z]).1

for each level i = h − 1, j − 2, . . . , 0, position z ∈ [n], and node v ∈ Ci with2

precision wv do
We apply the following procedure P (v, z) to obtain τ(v, z).3

For each v′ ∈ Jv, where v′ = (i + 1, s + jli+1) for some 0 ≤ j < b, let4

δv′
def
= min

k:|k|≤n
τ(v′, z + jli+1 + k) + |k|.

If pv ≥ 1, then let τ(v, z) =
∑

v′∈Jv
δv′ .5

If pv < 1, set τ(v, z) to be the output of the algorithm R on the vector6

(
δv′

li+1
)v′∈Jv with precisions (wv′)v′∈Jv , multiplied by li+1/pv.

The output of the algorithm is τ(r, 1) where r = (0, 1) is the root of the tree.7

Analysis Preliminaries: Approximators and a Concentration Bound

We use the following approximation notion that captures both an additive and a

multiplicative error. For convenience, we work with factors eε instead of usual 1 + ε.

Definition 3.2.8. Fix ρ > 0 and some f ∈ [1, 2]. For a quantity τ ≥ 0, we call its

(ρ, f)–approximator any quantity τ̂ such that τ/f − ρ ≤ τ̂ ≤ fτ + ρ.

It is immediate to note the following additive property: if τ̂1, τ̂2 are (ρ, f)-approximators

to τ1, τ2 respectively, then τ̂1 + τ̂2 is a (2ρ, f)-approximator for τ1 + τ2. Also, there’s

a composion property: if τ̂ ′ is an (ρ′, f ′)-approximator to τ̂ , which itself is a (ρ, f)-

approximator to τ , then τ̂ ′ is a (ρ′ + f ′ρ, ff ′)-aproximator to τ .

The definition is motivated by the following concentration statement on the sum

of random variables. The statement is an immediate application of the standard

Chernoff/Hoeffding bounds.

Lemma 3.2.9 (Sum of random variables). Fix n ∈ N, ρ > 0, and error probability

δ. Let Zi ∈ [0, ρ] be independent random variables, and let ζ > 0 be a sufficiently

97

large absolute constant. Then for every ε ∈ (0, 1), the summation
∑

i∈[n] Zi is a

(ζρ log 1/δ
ε2 , eε)-approximator to E

[
∑

i∈[n] Zi

]

, with probability ≥ 1 − δ.

Proof of Lemma 3.2.9. By rescaling, it is sufficient to prove the claim for ρ = 1. Let

µ = E

[
∑

i∈[n] Zi

]

. If µ > ζ
4
· log 1/δ

ε2 , then, a standard application of the Chernoff

implies that
∑

i Zi is a eε approximation to µ, with ≥ 1 − δ probability, for some

sufficiently high ζ > 0.

Now assume that µ ≤ ζ
4
· log 1/δ

ε2 . We use the following variant of the Hoeffding

inequality, which can be derived from [42].

Lemma 3.2.10 (Hoeffding bound). Let Zi be n independent random variables such

that Zi ∈ [0, 1], and E

[
∑

i∈[n] Zi

]

= µ. Then, for any t > 0, we have that Pr [
∑

i Zi ≥ t] ≤
e−(t−2µ).

We apply the above lemma for t = ζ · log 1/δ
ε2 . We obtain that Pr[

∑

i Zi ≥ t] ≤
e−t/2 = e−Ω(log 1/δ) < δ, which completes the proof that

∑

i Zi is a (ζ log 1/δ
ε2 , eε)-

approximator to µ (when ρ = 1).

Main Analysis Tools: Uniform and Non-uniform Sampling Lemmas

We present our two main subsampling lemmas that are applied, recursively, at each

node of the tree. The first lemma, on Uniform Sampling, is a simple Chernoff bound

in a suitable regime.

The second lemma, called Non-uniform Sampling Lemma, is the heart of our

sampling, and is inspired by a sketching/streaming technique introduced in [47] for

optimal estimation of Fk moments in a stream. Although a relative of their method,

our lemma is different both in intended context and actual technique.We shall use

the constant ζ > 0 coming from Lemma 3.2.9.

Lemma 3.2.11 (Uniform Sampling). Fix b ∈ N, ε > 0, and error probability δ > 0.

Consider some aj, j ∈ [b], such that aj ∈ [0, 1/b]. For arbitrary w ∈ [1,∞), construct

the set J ⊆ [b] by subsampling each j ∈ [b] with probability pw = min{1, w
b
· ζ log 1/δ

ε2 }.
Then, with probability at least 1− δ, the value 1

pw

∑

j∈J aj is a (1/w, eε)-approximator

to
∑

j∈[b] aj, and |J | ≤ O(w · log 1/δ
ε2).

98

Proof. If pw = 1, then J = [b] and there is nothing to prove; so assume that pw =

w
b
· ζ log 1/δ

ε2 < 1 for the rest.

The bound on |J | follows from a standard application of the Chernoff bound:

E [|J |] = pwb ≤ O(w · log 1/δ
ε2), hence the probability that |J | exceeds twice the quantity

is at most e−Ω(log 1/δ) ≤ δ/2.

We are going to apply Lemma 3.2.9 to the variables Zj = aj/pw · χ[j ∈ J], where

the indicator variable χ[j ∈ J] is 1 iff j ∈ J . Note that 0 ≤ Zj ≤ ε2

w·ζ log 1/δ
. We

thus obtain that
∑

j∈[b] Zj is a (ζε−2 log 1/δ
w·ζε−2 log 1/δ

, eε)-approximator, and hence (1/w, eε)-

approximator, to E

[
∑

j Zj

]

=
∑

j∈[b] pw · aj

pw
=
∑

j∈[b] aj .

We now present and prove the Non-uniform Sampling Lemma.

Lemma 3.2.12 (Non-uniform Sampling). Fix integers n ≤ N , approximation ε > 0,

factor 1 < f < 1.1, error probability δ > 0, and an “additive error bound” ρ >

6n/ε/N3. There exists a distribution W on the real interval [1, N3] with Ew∈W [w] ≤
O(1

ρ
· log 1/δ

ε3 · log N), as well as a “reconstruction algorithm” R, with the following

property.

Take arbitrary ai ∈ [0, 1], for i ∈ [n], and let σ =
∑

i∈[n] ai. Suppose one draws wi

i.i.d. from W, for each i ∈ [n], and let âi be a (1/wi, f)-approximator of ai. Then,

given âi and wi for all i ∈ [n], the algorithm R generates a (ρ, f · eε)-approximator to

σ, with probability at least 1 − δ.

For concreteness, we mention that W is the maximum of O(1
ρ
· log 1/δ

ε3) copies of

the (truncated) distribution 1/x2 (essentially equivalent to a distribution of x where

the logarithm of x is distributed geometrically).

Proof. We start by describing the distribution W and the algorithm R. Fix k =

2ζ
ρ
· log 1/δ

(ε/2)3
. We first describe a related distribution: let W1 be distribution on x such

that the pdf function is p1(x) = ν/x2 for 1 ≤ x ≤ N3 and p1(x) = 0 otherwise, where

ν = (
∫∞
1

p1(x) dx)−1 = (1 − 1/N3)−1 is a normalization constant. Then W is the

distribution of x where we choose k i.i.d. variables x1, . . . xk from W1 and then set

x = maxi∈[k] xi. Note that the pdf of W is p(x) = νk k
x2 (1 − 1/x)k−1.

99

The algorithm R works as follows. For each i ∈ [n], we define k “indicators”

si,j ∈ {0, 1/k} for j ∈ [k]. Specifically, we generate the set of random variables

wi,j ∈ W1, j ∈ [k], conditioned on the fact that maxj∈[k] wi,j = wi. Then, for each

i ∈ [n], j ∈ [k], we set si,j = 1/k if âi ≥ t/wi for t = 3/ε, and si,j = 0 otherwise.

Finally, we set s =
∑

i∈[n],j∈[k] si,j and the algorithm outputs σ̂ = st/ν (as an estimate

for σ).

We note that the variables wi,j could be thought as being chosen i.i.d. from W1.

For each, the value âi is an (1/wi,j, f)-approximator to ai since âi is a (1/ maxj wi,j, f)-

approximator to ai.

It is now easy to bound Ew∈W [w]. Indeed, we have Ew∈W1 [w] =
∫ N3

1
x · ν/x2 dx ≤

O(log N). Hence Ew∈W [w] ≤∑j∈[k] Ew∈W1 [w] ≤ O(k log N) = O(1
ρ
· log 1/δ

ε3 · log N).

We now need to prove that σ̂ is an approximator to σ, with probability at least 1−
δ. We first compute the expectation of si,j, for each i ∈ [n], j ∈ [k]. This expectation

depends on the approximator values âi, which itself may depend on wi. Hence we

can only give upper and lower bounds on the expectation E [si,j]. Later, we want to

apply a concentration bound on the sum of si,j. Since si,j may be interdependent, we

will apply the concentration bound on the upper/lower bounds of si,j to give bounds

on s =
∑

si,j .

Formally, we define random variables si,j , si,j ∈ {0, 1/k}. We set si,j = 1/k iff

wi,j ≥ (t−1)/(fai), and 0 otherwise. Similarly, we set si,j = 1/k iff wi,j < f(t+1)/ai,

and 0 otherwise. We now claim that

si,j ≤ si,j ≤ si,j. (3.4)

Indeed, if si,j = 1/k, then âi ≥ t/wi,j, and hence, using the fact that âi is a (1/wi,j, f)-

approximator to ai, we have wi,j ≥ (t − 1)/(fai), or si,j = 1/k. Similarly, if si,j = 0,

then âi < t/wi,j, and hence wi,j < f(t + 1)/ai, or si,j = 0. Note that each collection

{si,j} and {si,j} is a collection of independent random variables.

