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A Physicist Discovering the World
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Computer Scientist’s Discrete World

Access to an unknown function f : {0, 1}n → {0, 1}.
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Access to an unknown function f : {0, 1}n → {0, 1}.

Can it be represented as
a small decision tree?
a small DNF formula?
a small Boolean circuit?
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Access to an unknown function f : {0, 1}n → {0, 1}.

Can it be represented as
a small decision tree?
a small DNF formula?
a small Boolean circuit?

This could help you choose the right representation, if
you wanted to learn the function.
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The Model

Query access to a function f : Ωn → X.
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A class C of functions.
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The Model

Query access to a function f : Ωn → X.

A class C of functions.

Want an algorithm that
outputs YES w.p. ≥2/3, if f ∈ C

outputs NO w.p. ≥2/3, if f disagrees with each
function in C on at least an ǫ-fraction of inputs
(i.e. f is ǫ-far from any function in C)
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The Model

Query access to a function f : Ωn → X.

A class C of functions.

Want an algorithm that
outputs YES w.p. ≥2/3, if f ∈ C

outputs NO w.p. ≥2/3, if f disagrees with each
function in C on at least an ǫ-fraction of inputs
(i.e. f is ǫ-far from any function in C)

Primary objective: minimize the number of queries
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Plan of the Talk

Basic definitions

Testing vs. learning

Previous results and our results

Review of the junta test

Our techniques:
Junta test + learning
Classes of functions close to juntas
Non-Boolean ranges

Open questions
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Political Systems

An alternative look at a function f : {0, 1}n → {0, 1}
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Political Systems

An alternative look at a function f : {0, 1}n → {0, 1}

Final decision is a function of input values

Dictatorship: single variable decides

f = xi or f = ¬xi
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Political Systems

An alternative look at a function f : {0, 1}n → {0, 1}

Final decision is a function of input values

Dictatorship: single variable decides

f = xi or f = ¬xi

k-Junta: k variables decide

f = f ′(xi1 , . . . , xik)
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Political Systems

An alternative look at a function f : {0, 1}n → {0, 1}

Final decision is a function of input values

Dictatorship: single variable decides

f = xi or f = ¬xi

k-Junta: k variables decide

f = f ′(xi1 , . . . , xik)

direct democracy ≈ majority
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Testing vs. Learning

Suppose you know f is a dictatorship.
Need Ω(log n) queries to learn the relevant variable.
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Testing vs. Learning

Suppose you know f is a dictatorship.
Need Ω(log n) queries to learn the relevant variable.

O(1/ǫ) queries suffice to test if f is a dictatorship
[Parnas, Ron, Samorodnitsky 2001]
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Testing vs. Learning

Suppose you know f is a dictatorship.
Need Ω(log n) queries to learn the relevant variable.

O(1/ǫ) queries suffice to test if f is a dictatorship
[Parnas, Ron, Samorodnitsky 2001]

Can check if f is a dictatorship, not learning who is the
dictator!!!
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Testing vs. Learning

Suppose you know f is a dictatorship.
Need Ω(log n) queries to learn the relevant variable.

O(1/ǫ) queries suffice to test if f is a dictatorship
[Parnas, Ron, Samorodnitsky 2001]

Can check if f is a dictatorship, not learning who is the
dictator!!!

Implicit learning: Learn the structure of f , but not which
variables it depends on.
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Selected Previous Results (1/2)

Parnas, Ron, Samorodnitsky 2001:
is a Boolean function f : {0, 1}n → {0, 1}:

a dictator? O(1/ǫ) queries

f(x1, . . . , x2007) = ¬x7
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Selected Previous Results (1/2)

Parnas, Ron, Samorodnitsky 2001:
is a Boolean function f : {0, 1}n → {0, 1}:

a dictator? O(1/ǫ) queries

f(x1, . . . , x2007) = ¬x7

a conjunction? O(1/ǫ) queries

f(x1, . . . , x2007) = x2 ∧ ¬x4 ∧ x10
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Selected Previous Results (1/2)

Parnas, Ron, Samorodnitsky 2001:
is a Boolean function f : {0, 1}n → {0, 1}:

a dictator? O(1/ǫ) queries

f(x1, . . . , x2007) = ¬x7

a conjunction? O(1/ǫ) queries

f(x1, . . . , x2007) = x2 ∧ ¬x4 ∧ x10

an s-term monotone DNFs? Õ(s2/ǫ) queries

f(x1, . . . , x2007) = (x2 ∧ x3 ∧ x20 ∧ x37) ∨ x21 ∨ (x2 ∧ x5)
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Selected Previous Results (2/2)

Fischer, Kindler, Ron, Safra, Samorodnitsky 2002
testing J-juntas f : Ωn → {0, 1}

non-adaptive one-sided test: Õ(J4/ǫ)

adaptive one-sided test: Õ(J3/ǫ)

non-adaptive two-sided test: Õ(J2/ǫ)

