Testing for Concise Representations

Krzysztof Onak MIT, CSAIL

Joint work with Ilias Diakonikolas, Homin Lee, Kevin Matulef, Ronitt Rubinfeld, Rocco Servedio, Andrew Wan

Krzysztof Onak – Testing for Concise Representations – p. 1/21

Physics Review

Free fall:

Physics Review

Free fall:

All objects fall at constant speed.

Physics Review

Free fall:

All objects fall at constant speed.

Aristotle

Krzysztof Onak – Testing for Concise Representations – p. 2/21

A Physicist Discovering the World

A Physicist Discovering the World

Krzysztof Onak – Testing for Concise Representations – p. 3/21

A Physicist Discovering the World

Krzysztof Onak – Testing for Concise Representations – p. 3/21

Computer Scientist's Discrete World

• Access to an unknown function $f: \{0,1\}^n \rightarrow \{0,1\}$.

Computer Scientist's Discrete World

• Access to an unknown function $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Can it be represented as
 - a small decision tree?
 - a small DNF formula?
 - a small Boolean circuit?

Computer Scientist's Discrete World

• Access to an unknown function $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Can it be represented as
 - a small decision tree?
 - a small DNF formula?
 - a small Boolean circuit?

This could help you choose the right representation, if you wanted to learn the function.

• Query access to a function $f: \Omega^n \to X$.

- Query access to a function $f: \Omega^n \to X$.
- A class C of functions.

- Query access to a function $f: \Omega^n \to X$.
- A class C of functions.
- Want an algorithm that
 - outputs YES w.p. $\geq 2/3$, if $f \in C$
 - outputs NO w.p. ≥2/3, if *f* disagrees with each function in *C* on at least an *ϵ*-fraction of inputs (i.e. *f* is *ϵ*-far from any function in *C*)

- Query access to a function $f: \Omega^n \to X$.
- A class C of functions.
- Want an algorithm that
 - outputs YES w.p. $\geq 2/3$, if $f \in C$
 - outputs NO w.p. $\geq 2/3$, if f disagrees with each function in C on at least an ϵ -fraction of inputs (i.e. f is ϵ -far from any function in C)

Primary objective: minimize the number of queries

Plan of the Talk

- Basic definitions
- Testing vs. learning
- Previous results and our results
- Review of the junta test
- Our techniques:
 - Junta test + learning
 - Classes of functions close to juntas
 - Non-Boolean ranges
- Open questions

• An alternative look at a function $f: \{0,1\}^n \rightarrow \{0,1\}$

- An alternative look at a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$
- Final decision is a function of input values

- An alternative look at a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$
- Final decision is a function of input values
- Dictatorship: single variable decides

$$f = x_i$$
 or $f = \neg x_i$

- An alternative look at a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$
- Final decision is a function of input values
- Dictatorship: single variable decides

$$f = x_i$$
 or $f = \neg x_i$

• k-Junta: k variables decide

$$f = f'(x_{i_1}, \dots, x_{i_k})$$

- An alternative look at a function $f: \{0,1\}^n \rightarrow \{0,1\}$
- Final decision is a function of input values
- Dictatorship: single variable decides

$$f = x_i$$
 or $f = \neg x_i$

• k-Junta: k variables decide

$$f = f'(x_{i_1}, \ldots, x_{i_k})$$

 \checkmark direct democracy \approx majority

Suppose you know f is a dictatorship. Need $\Omega(\log n)$ queries to learn the relevant variable.

Suppose you know f is a dictatorship. Need $\Omega(\log n)$ queries to learn the relevant variable.

• $O(1/\epsilon)$ queries suffice to test if f is a dictatorship [Parnas, Ron, Samorodnitsky 2001]

Suppose you know f is a dictatorship. Need $\Omega(\log n)$ queries to learn the relevant variable.

• $O(1/\epsilon)$ queries suffice to test if f is a dictatorship [Parnas, Ron, Samorodnitsky 2001]

Can check if f is a dictatorship, not learning who is the dictator!!!