100

We now bound E [si,j] and E
[
si,j

]
. For the first quantity, we have:

E [si,j] =

∫ N3

(t−1)/(fai)

1
k
p1(x) dx ≤ fai

k(t−1)

∫ ∞

1

ν/x2 dx = ν/k · fai

t−1
.

For the second quantity, we have:

E
[
si,j

]
=

∫ N3

f(t+1)/ai

p1(x) dx = ν/k · (ai/f
t+1

− 1/N3).

Finally, using Eqn. (3.4) and the fact that E [s] =
∑

i,j E [si,j], we can bound

E [σ̂] = E [st/ν] as follows:

t
f(t+1)

∑

i∈[n]

ai − nt/N3 ≤ t
ν

∑

i,j

E
[
si,j

]
≤ E [ts/ν] ≤ t

ν

∑

i,j

E [si,j] ≤ f
∑

i∈[n]

ai · t
t−1

.

Since each si,j , si,j ∈ [0, 1/k] for k = O(t
ρ
· log 1/δ

ε2), we can apply Lemma 3.2.9 to obtain

a high concentration bound. For the upper bound, we obtain, with probability at least

1 − δ/2:

ts/ν ≤ eε/2 · E

[

t/ν ·
∑

i,j

si,j

]

+ ρ ≤ eε/2 · f
∑

ai · t
t−1

+ ρ ≤ eε · f · σ + ρ.

Similarly, for the lower bound, we obtain, with probability at least 1 − δ/2:

ts/ν ≥ e−ε/2 · (
∑

ai · t
f(t+1)

− nt/N3) − ρ/2 ≥ e−ε/f · σ − ρ,

using that ρ/2 ≥ nt/N3. This completes the proof that σ̂ is a (ρ, f · eε)-approximator

to σ, with probability at least 1 − δ.

Correctness and Sample Bound for the Main Algorithm

Now, we prove the correctness of the algorithms 9, 10 and bound its query complexity.

We note that we use Lemmas 3.2.11 and 3.2.12 with δ = 1/n3, ε = 1/ log n, and N = n

(which in particular, completely determine the distribution W and algorithm R used

101

in the algorithms 9 and 10).

Lemma 3.2.13 (Correctness). For b = ω(1), the output of the Algorithm 10 (Esti-

mation), is a (n/β, 1 + o(1))-approximator to the E-distance from x to y, w.h.p.

Proof. From a high level view, we prove inductively from i = 0 to i = h that expand-

ing/subsampling the current Ci gives a good approximator, namely a eO((h−i)/ log n)

factor approximation, with probability at least 1 − i/nΩ(1). Specifically, at each step

of the induction, we expand and subsample each node from the current Ci to form

the set Ci+1 and use Lemmas 3.2.11 and 3.2.12 to show that we don’t loose on the

approximation factor by more than eO(1/ log n).

In order to state our main inductive hypothesis, we define a hybrid distance,

where the E-distance of nodes at high levels (big i) is computed standardly (via

Definition 3.2.2), and the E-distance of the low-level nodes is estimated via sets

Ci. Specifically, for fixed f ∈ [1, 1.1], and i ∈ {0, 1, . . . h}, we define the follow-

ing (C0, C1 . . . Ci, f)-E-distance. For each vertex v = (i, s) such that v ∈ Ci has

precision wv, and z ∈ [n], let τi(v, z) to be some (li/wv, f)–approximator to the dis-

tance E(i, s, z). Then, iteratively for i′ = i− 1, i− 2, . . . , 0, for all v ∈ Ci′ and z ∈ [d],

we compute τi(v, z) by applying the procedure P (v, z) (defined in the Algorithm 10),

using τi instead of τ .

We prove the following inductive hypothesis, for some suitable constants t = 2

and r = Θ(1) (sufficiently high r suffices).

IHi: For any f ∈ [1, 1.1], the (C0, C1, . . . Ci, f)–E–distance is a (n/β, f · ei·t/ log n)-

approximator to the E–distance from x to y, with probability at least 1 − i ·
e−r log n.

Base case is i = 0, namely that (C0, f)-E-distance is a (n/β, f)-approximator to

the E-distance between x and y. This case follows immediately from the definition of

the (C0, f)-E-distance and the initialization step of the Sampling Algorithm.

Now we prove the inductive hypothesis IHi+1, assuming IHi holds for some given

i ∈ {0, 1, . . . h − 1}. We remind that we defined the quantity τi+1(v, z), for all v ∈
Ci+1 ⊆ Ci, where Ci = {(i + 1, s + jli+1) | (i, s) ∈ Ci, j ∈ {0, . . . b − 1}} and z ∈ [n],

102

to be a (li+1/wv, f)–approximator of the corresponding E-distance, namely E(v, z).

The plan is to prove that, for all v ∈ Ci with precision wv, the quantity τi+1(v, z) is a

(li/wv, f ·e2/ log n)–approximator to E(v, z) with good probability — which we do in the

claim below. Then, by definition of τi and IHi, this implies that τi+1((0, 1), 1) is equal

to the (C0, . . . Ci, f ·e2/ log n ·ei·t/ log n)–E–distance, and hence is a (n/β, f ·e(2+it)/ log n)–

approximator to the E–distance from x to y. This will complete the proof of IHi+1.

We now prove the main technical step of the above plan.

Claim 3.2.14. Fix v ∈ Ci with precision w
def
= wv, where v = (i, s), and some z ∈ [n].

For j ∈ {0, . . . b − 1}, let vj be the jth child of v; i.e., vj = (i + 1, s + jli+1). For

vj ∈ Ci+1 with precision wj
def
= wvj

, and z′ ∈ [n], let τi+1(vj, z
′) be a (li+1/wj, f)–

approximator to E(vj, z
′).

Apply procedure P (v, z) using τi+1(vj, z
′) estimates, and let δ be the output. Then

δ is a (li/w, fe2/ log n)–approximator to E(v, z), with probability at least 1 − e−Ω(log n).

Proof. For each vj ∈ Jv, where Jv is as defined in Algorithm 9, we define the following

quantities:

δvj

def
= min

k:|k|≤n
E(vj , z + jli+1 + k) + |k| δ̂vj

def
= min

k:|k|≤n
τi+1(vj, z + jli+1 + k) + |k|.

It is immediate to see that δ̂vj
is a (li+1/wj, f)–approximator to δvj

by the definition

of τi+1.

If pv ≥ 1, then we have that wj = w
b
·O(log3 n) for all vj ∈ Jv. Then, by the additive

property of (li+1/wj, f)–approximators, δ =
∑

vj∈Jv
δ̂vj

is a (li/w, f)–approximator to
∑

vj∈Jv
δvj

= E(v, z).

Now suppose pv < 1. Then, by Lemma 3.2.11, δ′ = 1
pv

∑

vj∈Jv
δvj

is a (li/2w, e1/ log n)–

approximator to
∑b−1

j=0 δvj
= E(v, z), with high probability. Furthermore, by Lemma 3.2.12

for ρ = 1, since wj ∈ W are i.i.d. and
δ̂vj

li+1
are each an (1/wj, f)–approximator to

δvj

li+1
respectively, then R outputs a value δ′′ that is a (1, f · e1/ log n)–approximator to

∑

vj∈Jv

δvj

li+1
= pv

li+1
δ′. In other words, δ = li+1

pv
δ′′ is a (li+1/pv, f · e1/ log n)–approximator

to δ′. Since li+1/pv ≤ li/(3w), combining the two approximator guarantees, we obtain

that δ is a (li/w, f · e2/ log n)–approximator to E(v, z), w.h.p.

103

We now apply a union bound over all v ∈ Ci and z ∈ [n], and use the above

Claim 3.2.14. We now apply IHi to deduce that τi+1((0, 1), 1) is a (n/β, f · eti/ log n ·
e2/ log n)–approximator with probability at least

1 − ie−r log n − e−Ω(log n) ≥ 1 − (i + 1)e−r log n,

for some suitable r = Θ(1). This proves IHi+1.

Finally we note that IHh implies that (C0, . . . Ch, f)–E–distance is a (n/β, f ·
eth/ log n)–approximator to the E–distance between x and y. We conclude the lemma

with the observation that our Estimation Algorithm 10 outputs precisely the (C0, . . . Ch, 1)–

E–distance.

It remains to bound the number of positions that Algorithm 10 queries into x.

Lemma 3.2.15 (Sample size). The Sampling Algorithm queries Qb = β(log n)O(logb n)

positions of x, with probability at least 1 − o(1). When b = n1/t for fixed constant

t ∈ N and β = O(1), we have Qb = (log n)t−1 with probability at least 2/3.

Proof. We prove by induction, from i = 0 to i = h, that E [|Ci|] ≤ β · (log n)ic,

and E
[∑

v∈Ci
wv

]
≤ β · (log n)ic+5 for a suitable c = Θ(1). The base case of i = 0

is immediate by the initialization of the Sampling Algorithm 9. Now we prove the

inductive step for i, assuming the inductive hypothesis for i − 1. By Lemma 3.2.11,

E [|Ci|] ≤ E

[
∑

v∈Ci−1
wv

]

· O(log3 n) ≤ β(log n)ic by the inductive hypothesis. Also,

by Lemma 3.2.12, E
[∑

v∈Ci
wv

]
≤ E [|Ci|] · O(log4 n) + E

[
∑

v∈Ci−1
wv

]

· O(log3 n) ≤
β(log n)ic+5. The bound then follows from an application of the Markov bound.