Ω̃(
√

J) lower bound for non-adaptive testing juntas
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Selected Previous Results (2/2)

Fischer, Kindler, Ron, Safra, Samorodnitsky 2002
testing J-juntas f : Ωn → {0, 1}

non-adaptive one-sided test: Õ(J4/ǫ)

adaptive one-sided test: Õ(J3/ǫ)

non-adaptive two-sided test: Õ(J2/ǫ)

Ω̃(
√

J) lower bound for non-adaptive testing juntas

Chockler, Gutfreund 2004
Ω(J) lower bound for testing juntas
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Our Results (1/2)

Generic tester for many classes of Boolean functions:

s-term DNFs (open problem in [PRS]): Õ(s4/ǫ2)

size-s decisions trees, size-s branching programs,
size-s Boolean formulas, s-sparse polynomials
over F2: Õ(s4/ǫ2)

size-s Boolean circuits: Õ(s6/ǫ2)

decision lists: Õ(1/ǫ2)

functions with Fourier degree ≤ d: Õ(26d/ǫ2)
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Our Results (2/2)

Extension of the junta test to functions with
non-Boolean ranges
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Our Results (2/2)

Extension of the junta test to functions with
non-Boolean ranges

same complexity as for the Boolean range (only a
constant-factor overhead)
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Our Results (2/2)

Extension of the junta test to functions with
non-Boolean ranges

same complexity as for the Boolean range (only a
constant-factor overhead)
also generalizes the generic algorithm:

s-sparse polynomials over field F: Õ((s|F|)4/ǫ2)
size-s algebraic circuits, and size-s algebraic
computation trees over F: Õ(s4 log4 |F|/ǫ2)
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Our Results (2/2)

Extension of the junta test to functions with
non-Boolean ranges

same complexity as for the Boolean range (only a
constant-factor overhead)
also generalizes the generic algorithm:

s-sparse polynomials over field F: Õ((s|F|)4/ǫ2)
size-s algebraic circuits, and size-s algebraic
computation trees over F: Õ(s4 log4 |F|/ǫ2)

Lower bounds:
s-sparse polynomials over F2: Ω̃(

√
s)

functions with Fourier degree ≤ d: Ω̃(
√

d)

s-sparse polynomials over field F: Ω̃(
√

s) for
|F| = O(1)
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The (Simplest) Junta Test [FKRSS]

f(
f(

)
)

= 1
= 0

x2 x7 x8 x1 x5 x6 x3 x4

Assign input variables to O(J2) buckets at random.
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f(
f(

)
)

= 1
= 0

x2 x7 x8 x1 x5 x6 x3 x4

Assign input variables to O(J2) buckets at random.

For each bucket, do Õ(J2/ǫ) times the following:
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The (Simplest) Junta Test [FKRSS]

f(
f(

)
)

= 1
= 0

x2 x7 x8 x1 x5 x6 x3 x4

1 0 1 0 0

Assign input variables to O(J2) buckets at random.

For each bucket, do Õ(J2/ǫ) times the following:
Random assignment to the variables not in the
bucket.
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The (Simplest) Junta Test [FKRSS]

f(
f(

)
)

= 1
= 0

x2 x7 x8 x1 x5 x6 x3 x4

1 0 1 0 0
0 1 1
1 0 0

Assign input variables to O(J2) buckets at random.

For each bucket, do Õ(J2/ǫ) times the following:
Random assignment to the variables not in the
bucket.
Two random assignments to the variables in the
bucket.
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The (Simplest) Junta Test [FKRSS]

f(
f(

)
)

= 1
= 0

x2 x7 x8 x1 x5 x6 x3 x4

f(
f(

)
)

= 1
= 0

1 0 1 0 0
0 1 1
1 0 0

Assign input variables to O(J2) buckets at random.

For each bucket, do Õ(J2/ǫ) times the following:
Random assignment to the variables not in the
bucket.
Two random assignments to the variables in the
bucket.
If the value of the function on the two assignments
is different, mark the bucket.
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The (Simplest) Junta Test [FKRSS]

f(
f(

)
)

= 1
= 0

x2 x7 x8 x1 x5 x6 x3 x4

Assign input variables to O(J2) buckets at random.

For each bucket, do Õ(J2/ǫ) times the following:
Random assignment to the variables not in the
bucket.
Two random assignments to the variables in the
bucket.
If the value of the function on the two assignments
is different, mark the bucket.