Suppose you know f is a dictatorship. Need $\Omega(\log n)$ queries to learn the relevant variable.

• $O(1/\epsilon)$ queries suffice to test if f is a dictatorship [Parnas, Ron, Samorodnitsky 2001]

Can check if f is a dictatorship, not learning who is the dictator!!!

Implicit learning: Learn the structure of f, but not which variables it depends on.

Selected Previous Results (1/2)

- Parnas, Ron, Samorodnitsky 2001:
 is a Boolean function $f: \{0,1\}^n → \{0,1\}$:
 - a dictator? $O(1/\epsilon)$ queries

$$f(x_1,\ldots,x_{2007}) = \neg x_7$$

Selected Previous Results (1/2)

- Parnas, Ron, Samorodnitsky 2001:
 is a Boolean function $f: \{0,1\}^n → \{0,1\}$:
 - a dictator? $O(1/\epsilon)$ queries

$$f(x_1,\ldots,x_{2007}) = \neg x_7$$

• a conjunction? $O(1/\epsilon)$ queries

 $f(x_1, \dots, x_{2007}) = x_2 \land \neg x_4 \land x_{10}$

Selected Previous Results (1/2)

- Parnas, Ron, Samorodnitsky 2001:
 is a Boolean function $f: \{0,1\}^n → \{0,1\}$:
 - a dictator? $O(1/\epsilon)$ queries

$$f(x_1,\ldots,x_{2007}) = \neg x_7$$

• a conjunction? $O(1/\epsilon)$ queries

$$f(x_1, \dots, x_{2007}) = x_2 \land \neg x_4 \land x_{10}$$

• an *s*-term monotone DNFs? $\tilde{O}(s^2/\epsilon)$ queries

 $f(x_1, \dots, x_{2007}) = (x_2 \land x_3 \land x_{20} \land x_{37}) \lor x_{21} \lor (x_2 \land x_5)$

Selected Previous Results (2/2)

Fischer, Kindler, Ron, Safra, Samorodnitsky 2002

- testing J-juntas $f: \Omega^n \to \{0, 1\}$
 - non-adaptive one-sided test: $\tilde{O}(J^4/\epsilon)$
 - adaptive one-sided test: $\tilde{O}(J^3/\epsilon)$
 - non-adaptive two-sided test: $\tilde{O}(J^2/\epsilon)$
- $\tilde{\Omega}(\sqrt{J})$ lower bound for non-adaptive testing juntas

Selected Previous Results (2/2)

Fischer, Kindler, Ron, Safra, Samorodnitsky 2002

- testing J-juntas $f: \Omega^n \to \{0, 1\}$
 - non-adaptive one-sided test: $\tilde{O}(J^4/\epsilon)$
 - adaptive one-sided test: $\tilde{O}(J^3/\epsilon)$
 - non-adaptive two-sided test: $\tilde{O}(J^2/\epsilon)$
- $\tilde{\Omega}(\sqrt{J})$ lower bound for non-adaptive testing juntas
- Chockler, Gutfreund 2004
 - $\Omega(J)$ lower bound for testing juntas

Generic tester for many classes of Boolean functions:

- s-term DNFs (open problem in [PRS]): $\tilde{O}(s^4/\epsilon^2)$
- size-*s* decisions trees, size-*s* branching programs, size-*s* Boolean formulas, *s*-sparse polynomials over \mathbb{F}_2 : $\tilde{O}(s^4/\epsilon^2)$
- size-s Boolean circuits: $\tilde{O}(s^6/\epsilon^2)$
- decision lists: $\tilde{O}(1/\epsilon^2)$
- functions with Fourier degree $\leq d$: $\tilde{O}(2^{6d}/\epsilon^2)$

Extension of the junta test to functions with non-Boolean ranges

- Extension of the junta test to functions with non-Boolean ranges
 - same complexity as for the Boolean range (only a constant-factor overhead)