The second bound follows from a more careful use of the parameters of the two

sampling lemmas, Lemmas 3.2.11 and 3.2.12. In fact, it suffices to apply these lemmas

with ε = eΘ(1/t) and δ = 0.1 for the first level and δ = 1/n3 for subsequent levels.

These lemmas, 3.2.13 and 3.2.15, together with the characterization theorem 3.2.3,

almost complete the proof of Theorem 3.2.1. It remains to bound the run time of the

resulting estimation algorithm, which we do in the next section.

104

3.2.3 Near-Linear Time Algorithm

We now discuss the time complexity of the algorithm, and show that the Algorithm 10

(Estimation) may be implemented in n · (log n)O(h) time. We note that as currently

described in Algorithm 10, our reconstruction technique takes time Õ(hQb · n) time,

where Qb = β(log n)O(logb n) is the sample complexity upper bound from Lemma 3.2.15

(note that, combined with the algorithm of [54], this already gives a n4/3+o(1) time

algorithm). The main issue is the computation of the quantities δv′ , as, naively, it

requires to iterate over all k ∈ [n].

To reduce the time complexity of the Algorithm 10, we define the following quan-

tity, which replaces the quantity δv′ in the description of the algorithm:

δ′v′ = min
k=ei/ log n:i∈[log n·ln(3n/β)]

(

|k| + min
k′:|k′|≤k

τ(v′, z + jli+1 + k′)

)

.

Lemma 3.2.16. If we use δ′v′ instead of δv′ in Algorithm 10, the new algorithm

outputs at most a 1 + o(1) factor higher value than the original algorithm.

Proof. First we note that it is sufficient to consider only k ∈ [−3n/β, 3n/β], since, if

the algorithm uses some k with |k| > 3n/β, then the resulting output is guaranteed

to be > 3n/β. Also, the estimate may only increase if one restricts the set of possible

k’s.

Second, if we consider k’s that are integer powers of e1/ log n, we increase the

estimate by only a factor e1/ log n. Over h = O(logb n) levels, this factor accumulates

to only eh/ log n ≤ 1 + o(1).

Finally, we mention that computing all δ′v′ may be performed in O(log2 n) time

after we perform the following (standard) precomputation on the values τ(v′, z′) for

z′ ∈ [n] and v′ ∈ Ci+1. For each dyadic interval I, compute minz∈I τ(v, z). Then,

for each (not necessarily dyadic) interval I ′ ⊂ [n], computing minz′∈I′ τ(v′, z′) may be

done in O(log n) time. Hence, since we consider only O(log n) values of k, we obtain

O(log2 n) time per computation of δ′v′ .

Total running time becomes O(hQb · n · log2 n) = n · (log n)O(logb n).

105

A more technical issue that we swept under the carpet is that distribution W
defined in Lemma 3.2.12 is a continuous distribution on [1, n3]. However this is not

an issue since a n−Ω(1) discretization suffices to obtain the same result, with only

O(log n) loss in time complexity.

3.3 Query Complexity Lower Bound

We now give a full proof of our lower bound, Theorem 1.2.3. After some preliminaries,

this section contains three rather technical parts: tools for analyzing indistinguisha-

bility, tools for analyzing edit distance behavior, and a finally a part where we put

together all elements of the proof. The precise and most general forms of our lower

bound appear in that final part as Theorem 3.3.15 and Theorem 3.3.16.

3.3.1 Preliminaries

We assume throughout that |Σ| ≥ 2. Let x and y be two strings. Define ed(x, y) to be

the minimum number of character insertions and deletions needed to transform x into

y. Character substitution are not allowed, in contrast to ed(x, y), but a substitution

can be simulated by a deletion followed by an insertion, and thus ed(x, y) ≤ ed(x, y) ≤
2 ed(x, y). Observe that

ed(x, y) = |x| + |y| − 2 LCS(x, y), (3.5)

where LCS(x, y) is the length of the longest common subsequence of x and y.

Alignments. For two strings x, y of length n, an alignment is a function A : [n] →
[n] ∪ {⊥} that is monotonically increasing on A−1([n]) and satisfies x[i] = y[A(i)] for

all i ∈ A−1([n]). Observe that an alignment between x and y corresponds exactly to

a common subsequence to x and y.

Projection. For a string x ∈ Σn and Q ⊆ [n], we write x|Q for the string that is

the projection of x on the coordinates in Q. Clearly, x|Q ∈ Σ|Q|. Similarly, if D is

106

a probability distribution over strings in Σn, we write D|Q for the distribution that

is the projection of D on the coordinates in Q. Clearly, D|Q is a distribution over

strings in Σ|Q|.

Substitution Product. Suppose that we have a “mother” string x ∈ Σn and a

mapping B : Σ → (Σ′)n′

of the original alphabet into strings of length n′ over a new

alphabet Σ′. Define the substitution product of x and B, denoted x ⊛ B, to be the

concatenation of B(x1), · · · , B(xn). Letting Ba = B(a) for each a ∈ Σ (i.e. B defines

a collection of |Σ| strings), we have

x ⊛ B
def
= Bx1Bx2 · · ·Bxn ∈ (Σ′)nn′

.

Similarly, for each a ∈ Σ, let Da be a probability distribution over strings in (Σ′)n′

.

The substitution product of x and D def
= (Da)a∈Σ, denoted x ⊛ D, is defined as the

probability distribution over strings in (Σ′)nn′

produced by replacing every symbol

xi, 1 ≤ i ≤ n, in x by an independent sample Bi from Dxi
.

Finally, let E be a “mother” probability distribution over strings in Σn, and for

each a ∈ Σ, let Da be a probability distribution over strings in (Σ′)n′

. The substi-

tution product of E and D def
= (Da)a∈Σ, denoted E ⊛ D, is defined as the probability

distribution over strings in (Σ′)nn′

produced as follows: first sample a string x ∼ E ,

then independently for each i ∈ [n] sample Bi ∼ Dxi
, and report the concatenation

B1B2 . . . Bn.

Shift. For x ∈ Σn and integer r, let Sr(x) denote a cyclic shift of x (i.e. rotating x)

to the left by r positions. Clearly, Sr(x) ∈ Σn. Similarly, let Ss(x) the distribution

over strings in Σn produced by rotating x by a random offset in [s], i.e. choose r ∈ [s]

uniformly at random and take Sr(x).

For integers i, j, define i+n j to be the unique z ∈ [n] such that z = i+j (mod n).

For a set Q of integers, let Q +n j = {i +n j : i ∈ Q}.

Fact 3.3.1. Let x ∈ Σn and Q ⊂ [n]. For every integer r, we have Sr(x)|Q = x|Q+nr.

107

Thus, for every integer s, the probability distribution Ss(x)|Q is identical to x|Q+nr

for a random r ∈ [s].

3.3.2 Tools for Analyzing Indistinguishability

In this section, we introduce tools for analyzing indistinguishability of distributions

we construct. We introduce a notion of uniform similarity, show what it implies for

query complexity, give quantitative bounds on it for random cyclic shifts of random

strings, and show how it composes under the substitution product.

Similarity of Distributions

We first define an auxiliary notion of similarity. Informally, a set of distributions on

the same set are similar if the probability of every element in their support is the

same up to a small multiplicative factor.

Definition 3.3.2. Let D1, . . . , Dk be probability distributions on a finite set Ω. Let

pi : Ω → [0, 1], 1 ≤ i ≤ k, be the probability mass function for Di. We say that the

distributions are α-similar if for every ω ∈ Ω,

(1 − α) · max
i=1,...,k

pi(ω) ≤ min
i=1,...,k

pi(ω).

We now define uniform similarity for distributions on strings. Uniform similarity

captures how the similarity between distributions on strings changes as a function of

the number of queries.

Definition 3.3.3. Let D1, . . . , Dk be probability distributions on Σn. We say that

they are uniformly α-similar if for every subset Q of [n], the distributions D1|Q, . . . ,

Dk|Q are α|Q|-similar.

Finally, we show that if two distributions on strings are uniformly similar, then

an algorithm distinguishing strings drawn from them has to make many queries.

Lemma 3.3.4. Let D0 and D1 be uniformly µ-similar distributions on Σn. Let A be

a randomized algorithm that makes q (adaptive) queries to symbols of a string selected

108

according to either D0 or D1, and outputs either 0 or 1. Let pj, for j ∈ {0, 1}, be the

probability that A outputs j when the input is selected according to Dj. Then

min{p0, p1} ≤ 1 + µq

2
.

Proof. Once the random bits of A are fixed, A can be seen as a decision tree with

depth q the following properties. Every internal node corresponds to a query to a

specific position in the input string. Every internal node has |Σ| children, and the

|Σ| edges outgoing to the children are labelled with distinct symbols from Σ. Each

leaf is labelled with either 0 or 1; this is the algorithm’s output, i.e. the computation

ends up in a leaf if and only if the sequence of queries on the path from the root to

the leaf gives the sequence described by the edge labels on the path.

Fix for now A’s random bits. Let t be the probability that A outputs 0 when

the input is chosen from D0, and let t′ be defined similarly for D1. We now show an

upper bound on t − t′. t is the probability that the computation ends up in a leaf

v labelled 0 for an input chosen according to D0. Consider a specific leaf v labelled

with 0. The probability of ending up in the leaf equals the probability of obtaining

a specific sequence of symbols for a specific sequence of at most q queries. Let tv be

this probability when the input is selected according to D0. The same probability for

D1 must be at least (1 − qµ)tv, due to the uniform µ-similarity of the distributions.