If more than J buckets marked, output NO.
Otherwise, output YES.
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Variation [FKRSS]

The variation of f : Ωn → {0, 1} on a subset
of variables I is

Vrf (I) = Erandom
assignment
to vars
not in I

Vrandom
assignment
to vars
in I

f
(

concatenation of
assignments

)
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Variation [FKRSS]

The variation of f : Ωn → {0, 1} on a subset
of variables I is

Vrf (I) = Erandom
assignment
to vars
not in I

Vrandom
assignment
to vars
in I

f
(

concatenation of
assignments

)

Measures sensitivity of f to the values of variables in I.
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Variation [FKRSS]

The variation of f : Ωn → {0, 1} on a subset
of variables I is

Vrf (I) = Erandom
assignment
to vars
not in I

Vrandom
assignment
to vars
in I

f
(

concatenation of
assignments

)

Measures sensitivity of f to the values of variables in I.

Plays a central role in the proof that the junta test works.
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Testing Classes of Juntas

Let C be a class of functions such that
each function in C is a J-junta
C is closed under permutations
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Testing Classes of Juntas

Let C be a class of functions such that
each function in C is a J-junta
C is closed under permutations

Algorithm for testing if f ∈ C:
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Testing Classes of Juntas

x2 x7 x8 x1 x5 x6 x3 x4

Let C be a class of functions such that
each function in C is a J-junta
C is closed under permutations

Algorithm for testing if f ∈ C:
Run the junta test, make sure that f is a J-junta, and
identify at most J subsets of variables such that
each subset contains at most one relevant variable,
and no relevant variable is left out.
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Testing Classes of Juntas

Implicit
Learning























x2 x7 x8 x1 x5 x6 x3 x4

Let C be a class of functions such that
each function in C is a J-junta
C is closed under permutations

Algorithm for testing if f ∈ C:
Run the junta test, make sure that f is a J-junta, and
identify at most J subsets of variables such that
each subset contains at most one relevant variable,
and no relevant variable is left out.
Collect sufficiently many samples for the function
restricted to the relevant variables (see next slide).
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Testing Classes of Juntas

Implicit
Learning























x2 x7 x8 x1 x5 x6 x3 x4

Let C be a class of functions such that
each function in C is a J-junta
C is closed under permutations

Algorithm for testing if f ∈ C:
Run the junta test, make sure that f is a J-junta, and
identify at most J subsets of variables such that
each subset contains at most one relevant variable,
and no relevant variable is left out.
Collect sufficiently many samples for the function
restricted to the relevant variables (see next slide).
Test them against all restrictions of functions in C to
relevant variables. If at least one restriction survives,
output YES. Otherwise, output NO.
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Collecting a Sample

0 0 1 1 0 1 0 0f( ) = 0

0 ?f ′( ) = 0

x2 x7 x8 x1 x5 x6 x3 x4

0 0 1 1 0 1 0 0f( ) = 0

Pick a random assignment x = (x1, . . . , xn). Need to
read off the hidden relevant variables.
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0 0 1 1 0 1 0 0f( ) = 0

0 ?f ′( ) = 0

x2 x7 x8 x1 x5 x6 x3 x4

0 0 1 1 0 1 0 0f( ) = 0

0 ?f ′( ) = 0

Pick a random assignment x = (x1, . . . , xn). Need to
read off the hidden relevant variables.

Let I be a set of variable indices. At most one variable
is relevant.
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Collecting a Sample

0 0 1 1 0 1 0 0f( ) = 0

0 ?f ′( ) = 0

x2 x7 x8 x1 x5 x6 x3 x4

x1 x6

x5

0 0 1 1 0 1 0 0f( ) = 0

0 ?f ′( ) = 0

Pick a random assignment x = (x1, . . . , xn). Need to
read off the hidden relevant variables.

Let I be a set of variable indices. At most one variable
is relevant.

Check as in the junta test which of {i : xi = 0} ∩ I and
{i : xi = 1} ∩ I contains an index of a relevant variable.
If you don’t detect a relevant variable in any, pick a
random value as the assignment on this set.
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Collecting a Sample

0 0 1 1 0 1 0 0f( ) = 0

0 ?f ′( ) = 0

x2 x7 x8 x1 x5 x6 x3 x4

x1 x6

x5

0 0 1 1 0 1 0 0f( ) = 0

0 1f ′( ) = 0

Pick a random assignment x = (x1, . . . , xn). Need to
read off the hidden relevant variables.

Let I be a set of variable indices. At most one variable
is relevant.