- Extension of the junta test to functions with non-Boolean ranges
 - same complexity as for the Boolean range (only a constant-factor overhead)
 - also generalizes the generic algorithm:
 - s-sparse polynomials over field $\mathbb{F}: \tilde{O}((s|\mathbb{F}|)^4/\epsilon^2)$
 - size-*s* algebraic circuits, and size-*s* algebraic computation trees over \mathbb{F} : $\tilde{O}(s^4 \log^4 |\mathbb{F}|/\epsilon^2)$

- Extension of the junta test to functions with non-Boolean ranges
 - same complexity as for the Boolean range (only a constant-factor overhead)
 - also generalizes the generic algorithm:
 - s-sparse polynomials over field $\mathbb{F}: \tilde{O}((s|\mathbb{F}|)^4/\epsilon^2)$
 - size-*s* algebraic circuits, and size-*s* algebraic computation trees over \mathbb{F} : $\tilde{O}(s^4 \log^4 |\mathbb{F}|/\epsilon^2)$
- Lower bounds:
 - s-sparse polynomials over \mathbb{F}_2 : $\tilde{\Omega}(\sqrt{s})$
 - functions with Fourier degree $\leq d$: $\tilde{\Omega}(\sqrt{d})$
 - s-sparse polynomials over field \mathbb{F} : $\tilde{\Omega}(\sqrt{s})$ for $|\mathbb{F}| = O(1)$

The (Simplest) Junta Test [FKRSS]

Solution Assign input variables to $O(J^2)$ buckets at random.

$x_2 x_7 | x_8 | x_1 x_5 x_6 | x_3 x_4$

Krzysztof Onak – Testing for Concise Representations – p. 13/21

The (Simplest) Junta Test [FKRSS]

- Assign input variables to $O(J^2)$ buckets at random.
- For each bucket, do $\tilde{O}(J^2/\epsilon)$ times the following:

$$x_2 x_7 \mid x_8 \mid x_1 x_5 x_6 \mid x_3 x_4$$

Krzysztof Onak – Testing for Concise Representations – p. 13/21

- Assign input variables to $O(J^2)$ buckets at random.
- **•** For each bucket, do $\tilde{O}(J^2/\epsilon)$ times the following:
 - Random assignment to the variables not in the bucket.

- Assign input variables to $O(J^2)$ buckets at random.
- **•** For each bucket, do $\tilde{O}(J^2/\epsilon)$ times the following:
 - Random assignment to the variables not in the bucket.
 - Two random assignments to the variables in the bucket.

- Assign input variables to $O(J^2)$ buckets at random.
- For each bucket, do $\tilde{O}(J^2/\epsilon)$ times the following:
 - Random assignment to the variables not in the bucket.
 - Two random assignments to the variables in the bucket.
 - If the value of the function on the two assignments is different, mark the bucket.

- Assign input variables to $O(J^2)$ buckets at random.
- For each bucket, do $\tilde{O}(J^2/\epsilon)$ times the following:
 - Random assignment to the variables not in the bucket.
 - Two random assignments to the variables in the bucket.
 - If the value of the function on the two assignments is different, mark the bucket.
- If more than J buckets marked, output NO. Otherwise, output YES.

$$x_2 x_7 x_8 x_1 x_5 x_6 x_3 x_4$$

Variation [FKRSS]

• The variation of $f: \Omega^n \to \{0, 1\}$ on a subset of variables I is

$$\operatorname{Vr}_f(I) = \mathbb{E}_{\operatorname{random}} \quad \begin{array}{c} \mathbb{V}_{\operatorname{random}} & f\left(\begin{array}{c} \operatorname{concatenation of} \\ \operatorname{assignment} & \operatorname{assignment} \\ \operatorname{to vars} & \operatorname{to vars} \\ \operatorname{not in} I & \operatorname{in} I \end{array}
ight)$$

Variation [FKRSS]

• The variation of $f: \Omega^n \to \{0, 1\}$ on a subset of variables I is

$$\begin{aligned} \mathrm{Vr}_f(I) = \mathbb{E}_{\mathrm{random}} & \mathbb{V}_{\mathrm{random}} & f\left(\begin{array}{c} \mathrm{concatenation} \ \mathrm{of} \\ \mathrm{assignment} \\ \mathrm{to} \ \mathrm{vars} \\ \mathrm{not} \ \mathrm{in} \ I \end{array} \right) \end{aligned}$$

Measures sensitivity of f to the values of variables in I.