By summing over all leaves v labelled with 0, we have t′ ≥ (1 − µq)t, and therefore,

t − t′ ≤ qµ · t ≤ qµ.

Note that p0 is the expectation of t over the choice of A’s random bits. Anal-

ogously, 1 − p1 is the expectation of t′. Since t − t′ is always at most µq, we have

p0 − (1 − p1) ≤ µq. This implies that p0 + p1 ≤ 1 + µq, and min{p0, p1} ≤ 1+µq
2

.

Random Shifts

In this section, we give quantitative bounds on uniform similarity between distribu-

tions created by random cyclic shifts of random strings.

Making a query into a cyclic shift of a string is equivalent to querying the original

109

string in a position that is shifted, and thus, it is important to understanding what

happens to a fixed set of q queries that undergoes different shifts. Our first lemma

shows that a sufficiently large set of shifts of q queries can be partitioned into at most

q2 large sets, such that no two shifts in the same set intersect (in the sense that they

query the same position).

Lemma 3.3.5. Let Q be a subset of [n] of size q, and let Qi
def
= Q+n i be its shift by i

modulo n. Every I ⊂ [n] of size t ≥ 16q4 ln q admits a q2-coloring C : I → [q2] with

the following two properties:

• For all i 6= j with Qi ∩ Qj 6= ∅, we have C(i) 6= C(j).

• For all i ∈ [n], we have |C−1(i)| ≥ n/(2q4).

Proof. Let x ∈ [n]. There are exactly q different indices i such that x ∈ Qi. For every

Qi such that x ∈ Qi, x is an image of a different y ∈ Q after a cyclic shift. Therefore,

each Qi can intersect with at most q(q − 1) other sets Qj .

Consider the following probabilistic construction of C. For consecutive i ∈ I, we

set C(i) to be a random color in [q2] among those that were not yet assigned to sets

Qj that intersect Qi. Each color c ∈ [q2] is considered at least t/q2 times: each time

c is selected it makes c not be considered for at most q(q − 1) other i ∈ I. Each time

c is considered, it is selected with probability at least 1/q2. By the Chernoff bound,

the probability that a given color is selected less than t/(2q4) times is less than

exp

(

− t

q4
· 1

22
· 1

2

)

≤ 1

q2
.

By the union bound, the probability of selecting the required coloring is greater than

zero, so it exists.

Fact 3.3.6. Let n and k be integers such that 1 ≤ k ≤ n. Then
∑k

i=1

(
n
i

)
≤ nk.

The following lemma shows that random shifts of random strings are likely to

result in uniformly similar distributions.

110

Lemma 3.3.7. Let n ∈ Z+ be greater than 1. Let k ≤ n be a positive integer. Let xi,

1 ≤ i ≤ k, be uniformly and independently selected strings in Σn, where 2 ≤ |Σ| ≤ n.

With probability 2/3 over the selection of xi’s, the distributions Ss(x1), . . . , Ss(xk)

are uniformly 1
A
-similar, for A

def
= max

{
log|Σ|

6
√

s
400 ln n

, 1
}
.

Proof. Let pi,Q,ω be the probability of selecting a sequence ω ∈ Σ|Q| from the distribu-

tion Ss(xi)|Q, where Q ⊆ [n] and 1 ≤ i ≤ k. We have to prove that with probability

at least 2/3 over the choice of xi’s, it holds that for every Q ⊆ Q and every ω ∈ Σ|Q|,

(1 − |Q|/A) · max
i=1,...,k

pi,Q,ω ≤ min
i=1,...,k

pi,Q,ω.

The above inequality always holds when Q is empty or has at least A elements.

Let Q ⊆ [n] be any choice of queries, where 0 < |Q| < A. By Fact 3.3.6, there are

at most nA such different choices of queries. Let q
def
= |Q|. Note that 8q4 ln q ≤ 8q5 ≤

8A5 ≤ 8|Σ|5A ≤ 8 · s
400 lnn

≤ s. This implies that we can apply Lemma 3.3.5, which

yields the following. We can partition all s shifts of Q over xi that contribute to the

distribution Ss(xi)|Q into q2 sets σj such that the shifts in each of the sets are disjoint,

and each of the sets has size at least s/(2q4). For each of the sets σj , and for each

ω ∈ Σq, the probability that fewer than (1− q
2A

)|σj|/|Σ|q shifts give ω is bounded by

exp

(

−1

2
·
(q

2A

)2

· |σj |
|Σ|q

)

≤ exp

(

− s

16q2A2|Σ|q
)

≤ exp

(

− s

16A4|Σ|A
)

≤ exp

(

− s

16|Σ|5A

)

≤ exp

(

− 1

16
· 6
√

s · (400 lnn)5

)

≤ exp
(

−9.2 6
√

s(ln n)5
)

,

where the first bound follows from the Chernoff bound. Analogously, the probability

that more than (1 + q
2A

)|σj|/|Σ|q shifts give ω is bounded by

111

exp

(

−1

4
·
(q

2A

)2

· |σj |
|Σ|q

)

≤ exp

(

− s

32q2A2|Σ|q
)

≤ exp

(

− s

32A4|Σ|A
)

≤ exp

(

− s

32|Σ|5A

)

≤ exp

(

− 1

32
· 6
√

s · (400 lnn)5

)

≤ exp
(

−4.6 6
√

s(ln n)5
)

,

where the first inequality follows from the version of the Chernoff bound that uses

the fact that q
2A

≤ 1
2
≤ 2e − 1.

We now apply the union bound to all xi, all choices of Q ⊆ [n] with |Q| < A, all

corresponding sets σj , and all settings of ω ∈ Σ|Q| to bound the probability that pi,Q,ω

does not lie between |Σ|−|Q| · (1 − q
2A

) and |Σ|−|Q| · (1 + q
2A

). Assuming that A > 1

(otherwise, the lemma holds trivially), note first that

n · nA · A2 · |Σ|A ≤ n5A

≤ exp (5A ln n)

≤ exp
(
5|Σ|A ln n

)

≤ exp

(

5
6

√

s(ln n)5

400

)

≤ exp
(

2.4 · 6
√

s(ln n)5
)

.

Our bound is

exp
(

2.4 · 6
√

s(lnn)5
)

·
(

exp
(

−9.2 · 6
√

s(lnn)5
)

+ exp
(

−4.6 · 6
√

s(ln n)5
))

≤ exp
(

−6.8 · 6
√

s(ln n)5
)

+ exp
(

−2.2 · 6
√

s(ln n)5
)

≤ 0.01 + 0.2 ≤ 1/3.

Therefore, all pi,Q,ω of interest lie in the desired range with probability at least 2/3.

112

Then, we know that for any Q of size less than A, and any ω ∈ Σ|Q|, we have

(

1 − |Q|
A

)

· max
i=1,...,k

pi,Q,ω ≤ ·
(

1 − |Q|
A

)

·
(

1 +
|Q|
2A

)

· |Σ|−|Q|

=

(

1 − |Q|
2A

− |Q|2
2A2

)

· |Σ|−|Q|

≤
(

1 − |Q|
2A

)

· |Σ|−|Q|

≤ min
i=1,...,k

pi,Q,ω.

This implies that Ss(x1), . . . , Ss(xk) are uniformly 1
A
-similar with probability at least

2/3.

Amplification of Uniform Similarity via Substitution Product

One of the key parts of our proof is the following lemma that shows that the substi-

tution product of uniformly similar distributions amplifies uniform similarity.

Lemma 3.3.8. Let Da for a ∈ Σ, be uniformly α-similar distributions on (Σ′)n′

. Let

D def
= (Da)a∈Σ. Let E1, . . . , Ek be uniformly β-similar probability distributions on Σn,

for some β ∈ [0, 1]. Then the k distributions (E1 ⊛ D), . . . , (Ek ⊛ D) are uniformly

αβ-similar.

Proof. Fix t, t′ ∈ [k], let X be a random sequence selected according to Et ⊛ D, and

let Y be a random sequence selected according to Et′ ⊛ D. Fix a set S ⊆ [n · n′]

of indices, and the corresponding sequence s of |S| symbols from Σ′. To prove the

lemma, it suffices to show that

Pr[X|S = s] ≥ (1 − αβ|S|) · Pr[Y |S = s], (3.6)

since in particular the inequality holds for t that minimizes Pr[X|S = s], and for t′

that maximizes Pr[Y |S = s].

Recall that each (Ej ⊛ D) is generated by first selecting a string x according to

Ej, and then concatenating n blocks, where the i-th block is independently selected

113

from Dxi
. For i ∈ [n] and b ∈ Σ, let pi,b be the probability of drawing from Db

a sequence that when used as the i-th block, matches s on the indices in S (if the

block is not queried, set pi,b = 1). Let qi be the number of indices in S that belong

to the i-th block. Since Db for b ∈ Σ are α-similar, for every i ∈ [n], it holds that

(1 − αqi) · maxb∈Σ pi,b ≤ minb∈Σ pi,b. For every i ∈ [n], define α⋆
i

def
= minb∈Σ pi,b and

β⋆
i

def
= maxb∈Σ pi,b. We thus have

(1 − αqi)β
⋆
i ≤ α⋆

i . (3.7)

The following process outputs 1 with probability Pr[Y |S = s]. Whenever we say

that the process outputs a value, 0 or 1, it also terminates. First, for every block

i ∈ [n], the process independently picks a random real ri in [0, 1]. It also independently

draws a random sequence c ∈ Σn according to Et′ . If ri > β⋆
i for at least one i, the

process outputs 0. Otherwise, let Q = {i ∈ [n] : ri > α⋆
i }. If ri ≤ pi,ci

for all i ∈ Q,

the process outputs 1. Otherwise, it outputs 0. The correspondence between the

probability of outputting 1 and Pr[Y |S = s] directly follows from the fact that each

of the random variables ri simulates selecting a sequence that matches s on indices

in S with the right success probability, i.e., pi,ci
, and the fact that block substitutions

are independent. The important difference, which we exploit later, is that not all

symbols of c have always impact on whether the above process outputs 0 or 1.

