External Sampling

Krzysztof Onak MIT

Joint work with **Alexandr Andoni**, **Piotr Indyk**, and **Ronitt Rubinfeld**

Krzysztof Onak – *External Sampling* – p. 1/13

Various models have been developed:

 Sublinear time algorithms (for instance, random sampling)

Sublinear Algorithm

Various models have been developed:

 Sublinear time algorithms (for instance, random sampling)

Various models have been developed:

 Sublinear time algorithms (for instance, random sampling)

External memory algorithms for data on disk

Various models have been developed:

 Sublinear time algorithms (for instance, random sampling)

External memory algorithms for data on disk

Can combine the two?

- Has to read entire block to get single sample
- Can decrease the number of block reads?

Krzysztof Onak – *External Sampling* – p. 3/13

Estimating frequency

- Problem:
 - if frequency of $\bigcirc \geq 2f$, report YES
 - if frequency of $\bigcirc \leq f$, report NO

Estimating frequency

- Problem:
 - if frequency of $\bigcirc \geq 2f$, report YES
 - if frequency of $\bigcirc \leq f$, report NO

• Complexity: $\Theta(1/f)$ random samples

Estimating frequency

- Problem:
 - if frequency of $\bigcirc \geq 2f$, report YES
 - if frequency of $\bigcirc \leq f$, report NO

- Complexity: $\Theta(1/f)$ random samples
- Sampling blocks doesn't help!

Problems:

- Distinctness
 - YES: all elements different
 - NO: must remove $> \epsilon n$ elements for distinctness

Problems:

- Distinctness
 - YES: all elements different
 - NO: must remove $\geq \epsilon n$ elements for distinctness
- Uniformity [Goldreich-Ron, Batu-Fortnow-Rubinfeld-Smith-White]
 - YES: uniformly distributed over known set of size $m \le n$
 - NO: must modify $\geq \epsilon n$ elements for uniformity

Uniform on $\{ \bigcirc, \bigcirc, \bigcirc \}$?

Problems:

- Distinctness
 - YES: all elements different
 - NO: must remove $\geq \epsilon n$ elements for distinctness
- Uniformity [Goldreich-Ron, Batu-Fortnow-Rubinfeld-Smith-White]
 - YES: uniformly distributed over known set of size $m \le n$
 - NO: must modify $\geq \epsilon n$ elements for uniformity
- Identity [Batu-Fortnow-Fischer-Kumar-Rubinfeld-White]
 - YES: distributed according to a known distribution
 - NO: must modify $\geq \epsilon n$ elements for the property

Problems:

- Distinctness
 - YES: all elements different
 - NO: must remove $\geq \epsilon n$ elements for distinctness
- Uniformity [Goldreich-Ron, Batu-Fortnow-Rubinfeld-Smith-White]
 - YES: uniformly distributed over known set of size $m \le n$
 - NO: must modify $\geq \epsilon n$ elements for uniformity
- Identity [Batu-Fortnow-Fischer-Kumar-Rubinfeld-White]
 - YES: distributed according to a known distribution
 - NO: must modify $\geq \epsilon n$ elements for the property
- All require $\tilde{\Theta}(\sqrt{n})$ samples for fixed ϵ
- We improve by factor $\tilde{\Theta}(\sqrt{B})$ to $\tilde{\Theta}(\sqrt{n/B})$ block reads
- Can show improvement (nearly) optimal

Distinctness

Krzysztof Onak – *External Sampling* – p. 6/13

Standard Algorithm

Algorithm:

- Sample $O(\sqrt{n/\epsilon})$ elements from different positions
- If two sampled elements are equal, REJECT
- Otherwise, ACCEPT

Standard Algorithm

Algorithm:

- Sample $O(\sqrt{n/\epsilon})$ elements from different positions
- If two sampled elements are equal, REJECT
- Otherwise, ACCEPT
- YES instance: always accepts

Standard Algorithm

Algorithm:

- Sample $O(\sqrt{n/\epsilon})$ elements from different positions
- If two sampled elements are equal, REJECT
- Otherwise, ACCEPT
- YES instance: always accepts
- NO instance:
 - $\Omega(\epsilon n)$ disjoint pairs of identical elements
 - Birthday paradox: algorithm samples one of them with constant probability

• This time: Sample $O(\sqrt{n/(\epsilon B)})$ blocks

- This time: Sample $O(\sqrt{n/(\epsilon B)})$ blocks
- Two kinds of pairs:
 - intra-block
 - inter-block

- This time: Sample $O(\sqrt{n/(\epsilon B)})$ blocks
- Two kinds of pairs:
 - intra-block
 - inter-block

• NO instance: $\Omega(\epsilon n)$ pairs of one of the kinds

- This time: Sample $O(\sqrt{n/(\epsilon B)})$ blocks
- Two kinds of pairs:
 - intra-block
 - inter-block

- **•** NO instance: $\Omega(\epsilon n)$ pairs of one of the kinds
- Matching lower bound

Testing Distributions

Krzysztof Onak – *External Sampling* – p. 9/13

Problem: Is uniform over $\{1, \ldots, m\}$?