Variation [FKRSS]

• The variation of $f: \Omega^n \to \{0, 1\}$ on a subset of variables I is

$$\operatorname{Vr}_f(I) = \mathbb{E}_{\operatorname{random}} \quad \mathbb{V}_{\operatorname{random}} \quad f\left(egin{array}{c} \operatorname{concatenation} \operatorname{of} \\ \operatorname{assignment} \\ \operatorname{to} \operatorname{vars} \\ \operatorname{not} \operatorname{in} I \end{array}
ight)$$

- Measures sensitivity of f to the values of variables in I.
- Plays a central role in the proof that the junta test works.

- Let C be a class of functions such that
 - each function in C is a J-junta
 - C is closed under permutations

- Let C be a class of functions such that
 - each function in C is a J-junta
 - \bullet C is closed under permutations
- Algorithm for testing if $f \in C$:

- Let C be a class of functions such that
 - each function in C is a J-junta
 - C is closed under permutations
- Algorithm for testing if $f \in C$:
 - Run the junta test, make sure that f is a J-junta, and identify at most J subsets of variables such that each subset contains at most one relevant variable, and no relevant variable is left out.

- Let C be a class of functions such that
 - each function in C is a J-junta
 - \bullet C is closed under permutations
- Algorithm for testing if $f \in C$:
 - Run the junta test, make sure that f is a J-junta, and identify at most J subsets of variables such that each subset contains at most one relevant variable, and no relevant variable is left out.
 - Collect sufficiently many samples for the function restricted to the relevant variables (see next slide).

Implicit Learning

- Let C be a class of functions such that
 - each function in C is a J-junta
 - C is closed under permutations
- Algorithm for testing if $f \in C$:
 - Run the junta test, make sure that f is a J-junta, and identify at most J subsets of variables such that each subset contains at most one relevant variable, and no relevant variable is left out.
 - Collect sufficiently many samples for the function restricted to the relevant variables (see next slide).

Implicit Learning

Test them against all restrictions of functions in C to relevant variables. If at least one restriction survives, output YES. Otherwise, output NO.

$$x_2 x_7 x_8 x_1 x_5 x_6 x_3 x_4$$

Pick a random assignment $\mathbf{x} = (x_1, \ldots, x_n)$. Need to read off the hidden relevant variables.

- Pick a random assignment $\mathbf{x} = (x_1, \ldots, x_n)$. Need to read off the hidden relevant variables.
- Let I be a set of variable indices. At most one variable is relevant.

- Pick a random assignment $\mathbf{x} = (x_1, \ldots, x_n)$. Need to read off the hidden relevant variables.
- Let I be a set of variable indices. At most one variable is relevant.
- Check as in the junta test which of {i : xi = 0} ∩ I and {i : xi = 1} ∩ I contains an index of a relevant variable.
 If you don't detect a relevant variable in any, pick a random value as the assignment on this set.

- Pick a random assignment $\mathbf{x} = (x_1, \ldots, x_n)$. Need to read off the hidden relevant variables.
- Let I be a set of variable indices. At most one variable is relevant.
- Check as in the junta test which of {i : xi = 0} ∩ I and {i : xi = 1} ∩ I contains an index of a relevant variable.
 If you don't detect a relevant variable in any, pick a random value as the assignment on this set.

s-term DNFs are not a class of small juntas.