For every Q ⊆ [n], let p′Q be the probability that the above process selected Q.

Furthermore, let p′′Q,c be the conditional probability of outputting 1, given that the

process selected a given Q ⊆ [n], and a given c ∈ Σn. It holds

Pr [Y |S = s] =
∑

Q⊆[n]

p′Q · Ec←Et′
[
p′′Q,c

]
.

Notice that for two different c1, c2 ∈ Σn, we have p′′Q,c1
= p′′Q,c1

if c1|Q = c2|Q, since

this probability only depends on the symbols at indices in Q. Thus, for c̃ ∈ Σ|Q| we

114

can define p̃Q,c̃ to be equal to p′′Q,c for any c ∈ Σ such that c|Q = c̃. We can now write

Pr [Y |S = s] =
∑

Q⊆[n]

p′Q · Ec̃←Et′ |Q [p̃Q,c̃] ,

and analogously,

Pr [X|S = s] =
∑

Q⊆[n]

p′Q · Ec̃←Et|Q [p̃Q,c̃] .

Due to the uniform β-similarity of Et′ and Et, we know that for every Q ⊂ [n],

the probability of selecting each c̃ ∈ Σ|Q| from Et|Q is at least (1 − β|Q|) times the

probability of selecting the same c̃ from Et′ |Q. This implies that

Ec̃←Et|Q [p̃Q,c̃] ≥ (1 − β|Q|) · Ec̃←Et′ |Q [p̃Q,c̃] .

We obtain

Pr [Y |S = s] − Pr [X|S = s] =
∑

Q⊆[n]

p′Q ·
(
Ec̃←Et′ |Q [p̃Q,c̃] − Ec̃←Et|Q [p̃Q,c̃]

)
.

≤
∑

Q⊆[n]

p′Q · β|Q| · Ec̃←Et′ |Q [p̃Q,c̃]

= β ·
∑

Q⊆[n]

p′Q · |Q| · Ec←Et′
[
p′′Q,c

]

= β · Ec←Et′




∑

Q⊆[n]

p′Q · p′′Q,c · |Q|



 . (3.8)

Fix now any c ∈ Σn for which the process outputs 1 with positive probability. The

expected size of Q for the fixed c, given that the process outputs 1, can be written as

E

[

|Q|
∣
∣
∣ process outputs 1

]

=

∑

Q⊆[n] p
′
Q · p′′Q,c · |Q|

∑

Q⊆[n] p
′
Q · p′′Q,c

The probability that a given i ∈ [n] belongs to Q for the fixed c, given that the process

outputs 1 equals
pi,ci
−α⋆

i

pi,ci
. This follows from the two facts (a) if the process outputs 1

then ri is uniformly distributed on [0, pi,ci
]; and (b) i ∈ Q if and only if ri ∈ (α⋆

i , β
⋆
i].

115

We have
pi,ci

− α⋆
i

pi,ci

≤ β⋆
i − α⋆

i

β⋆
i

≤ αqi · β⋆
i

β⋆
i

= αqi. (3.9)

By the linearity of expectation, the expected size of Q in this setting is at most
∑

i∈[n] αqi = α · |S|. Therefore,

∑

Q⊆[n]

p′Q · p′′Q,c · |Q| ≤ α · |S| ·
∑

Q⊆[n]

p′Q · p′′Q,c. (3.10)

Note that the inequality trivially holds also for c for which the process always outputs

0; both sides of the inequality equal 0.

By plugging (3.10) into (3.8), we obtain

Pr [Y |S = s] − Pr [X|S = s] ≤ β · Ec←Et′



α · |S| ·
∑

Q⊆[n]

p′Q · p′′Q,c





= αβ · |S| · Ec←Et′




∑

Q⊆[n]

p′Q · p′′Q,c





= αβ · |S| · Pr [Y |S = s] .

This proves (3.6) and completes the proof of the lemma.

3.3.3 Tools for Analyzing Edit Distance

This section provides tools to analyze how the edit distance changes under a under

substitution product. We present two separate results with different guarantees, one

is more useful for a large alphabet, the other for a small alphabet. The latter is used

in the final step of reduction to binary alphabet.

Distance between random strings

The next bound is well-known, see also [23, 14, 61]. We reproduce it here for com-

pleteness.

116

Lemma 3.3.9. Let x, y ∈ Σn be chosen uniformly at random. Then

Pr
[

LCS(x, y) ≥ 5n/
√

|Σ|
]

≤ e−5n/
√
|Σ|.

Proof. Let c
def
= 5 > e1.5 and t

def
= cn/

√

|Σ|. The number of potential alignments of

size t between two strings of length n is at most
(

n
t

)2 ≤ (ne
t
)2t. Each of them indeed

becomes an alignment of x, y (i.e. symbols that are supposed to align are equal) with

probability at most 1/|Σ|t. Applying a union bound,

Pr[LCS(x, y) ≥ t] ≤ (ne
t
)2t/|Σ|t ≤ (e2c−2|Σ|)t · |Σ|−t ≤ e−t.

Distance under substitution product (large alphabet)

We proceed to analyze how the edit distance between two strings, say ed(x, y), changes

when we perform a substitution product, i.e. ed(x⊛B, y⊛B). The bounds we obtain

are additive, and are thus most effective when the edit distance ed(x, y) is large (linear

in the strings length). Furthermore, they depend on λB ∈ [0, 1], which denotes the

maximum normalized LCS between distinct images of B : Σ → (Σ′)n′

, hence they are

most effective when λB is small, essentially requiring a large alphabet Σ′.

Theorem 3.3.10. Let x, y ∈ Σn and B : Σ → (Σ′)n′

. Then

n′ · ed(x, y) − 8nn′
√

λB ≤ ed(x ⊛ B, y ⊛ B) ≤ n′ · ed(x, y),

where λB
def
= max

{
LCS(B(a),B(b))

n′
: a 6= b ∈ Σ

}

.

Before proving the theorem, we state a corollary that will turn to be most useful.

The corollary follows from Theorem 3.3.10 by letting Σ′ = Σ, and using Lemma 3.3.9

together with a union bound over all pairs B(a), B(b) (while assuming n′ ≥ |Σ|).

Corollary 3.3.11. Assume |Σ| ≥ 2 and n′ ≥ |Σ| is sufficiently large (i.e. at least

some absolute constant c′). Let B : Σ → (Σ)n′

be a random function, i.e. for each

a ∈ Σ choose B(a) uniformly at random. Then with probability at least 1 − 2−n′/|Σ|,

117

for all n and all x, y ∈ Σn,

0 ≤ n′ · ed(x, y) − ed(x ⊛ B, y ⊛ B) ≤ O(nn′/|Σ|1/4).

Proof of Theorem 3.3.10. By using the direct connection (3.5) between ed(x, y) and

LCS(x, y), it clearly suffices to prove

n′ · LCS(x, y) ≤ LCS(x ⊛ B, y ⊛ B) ≤ n′ · LCS(x, y) + 4nn′
√

λB. (3.11)

Throughout, we assume the natural partitioning of x, y into n blocks of length n′.

The first inequality above is immediate. Indeed, give an (optimal) alignment

between x and y, do the following; for each (i, j) such that xi is aligned with yj, align

the entire i-th block in x ⊛ B with the entire j-th block in y ⊛ B. It is easily verified

that the result is indeed an alignment and has size n′ · ed(x, y).

To prove the second inequality above, fix an optimal alignment A between x ⊛ B

and y ⊛ B; we shall construct an Â alignment for x, y in three stages, namely, first

pruning A into A′, then pruning it further into A′′, and finally constructing Â. Define

the span of a block b in either x ⊛ B or y ⊛ B (under the current alignment) to be

the number of blocks in the other string to which it is aligned in at least one position

(e.g. the span of block i in x ⊛ B is the number of blocks j for which at least one

position p in block i satisfies that A(p) is in block j.)

Now iterate the following step: “unalign” a block (in either x ⊛ B or y ⊛ B)

completely whenever its span is greater than s
def
= 2/

√
λB. Let A′ be the resulting

alignment; its size is |A′| ≥ |A| − 4nn′/s because each iteration is triggered by a

distinct block, the total span of all these blocks is at most 4n, hence the total number

of iterations is at most 4n/s.

Next, iterate the following step (starting with A′ as the current alignment): remove

alignments between two blocks (one in x ⊛ B and one in y ⊛ B) if, in one of the two

blocks, at most λBn′ positions are aligned to the other block. Let A′′ be the resulting

alignment; its size is |A′′| ≥ |A′| − ns · λBn′ because each iteration is triggered by a

distinct pair of blocks, out of at most ns pairs (by the span bound above).

118

This alignment A′′ has size |A′′| ≥ |A|−4nn′/s−nn′sλB. Furthermore, if between

two blocks, say block i in x⊛B and block j in y ⊛B, the number of aligned positions

is at least one, then this number is actually greater than λBn′ (by construction of A′′)

and thus x[i] = y[j] (by definition of λBn′).