Check as in the junta test which of {i : xi = 0} ∩ I and
{i : xi = 1} ∩ I contains an index of a relevant variable.
If you don’t detect a relevant variable in any, pick a
random value as the assignment on this set.
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Approximation by Juntas
s-term DNFs are not a class of small juntas.

f(x1, . . . , x1000) = (x1∧¬x2)∨(x1∧¬x4∧¬x5)∨(x6∧x7∧. . .∧x1000)
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Approximation by Juntas
s-term DNFs are not a class of small juntas.

f(x1, . . . , x1000) = (x1∧¬x2)∨(x1∧¬x4∧¬x5)∨(x6∧x7∧. . .∧x1000)

If a DNF term x1 ∧ x2 ∧ . . . ∧ xk is long, it becomes
almost irrelevant. The probability of difference in a
random assignment is ≤ 2k.

f(x1, . . . , x1000) ≈ (x1 ∧ ¬x2) ∨ (x1 ∧ ¬x4 ∧ ¬x5)
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Approximation by Juntas
s-term DNFs are not a class of small juntas.

f(x1, . . . , x1000) = (x1∧¬x2)∨(x1∧¬x4∧¬x5)∨(x6∧x7∧. . .∧x1000)

If a DNF term x1 ∧ x2 ∧ . . . ∧ xk is long, it becomes
almost irrelevant. The probability of difference in a
random assignment is ≤ 2k.

f(x1, . . . , x1000) ≈ (x1 ∧ ¬x2) ∨ (x1 ∧ ¬x4 ∧ ¬x5)

Can drop such a term for large k’s. Each of our
arguments to f is random.
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Approximation by Juntas
s-term DNFs are not a class of small juntas.

f(x1, . . . , x1000) = (x1∧¬x2)∨(x1∧¬x4∧¬x5)∨(x6∧x7∧. . .∧x1000)

If a DNF term x1 ∧ x2 ∧ . . . ∧ xk is long, it becomes
almost irrelevant. The probability of difference in a
random assignment is ≤ 2k.

f(x1, . . . , x1000) ≈ (x1 ∧ ¬x2) ∨ (x1 ∧ ¬x4 ∧ ¬x5)

Can drop such a term for large k’s. Each of our
arguments to f is random.

Suffices to focus on DNFs that are J-juntas for
sufficiently large J .
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Approximation by Juntas
s-term DNFs are not a class of small juntas.

f(x1, . . . , x1000) = (x1∧¬x2)∨(x1∧¬x4∧¬x5)∨(x6∧x7∧. . .∧x1000)

If a DNF term x1 ∧ x2 ∧ . . . ∧ xk is long, it becomes
almost irrelevant. The probability of difference in a
random assignment is ≤ 2k.

f(x1, . . . , x1000) ≈ (x1 ∧ ¬x2) ∨ (x1 ∧ ¬x4 ∧ ¬x5)

Can drop such a term for large k’s. Each of our
arguments to f is random.

Suffices to focus on DNFs that are J-juntas for
sufficiently large J .

If want to stay τ -close, suffices to take J = s log(s/τ).
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Non-Boolean Ranges (f : Ω
n → X)

We prove that the junta test works with only a constant
factor overhead.
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Non-Boolean Ranges (f : Ω
n → X)

We prove that the junta test works with only a constant
factor overhead.

Our testing techniques can be applied as well.
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Non-Boolean Ranges (f : Ω
n → X)

We prove that the junta test works with only a constant
factor overhead.

Our testing techniques can be applied as well.

Need new tools to prove that. The variation only works
for the Boolean range.
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Non-Boolean Ranges (f : Ω
n → X)

Maybe mapping to {0, 1}? Won’t lose much? Which
mapping?

Erandom
assignment
to vars
not in I

max
φ:X→{0,1}

Vrandom
assignment
to vars
in I

(f ◦ φ)
(

concatenation of
assignments

)

max
φ:X→{0,1}

Erandom
assignment
to vars
not in I

Vrandom
assignment
to vars
in I

(f ◦ φ)
(

concatenation of
assignments

)
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Non-Boolean Ranges (f : Ω
n → X)

Maybe mapping to {0, 1}? Won’t lose much? Which
mapping?

Erandom
assignment
to vars
not in I

max
φ:X→{0,1}

Vrandom
assignment
to vars
in I

(f ◦ φ)
(

concatenation of
assignments

)

max
φ:X→{0,1}

Erandom
assignment
to vars
not in I

Vrandom
assignment
to vars
in I

(f ◦ φ)
(

concatenation of
assignments

)

Need both! But they are within a constant factor.
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Non-Boolean Ranges (f : Ω
n → X)

Maybe mapping to {0, 1}? Won’t lose much? Which
mapping?

Erandom
assignment
to vars
not in I

max
φ:X→{0,1}

Vrandom
assignment
to vars
in I

(f ◦ φ)
(

concatenation of
assignments

)

max
φ:X→{0,1}

Erandom
assignment
to vars
not in I

Vrandom
assignment
to vars
in I

(f ◦ φ)
(

concatenation of
assignments

)

Need both! But they are within a constant factor.

Can make all the proofs work.
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Open Questions

We gave a generic algorithm. Can improve the query
complexity for any of the considered classes of
functions?

Can improve the exponential running time by, for
instance, replacing the exponential implicit learning step
with a more efficient algorithm?
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Questions?
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