 $f(x_1, \dots, x_{1000}) = (x_1 \land \neg x_2) \lor (x_1 \land \neg x_4 \land \neg x_5) \lor (x_6 \land x_7 \land \dots \land x_{1000})$

s-term DNFs are not a class of small juntas.

 $f(x_1, \ldots, x_{1000}) = (x_1 \land \neg x_2) \lor (x_1 \land \neg x_4 \land \neg x_5) \lor (x_6 \land x_7 \land \ldots \land x_{1000})$

If a DNF term $x_1 \wedge x_2 \wedge \ldots \wedge x_k$ is long, it becomes almost irrelevant. The probability of difference in a random assignment is $\leq 2^k$.

 $f(x_1, \dots, x_{1000}) \approx (x_1 \wedge \neg x_2) \lor (x_1 \wedge \neg x_4 \wedge \neg x_5)$

s-term DNFs are not a class of small juntas.

 $f(x_1, \ldots, x_{1000}) = (x_1 \land \neg x_2) \lor (x_1 \land \neg x_4 \land \neg x_5) \lor (x_6 \land x_7 \land \ldots \land x_{1000})$

If a DNF term $x_1 \wedge x_2 \wedge \ldots \wedge x_k$ is long, it becomes almost irrelevant. The probability of difference in a random assignment is $\leq 2^k$.

 $f(x_1, \dots, x_{1000}) \approx (x_1 \wedge \neg x_2) \vee (x_1 \wedge \neg x_4 \wedge \neg x_5)$

Can drop such a term for large k's. Each of our arguments to f is random.

s-term DNFs are not a class of small juntas.

 $f(x_1, \ldots, x_{1000}) = (x_1 \land \neg x_2) \lor (x_1 \land \neg x_4 \land \neg x_5) \lor (x_6 \land x_7 \land \ldots \land x_{1000})$

If a DNF term $x_1 \wedge x_2 \wedge \ldots \wedge x_k$ is long, it becomes almost irrelevant. The probability of difference in a random assignment is $\leq 2^k$.

 $f(x_1, \dots, x_{1000}) \approx (x_1 \wedge \neg x_2) \vee (x_1 \wedge \neg x_4 \wedge \neg x_5)$

- Can drop such a term for large k's. Each of our arguments to f is random.
- Suffices to focus on DNFs that are *J*-juntas for sufficiently large *J*.

s-term DNFs are not a class of small juntas.

 $f(x_1, \ldots, x_{1000}) = (x_1 \land \neg x_2) \lor (x_1 \land \neg x_4 \land \neg x_5) \lor (x_6 \land x_7 \land \ldots \land x_{1000})$

If a DNF term $x_1 \wedge x_2 \wedge \ldots \wedge x_k$ is long, it becomes almost irrelevant. The probability of difference in a random assignment is $\leq 2^k$.

 $f(x_1, \dots, x_{1000}) \approx (x_1 \wedge \neg x_2) \lor (x_1 \wedge \neg x_4 \wedge \neg x_5)$

- Can drop such a term for large k's. Each of our arguments to f is random.
- Suffices to focus on DNFs that are *J*-juntas for sufficiently large *J*.
- If want to stay τ -close, suffices to take $J = s \log(s/\tau)$.

We prove that the junta test works with only a constant factor overhead.

- We prove that the junta test works with only a constant factor overhead.
- Our testing techniques can be applied as well.

- We prove that the junta test works with only a constant factor overhead.
- Our testing techniques can be applied as well.
- Need new tools to prove that. The variation only works for the Boolean range.

Maybe mapping to {0,1}? Won't lose much? Which mapping?

Maybe mapping to {0,1}? Won't lose much? Which mapping?

Need both! But they are within a constant factor.

Maybe mapping to {0,1}? Won't lose much? Which mapping?

- Need both! But they are within a constant factor.
- Can make all the proofs work.

Open Questions

- We gave a generic algorithm. Can improve the query complexity for any of the considered classes of functions?
- Can improve the exponential running time by, for instance, replacing the exponential implicit learning step with a more efficient algorithm?

Questions?