Finally, construct an alignment Â between x and y, where initially, Â(i) = ⊥
for all i ∈ [n]. Think of the alignment A′′ as the set of aligned positions, namely

{(p, q) ∈ [n] × [n] : A′′(p) = q}. Let blkx⊛B(p) denote the number of the block

in x ⊛ B which contains p, and similarly for positions q in y ⊛ B. Now scan A′′,

as a set of pairs, in lexicographic order. More specifically, initialize (p, q) to be the

first edge in A′′, and iterate the following step: assign Â(blkx⊛B(p)) = blky⊛B(q),

and advance (p, q) according to the lexicographic order so that both coordinates now

belong to new blocks, i.e. set it to be the next pair (p′, q′) ∈ A′′ for which both

blkx⊛B(p′) > blkx⊛B(p) and blky⊛B(q′) > blky⊛B(q). We claim that Â is an alignment

between x and y. To see this, consider the moment when we assign some Â(i) = j.

Then the corresponding blocks in x⊛B and y⊛B contain at least one pair of positions

that are aligned under A′′, and thus, as argued above, x[i] = y[j]. In addition, all

subsequent assignments of the form Â(i′) = j′ satisfy that both i′ > i and j′ > j.

Hence Â is indeed an alignment.

En route to bounding the size of Â, we claim that each iteration scans (i.e. advances

the current pair by) at most n′ pairs from A′′. To see this, consider an iteration where

we assign some Â(i) = j. Every pair (p, q) ∈ A′′ that is scanned in this iteration

satisfies that either i = blkx⊛B(p) or j = blkx⊛B(p). Each of these two requirements

can be satisfied by at most n′ pairs, and together at most 2n′ pairs are scanned.

By the fact that A′′ is monotone, it can be easily verified that at least one of the

two requirements must be satisfied by all scanned pairs, hence the total number of

scanned pairs is at most n′.

Using the claim, we get that |Â| ≤ |A′′|/n′ (recall that each iteration also makes

one assignment to Â). It immediately follows that

n′·LCS(x, y) ≥ n′·|Â| ≥ |A′′| ≥ |A|−4nn′/s−nn′sλB = LCS(x⊛B, y⊛B)−4nn′
√

λB,

119

which completes the proof of (3.11) and of Theorem 3.3.10.

Distance under substitution product (any alphabet)

We give another analysis for how the edit distance between two strings, say ed(x, y),

changes when we perform a substitution product, i.e. ed(x⊛B, y⊛B). The bounds we

obtain here are multiplicative, and may be used as a final step of alphabet reduction

(say, from a large alphabet to the binary one).

Theorem 3.3.12. Let B : Σ → (Σ′)n′

, and suppose that (i) for every a 6= b ∈ Σ, we

have

LCS(Ba, Bb) ≤ 15
16

n′;

and (ii) for every a, b, c ∈ Σ (possibly equal), and every substring B′ of (the concate-

nation) BbBc that has length n′ and overlaps each of Bb and Bc by at least n′/10, we

have

LCS(Ba, B
′) ≤ 0.98n′.

Then for all x, y ∈ Σn,

c1n
′ · ed(x, y) ≤ ed(x ⊛ B, y ⊛ B) ≤ n′ · ed(x, y), (3.12)

where 0 < c1 < 1 is an absolute constant.

Before proving the theorem, let us show that it is applicable for a random mapping

B, by proving two extensions of Lemma 3.3.9. Unlike the latter, the lemmas below

are effective also for small alphabet size.

Lemma 3.3.13. Suppose |Σ| ≥ 2 and let x, y ∈ Σn be chosen uniformly at random.

Then with probability at least 1 − |Σ|−l/8, the following holds: for every substring x′

in x of length l ≥ 24, and every length l substring y′ in Bb, we have

LCS(x′, y′) ≤ 15
16

l.

120

Proof. Set α
def
= 1/16. Fix l and the positions of x′ inside x and of y′ inside y. Then

x′ and y′ are chosen at random from Σl, hence

Pr[LCS(x′, y′) ≥ (1 − α)l] ≤
(

l
(1−α)l

)2|Σ|−(1−α)l ≤ (e
α
)2αl|Σ|−(1−α)l ≤ |Σ|−l/4,

where the last inequality uses |Σ| ≥ 2.

Now apply a union bound over all possible positions of x′ and y′ and all values of

l. It follows that the probability that x and y contain length l substrings x′ and y′

(respectively) with LCS(x′, y′) ≥ (1 − α)l is at most |Σ|3 · |Σ|−l/4 ≤ |Σ′|−l/8, if only l

is sufficiently large.

The next lemma is an easy consequence of Lemma 3.3.13. It follows by applying

a union bound and observing that disjoint substrings of B(a) are independent.

Lemma 3.3.14. Let B : Σ → (Σ′)n′

be chosen uniformly at random for |Σ′| ≥ 2

and n′ ≥ 1000 log |Σ|. Then with probability at least 1 − |Σ′|−Ω(n′), B satisfies the

properties (i) and (ii) described in Theorem 3.3.12.

Proof of Theorem 3.3.12. The last inequality in (3.12) is straightforward. Indeed,

whenever xi is aligned against yj, we have xi = yj and B(xi) = B(yj), hence we

can align the corresponding blocks in x ⊛ B and y ⊛ B. We immediately get that

LCS(x ⊛ B, y ⊛ B) ≥ n′ · LCS(x, y).

Let us now prove the first inequality. Denote R
def
= ed(x ⊛ B, y ⊛ B), and fix

a corresponding alignment between the two strings. The string x ⊛ B is naturally

partitioned into n blocks of length n′. The total number of coordinates in x⊛B that

are unaligned (to y ⊛ B) is exactly R/2, which is R/2n in an average block.

We now prune this alignment in two steps. First, “unaliagn” each block in x ⊛ B

with at least (nn′/100R) · (R/2n) = n′/200 unaligned coordinates. By averaging (or

Markov’s inequality), this step applies to at most 100R/nn′-fraction of the n blocks.

Next, define the gap of a block in x ⊛ B to be the difference (in the positions)

between the first and last positions in y ⊛ B that are aligned against a coordinate in

x ⊛ B. The second pruning step is to unalign every block in x ⊛ B whose gap is at

121

least 1.01n′. Every such block can be identified with a set of at least n′/100 unaligned

positions in y ⊛B (sandwiched inside the gap), hence these sets (for different blocks)

are all disjoint, and the number of such blocks is at most (R/2)/(n′/100) = 50R/n′.

Now consider one of the remaining blocks (at least n−100R/n′−50R/n′ blocks).

By our pruning, for each such block i we can find a corresponding substring of length

n′ in y ⊛ B with at least n′ − n′/200 − n′/100 > 0.98n′ aligned pairs (between these

two substrings). Using the property (ii) of B, the corresponding substring in y ⊛ B

must have overlap of at least 0.9n′ with some block of y ⊛ B (recall that y ⊛ B is

also naturally partitioned into length n′ blocks). Thus, for each such block i in x⊛B

there is a corresponding block j in y ⊛ B, such that these two blocks contain at least

0.9n′ − 0.02n′ = 0.88n′ aligned pairs. By the property (i) of B, it follows that the

corresponding coordinates in x and in y are equal, i.e. xi = yj. Observe that distinct

blocks i in x ⊛ B are matched in this way to distinct blocks j in y ⊛ B (because

the initial substrings in y ⊛ B were non-overlapping, and they each more than n′/2

overlap with a distinct block j).

It is easily verified that the above process gives an alignment between x and y.

Recall that the number of coordinates in x that are not aligned in this process is at

most 150R/n′, hence ed(x, y) ≤ 300R/n′, and this completes the proof.

3.3.4 The Lower Bound

We now put all the elements of our proof together. We start by describing hard distri-

butions, and then prove their properties. We also give a slightly more precise version

of the lower bound for polynomial approximation factors in a separate subsection.

The Construction of Hard Distributions

We give a probabilistic construction for the hard distributions. We have two basic

parameters, n which is roughly the length of strings, and α which is the approximation

factor. We require that 2 < α ≪ n/ log n. The strings length is actually smaller than

n (for n large enough), but our query complexity lower bound hold also for length n,

122

e.g., by a simple argument of padding by a fixed string.

We now define the hard distributions.

1. Fix an alphabet Σ of size ⌈52 · 216 · log4
α n⌉.

2. Set:

• T
def
= ⌈1000 · log |Σ|⌉.

• β
def
=







α, if α < n1/3,

n
α ln n

, otherwise.

• s
def
= ⌈400β ln n · |Σ|12⌉, thus s = O(β · log n · log48

α n).

• B
def
= ⌈8αs · logα n⌉, implying that B = O(αβ log n · log49

α n). Notice that

B < n
T

for n large enough. If α < n1/3, then B = Õ(n2/3). Otherwise,

logα n ≤ 3, log |Σ| = O(1), and B = o(n).

3. Select at random |Σ| strings of length B, denoted xa for a ∈ Σ.

4. Define |Σ| corresponding distributions Da. For each a ∈ Σ, let

Da
def
= Ss(xa),

and set

D def
= (Da)a∈Σ.

5. Define by induction on ia a collection of distributions Ei,a for a ∈ Σ. As the

base case, set

E1,a
def
= Da.

For i > 1, set

Ei,a
def
= Ei−1,a ⊛ D.

6. Let i⋆
def
=
⌊
logB

n
T

⌋
. Note that the distributions Ei⋆,a are defined on strings of

length Bi⋆ , which is is of course at most n
T
, but due to an earlier observation,

we also know that i⋆ ≥ 1, for n large enough.