- Problem: Is uniform over $\{1, \ldots, m\}$?
- Standard Algorithm:
 - Collect $t = O\left(\frac{1}{\epsilon}\sqrt{n}\right)$ samples
 - If number of identical pairs $> (1 + \frac{\epsilon}{2}) \cdot {t \choose 2} \cdot \frac{1}{m}$, REJECT
 - Otherwise, ACCEPT

- **Problem:** Is uniform over $\{1, \ldots, m\}$?
- Standard Algorithm:
 - Collect $t = O\left(\frac{1}{\epsilon}\sqrt{n}\right)$ samples
 - If number of identical pairs $> (1 + \frac{\epsilon}{2}) \cdot {t \choose 2} \cdot \frac{1}{m}$, REJECT
 - Otherwise, ACCEPT
- Algorithm for blocks:
 - almost the same
 - first checks if no item too frequent
 - more careful variance analysis

- **Problem:** Is uniform over $\{1, \ldots, m\}$?
- Standard Algorithm:
 - Collect $t = O\left(\frac{1}{\epsilon}\sqrt{n}\right)$ samples
 - If number of identical pairs $> (1 + \frac{\epsilon}{2}) \cdot {t \choose 2} \cdot \frac{1}{m}$, REJECT
 - Otherwise, ACCEPT
- Algorithm for blocks:
 - almost the same
 - first checks if no item too frequent
 - more careful variance analysis
- Can extend to testing identity

Other Problems

Krzysztof Onak – *External Sampling* – p. 11/13

Applications of Our Techniques

- Graph Isomorphism [Fischer-Matsliah]
 - Two graphs: known G and unknown H
 - YES: G and H isomorphic
 - NO: $\geq \epsilon n^2$ edges of *H* must be modified for isomorphism
 - Allowed queries: Is (u, v) edge of H?
 - Block model: adjacency matrix row by row on disk
 - Identity testing dominates the complexity

Applications of Our Techniques

- Graph Isomorphism [Fischer-Matsliah]
 - Two graphs: known G and unknown H
 - YES: G and H isomorphic
 - NO: $\geq \epsilon n^2$ edges of *H* must be modified for isomorphism
 - Allowed queries: Is (u, v) edge of H?
 - Block model: adjacency matrix row by row on disk
 - Identity testing dominates the complexity
- Metric Properties of Points [O.]
 - Does set of points embed into a tree metric? an ultrametric? ℓ_2^d ? ℓ_1^2 ? ℓ_∞^2 ?
 - Searching for k-tuple
 - Standard algorithms: $\approx O(n^{1-1/k})$ samples for fixed ϵ
 - Block model: $O((n/B)^{1-1/k})$ samples

Monotonicity

- Input: sequence of n numbers
 - YES: monotone
 - NO: must delete ϵn elements for monotonicity
- Can improve from $O(\frac{1}{\epsilon}\log n)$ to $O(\frac{1}{\epsilon}\log(n/B))$

Monotonicity

- Input: sequence of n numbers
 - YES: monotone
 - NO: must delete ϵn elements for monotonicity
- Can improve from $O(\frac{1}{\epsilon}\log n)$ to $O(\frac{1}{\epsilon}\log(n/B))$
- Weak Estimation of Edit Distance
 [Batu-Ergün-Kilian-Magen-Raskhodnikova-Rubinfeld-Sami]

- Monotonicity
 - Input: sequence of n numbers
 - YES: monotone
 - NO: must delete ϵn elements for monotonicity
 - Can improve from $O(\frac{1}{\epsilon}\log n)$ to $O(\frac{1}{\epsilon}\log(n/B))$
- Weak Estimation of Edit Distance
 [Batu-Ergün-Kilian-Magen-Raskhodnikova-Rubinfeld-Sami]
- OPEN: Equality of Distributions [Batu-Fortnow-Rubinfeld-Smith-White]
 - Input: two sequences on disk
 - Problem: same distribution of items or at distance $\geq \epsilon$?
 - Standard model: $\tilde{O}(n^{2/3} \cdot \text{poly}(1/\epsilon))$

Monotonicity

- Input: sequence of n numbers
 - YES: monotone
 - NO: must delete ϵn elements for monotonicity
- Can improve from $O(\frac{1}{\epsilon}\log n)$ to $O(\frac{1}{\epsilon}\log(n/B))$
- Weak Estimation of Edit Distance
 [Batu-Ergün-Kilian-Magen-Raskhodnikova-Rubinfeld-Sami]
- OPEN: Equality of Distributions [Batu-Fortnow-Rubinfeld-Smith-White]
 - Input: two sequences on disk
 - Problem: same distribution of items or at distance $\geq \epsilon$?
 - Standard model: $\tilde{O}(n^{2/3} \cdot \text{poly}(1/\epsilon))$
- Homework:

Check your favorite sublinear algorithm!!!