123

7. Fix distinct a⋆, b⋆ ∈ Σ. Let F0
def
= Ei⋆,a⋆ and F1

def
= Ei⋆,b⋆.

8. Pick a random mapping R : Σ → {0, 1}T . Let F ′0
def
= F0 ⊛ R and F ′1

def
= F1 ⊛ R.

Note that the strings drawn from F ′0 and F ′1 are of length at most n.

Notice the construction is probabilistic only because of step #3 (the base strings

xa), and #8 (the randomized reduction to binary alphabet).

Proof of the Query Complexity Lower Bound

The next theorem shows that:

• Every two strings selected from the same distribution Fi are always close in edit

distance.

• With non-zero probability (recall the construction is probabilistic), distribution

F0 produces strings that are far, in edit distance, from strings produced by F1,

yet distinguishing between these cases requires many queries.

Essentially the same properties hold also for F ′0 and F ′1.

Theorem 3.3.15. Consider a randomized algorithm that is given full access to a

string in Σn, and query access to another string in Σn. Let 2 < α ≤ o(n/ log n). If

the algorithm distinguishes, with probability at least 2/3, edit distance ≥ n/2 from

≤ n/(4α), then it makes

(

2 + Ω

(
log α

log log n

))max{1,Ω(log n
log α+log log n)}

queries for α < n1/3, and Ω
(
log n

α lnn

)
queries for α ≥ n1/3. The bound holds even

for |Σ| = O(log4
α n).

For Σ = {0, 1}, the same number of queries is required to distinguish edit distance

≥ c1n/2 and ≤ c1n/(4α), where c1 ∈ (0, 1) is the constant from Theorem 3.3.12.

Proof. We use the construction described in Section 3.3.4. Recall that i⋆ ≥ 1, for n

large enough, and that i⋆ ≤ logB n.

124

Let F : Σ → ΣB be defined as F (a)
def
= xa for every a ∈ Σ. We define yi,a

inductively. Let y1,a
def
= xa for every a ∈ Σ, then for i > 1 define yi,a

def
= yi−1,a ⊛ F .

We now claim that for every word z with non-zero probability in Ei,a for a ∈ Σ,

we have
ed(z, yi,a)

Bi
≤ i · 2 · s

B
≤ i

4α logα n
.

This follows by induction on i, since every rotation by s can be “reversed” with at

most s insertions and s deletions. In particular,

ed(z, yi⋆,a)

Bi⋆
≤ logB n

4α logα n
=

log α

4α log B
≤ 1

4α
,

where the last inequality is because α ≤ B.

It follows from Lemma 3.3.9 and the union bound that with probability

1 − |Σ|2 · e−5B/
√
|Σ| ≥ 1 − |Σ|2 · e−5|Σ| ≥ 1 − e−3|Σ| ≥ 1 − e−3 ≥ 2/3

(over the choice of F , i.e. xa for a ∈ Σ), that for all a 6= b ∈ Σ we have LCS(xa, xb) ≤
5B/

√

|Σ|, that is, the value corresponding to
√

λB in Lemma 3.3.10 is at most
√

5/
√

|Σ| ≤ 1/(16 logα n). We assume henceforth this event occurs. Then by

Lemma 3.3.10 and induction, we have that for all a 6= b,

ed(yi,a, yi,b) ≥ Bi

(

2 − i

2 logα n

)

which gives

ed(yi⋆,a⋆ , yi⋆,b⋆) ≥ 1

2
ed(yi⋆,a⋆ , yi⋆,b⋆) ≥ Bi⋆

(

1 − i⋆
4 logα n

)

≥ Bi⋆

(

1 − log α

4 log B

)

≥ Bi⋆

(

1 − 1

4

)

=
3

4
Bi⋆ .

Consider now an algorithm that is given full access to the string yi⋆,a⋆ and query

access to some other string z. If z comes from F0 = Ei⋆,a⋆ , then ed(yi⋆,a⋆ , z) ≤ Bi⋆

4α
.

If z comes from F1 = Ei⋆,b⋆ , then ed(yi⋆,a⋆ , z) ≥ 3
4
Bi⋆ − 1

4α
Bi⋆ ≥ 1

2
Bi⋆ by the triangle

125

inequality.

We now show that the algorithm has to make many queries to learn whether z is

drawn from F0 or from F1. By Lemma 3.3.7, with probability at least 2/3 over the

choice of xa’s, E1,a’s are uniformly 1
A
-similar, for

A
def
= log|Σ|

6

√
s

400 lnB
≥ log|Σ|

6
√

β · |Σ|12 = 2 +
log β

6 log |Σ| .

Note that both the above statement regarding 1
A
-similarity as well as the earlier

requirement that LCS(xa, xb) be small for all a 6= b, are satisfied with non-zero prob-

ability.

Observe that log |Σ| = Θ(1 + log(log n
log α

)). For α < n1/3,

A = 2 + Ω




log α

1 + log
(

log n
log α

)



 = 2 + Ω

(
log α

log log n

)

.

For α ≥ n1/3,

A ≥ 2 + Ω




log n

α lnn

1 + log
(

log n
log α

)



 ≥ Ω
(

log
n

α ln n

)

,

where the last transition follows since log n
log α

= Θ(1) and α = o(n/ log n).

By using Lemma 3.3.8 over Ei,a’s, we have that Ei,a’s are uniformly 1
Ai -similar.

It now follows from Lemma 3.3.4 that an algorithm that distinguishes whether its

input z is drawn from F0 = Ei⋆,a⋆ or from F1 = Ei⋆,b⋆ with probability at least 2/3,

must make at least Ai⋆/3 queries to z. Consider first the case of α < n1/3. We have

i⋆ = Ω
(

log n
log B

)

= Ω
(

log n
log α+log log n

)

. The number of queries we obtain is

(

2 + Ω

(
log α

log log n

))max{1,Ω(log n
log α+log log n)}

.

For α ≥ n1/3 we have i⋆ ≥ 1, and the algorithm must make Ω
(
log n

α ln n

)
queries. This

finishes the prove of the first part of the theorem, which states a lower bound for an

alphabet of size Θ(log4
α n).

126

For the second part of the theorem regarding alphabet Σ = {0, 1}, we use the

distributions from the first part, but we employ the mapping R : Σ → {0, 1}T

to replace every symbol in Σ with a binary string of length T . Lemma 3.3.14 and

Theorem 3.3.12 state that if R is chosen at random, then with non-zero probability, R

preserves (normalized) edit distance up to a multiplicative c1. Using such a mapping

R and α/c1 instead of α in the entire proof, we obtain the desired gap in edit distance

between F ′0 and F ′1. The number of required queries remains the same after the

mapping, because every symbol in a string obtained from F ′0 or F ′1 is a function of

a single symbol from a string obtained from F0 or F1, respectively. An algorithm

using few queries to distinguish F ′0 from F ′1 would therefore imply an algorithm with

similar query complexity to distinguish F0 from F1, which is not possible.

A More Precise Lower Bound for Polynomial Approximation Factors

We now state a more precise statement that specifies the exponent for polynomial

approximation factors.

Theorem 3.3.16. Let λ be a fixed constant in (0, 1). Let t be the largest positive

integer such that λ · t < 1.

Consider an algorithm that is given a string in Σn, and query access to another

string in Σn. If the algorithm correctly distinguishes edit distance ≥ n/2 and ≤
n/(4nλ) with probability at least 2/3, then it needs Ω(logt n) queries, even for |Σ| =

O(1).

For Σ = {0, 1}, the same number of queries is required to distinguish edit distance

≥ c1n/2 and ≤ c1n/(4nλ), where c1 ∈ (0, 1) is the constant from Theorem 3.3.12.

Proof. The proof is a modification of the proof of Lemma 3.3.15. We reuse the same

construction with the following differences:

• We set α
def
= nλ. This is our approximation factor.

• We set β
def
= n

1
2(

1
t
−λ). This is up to a logarithmic factor the shift at every level

of recursion

127

T , s, B, |Σ| are defined in the same way as functions of α and β. Note that B =

Θ
(

n
1
2(

1
t
+λ) log n

)

and T = Θ(1). This implies that for sufficiently large n, i⋆ =

⌊logB
n
T
⌋ = t, because Bt = Θ̃

(

n
1+λt

2

)

= o(n), and Bt+1 = Θ̃
(

n
1
2
+ 1

2t
+

λ(t+1)
2

)

=

Ω̃
(

n1+ 1
2t

)

= ω(n).

As in the proof of Lemma 3.3.15, we achieve the desired separation in edit distance.

Recall that the number of queries an algorithm must make is Ω(Ai⋆), where

A ≥ 2 +
log β

6 log |Σ| = Ω(log n).

Thus, the number of required queries equals Ω(logt n).

128

Bibliography

[1] The size of the World Wide Web. http://www.worldwidewebsize.com/. Ac-
cessed Aug 24, 2010.

[2] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the
distance to a monotone function. Random Structures and Algorithms, 31:371–
383, 2007. Previously appeared in RANDOM’04.

[3] Noga Alon. On constant time approximation of parameters of bounded degree
graphs. Manuscript., 2010.

[4] Noga Alon, Paul D. Seymour, and Robin Thomas. A separator theorem for
graphs with an excluded minor and its applications. In STOC, pages 293–299,
1990.

[5] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties
testable with one-sided error. SIAM J. Comput., 37(6):1703–1727, 2008.

[6] Jesse Alpert and Nissan Hajaj. We knew the web was big. . . . In The Official

Google Blog, July 25, 2008. Accessed Aug 24, 2010.

[7] Alexandr Andoni, T.S. Jayram, and Mihai Pǎtraşcu. Lower bounds for edit
distance and product metrics via Poincaré-type inequalities. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010.

[8] Alexandr Andoni and Robert Krauthgamer. The computational hardness of
estimating edit distance. SIAM Journal on Computing, 39(6):2398–2429, 2010.
Previously appeared in FOCS’07.

[9] Alexandr Andoni and Huy L. Nguyen. Near-tight bounds for testing Ulam dis-
tance. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2010.

[10] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-
linear time. In Proceedings of the Symposium on Theory of Computing (STOC),
pages 199–204, 2009.

[11] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and hardness of approximation problems. In FOCS,
pages 14–23, 1992.

129

[12] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; a new char-
acterization of np. In FOCS, pages 2–13, 1992.

[13] Mihai Badoiu, Artur Czumaj, Piotr Indyk, and Christian Sohler. Facility location
in sublinear time. In ICALP, pages 866–877, 2005.

[14] R. A. Baeza-Yates, R. Gavaldà, G. Navarro, and R. Scheihing. Bounding the
expected length of longest common subsequences and forests. Theory Comput.
Syst., 32(4):435–452, 1999.

[15] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approxi-
mating edit distance efficiently. In Proceedings of the Symposium on Foundations
of Computer Science (FOCS), pages 550–559, 2004.

[16] Tuğkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova,
Ronitt Rubinfeld, and Rahul Sami. A sublinear algorithm for weakly approxi-
mating edit distance. In Proceedings of the Symposium on Theory of Computing
(STOC), pages 316–324, 2003.

[17] Tuğkan Batu, Funda Ergün, and Cenk Sahinalp. Oblivious string embeddings
and edit distance approximations. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 792–801, 2006.

[18] Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property
of sparse graphs is testable. In STOC, pages 393–402, 2008.

[19] Philip Bille and Martin Farach-Colton. Fast and compact regular expression
matching. Theoretical Computer Science, 409(28):486–496, 2008.

[20] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[21] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing
3-colorability in bounded-degree graphs. In FOCS, pages 93–102, 2002.

[22] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum span-
ning tree weight in sublinear time. ICALP, 2001.

[23] V. Chvatal and D. Sankoff. Longest common subsequences of two random se-
quences. J. Appl. Probability, 12:306–315, 1975.

[24] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[25] Graham Cormode. Sequence Distance Embeddings. Ph.D. Thesis, University of
Warwick. 2003.

[26] Graham Cormode and S. Muthukrishnan. The string edit distance matching
problem with moves. ACM Trans. Algorithms, 3(1), 2007. Special issue on
SODA’02.

130

[27] Graham Cormode, Mike Paterson, Suleyman Cenk Sahinalp, and Uzi Vishkin.
Communication complexity of document exchange. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 197–206, 2000.

[28] Artur Czumaj, Asaf Shapira, and Christian Sohler. Testing hereditary properties
of nonexpanding bounded-degree graphs. SIAM J. Comput., 38(6):2499–2510,
2009.

[29] Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum
spanning trees in sublinear-time. In STOC, pages 175–183, 2004.

[30] Andrzej Czygrinow and Michal Hańćkowiak. Distributed algorithm for better
approximation of the maximum matching. In COCOON, pages 242–251, 2003.

[31] Andrzej Czygrinow and Michal Hanckowiak. Distributed approximation algo-
rithms for weighted problems in minor-closed families. In COCOON, pages 515–
525, 2007.

[32] Andrzej Czygrinow, Michal Hańćkowiak, and Edyta Szymańska. A fast dis-
tributed algorithm for approximating the maximum matching. In ESA, pages
252–263, 2004.

[33] Andrzej Czygrinow, Michal Hańćkowiak, and Wojciech Wawrzyniak. Fast dis-
tributed approximations in planar graphs. In DISC, pages 78–92, 2008.

[34] Gábor Elek. L2-spectral invariants and convergent sequences of finite graphs.
Journal of Functional Analysis, 254(10):2667 – 2689, 2008.

[35] Gábor Elek. Parameter testing with bounded degree graphs of subexponential
growth. arXiv:0711.2800v3, 2009.

[36] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Manesh
Viswanathan. Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000.

[37] M. R. Garey and David S. Johnson. The rectilinear Steiner tree problem is NP
complete. SIAM Journal of Applied Mathematics, 32:826–834, 1977.

[38] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[39] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection
to learning and approximation. Proceedings of the Symposium on Foundations
of Computer Science (FOCS), pages 339–348, 1996.

[40] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs.
Algorithmica, 32(2):302–343, 2002.

[41] Dan Gusfield. Algorithms on strings, trees, and sequences. Cambridge University
Press, Cambridge, 1997.

131

[42] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[43] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum match-
ings in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[44] Piotr Indyk. Sublinear time algorithms for metric space problems. In STOC,
pages 428–434, 1999.

[45] Piotr Indyk. Algorithmic aspects of geometric embeddings (tutorial). In Pro-
ceedings of the Symposium on Foundations of Computer Science (FOCS), pages
10–33, 2001.

[46] Piotr Indyk and Jǐŕı Matoušek. Low distortion embeddings of finite metric spaces.
CRC Handbook of Discrete and Computational Geometry, 2003.

[47] Piotr Indyk and David Woodruff. Optimal approximations of the frequency
moments of data streams. Proceedings of the Symposium on Theory of Computing
(STOC), 2005.

[48] David S. Johnson. Approximation algorithms for combinatorial problems. J.
Comput. Syst. Sci., 9(3):256–278, 1974.

[49] Kyomin Jung and Devavrat Shah. Algo-
rithmically efficient networks. Manuscript,
http://web.kaist.ac.kr/~kyomin/Algorithmically_Efficient_Networks.pdf.
Accessed May 19, 2010.

[50] Subhash Khot and Assaf Naor. Nonembeddability theorems via Fourier analysis.
Math. Ann., 334(4):821–852, 2006. Preliminary version appeared in FOCS’05.

[51] Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embeddings
into L1. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1010–1017, 2006.

[52] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being
near-sighted. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pages 980–989, New York, NY, USA, 2006.
ACM.

[53] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for ap-
proximate nearest neighbor in high dimensional spaces. SIAM J. Comput.,
30(2):457–474, 2000. Preliminary version appeared in STOC’98.

[54] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string
comparison. SIAM J. Comput., 27(2):557–582, 1998.

[55] Christoph Lenzen, Yvonne Anne Oswald, and Roger Wattenhofer. What can be
approximated locally? Case study: Dominating sets in planar graphs. In SPAA,
pages 46–54, 2008.

132

[56] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals (in russian). Doklady Akademii Nauk SSSR, 4(163):845–848, 1965.
Appeared in English as: V. I. Levenshtein, Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710, 1966.

[57] P. Li, T. Hastie, and K. W. Church. Nonlinear estimators and tail bounds for
dimension reduction in l1 using cauchy random projections. Journal of Machine
Learning Research (JMLR), 2007.

[58] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36:177–189, 1979.

[59] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator
theorem. SIAM J. Comput., 9(3):615–627, 1980.

[60] László Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975.

[61] G. S. Lueker. Improved bounds on the average length of longest common subse-
quences. J. ACM, 56(3):1–38, 2009.

[62] Sharon Marko and Dana Ron. Approximating the distance to properties in
bounded-degree and general sparse graphs. ACM Transactions on Algorithms,
5(2), 2009.

[63] William J. Masek and Mike Paterson. A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

[64] S. Muthukrishnan and Cenk Sahinalp. Approximate nearest neighbors and se-
quence comparison with block operations. Proceedings of the Symposium on
Theory of Computing (STOC), pages 416–424, 2000.

[65] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput.
Surv., 33(1):31–88, 2001.

[66] Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms
via local improvements. In FOCS, pages 327–336, 2008.

[67] Krzysztof Onak. An efficient algorithm for approximating the vertex cover size.
Manuscript., 2010.

[68] Rafail Ostrovsky and Yuval Rabani. Low distortion embedding for edit distance.
J. ACM, 54(5), 2007. Preliminary version appeared in STOC’05.

[69] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, 1998.

[70] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in
sublinear time and a connection to distributed algorithms. Theoretical Computer
Science, 381(1-3):183–196, 2007.

133

[71] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and
distance approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006.

[72] Seth Pettie and Peter Sanders. A simpler linear time 2/3-epsilon approximation
for maximum weight matching. Inf. Process. Lett., 91(6):271–276, 2004.

[73] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths
problem. Journal of Combinatorial Theory, Series B, 63(1):65 – 110, 1995.

[74] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture.
Journal of Combinatorial Theory, Series B, 92(2):325 – 357, 2004. Special Issue
Dedicated to Professor W.T. Tutte.

[75] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323–2326, 2000.

[76] Süleyman Cenk Sahinalp. Edit distance under block operations. In Ming-Yang
Kao, editor, Encyclopedia of Algorithms. Springer, 2008.

[77] Michael Saks and Xiaodong Sun. Space lower bounds for distance approxima-
tion in the data stream model. In Proceedings of the Symposium on Theory of
Computing (STOC), pages 360–369, 2002.

[78] Robert A. Wagner and Michael J. Fischer. The string-to-string correction prob-
lem. Journal of the ACM, 21(1):168 – 173, 1974.

[79] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time
approximation algorithm for maximum matchings. In STOC, 2009.

[80] Mark Zuckerberg. 500 million stories. In The Facebook Blog, July 21, 2010.
Accessed Aug 24, 2010.

134

