Testing for Concise Representations

Krzysztof Onak MIT, CSAIL

Joint work with Ilias Diakonikolas, Homin Lee,
Kevin Matulef, Ronitt Rubinfeld, Rocco Servedio, Andrew Wan

Physics Review

Free fall:

Krzysztof Onak - Testing for Concise Representations - p. 2/21

Physics Review

Free fall:

All objects fall at constant speed.

Physics Review

Free fall:

All objects fall at constant speed.

Aristotle

A Physicist Discovering the World

A Physicist Discovering the World

Krzysztof Onak - Testing for Concise Representations - p. 3/21

A Physicist Discovering the World

Krzysztof Onak - Testing for Concise Representations - p. 3/21

Computer Scientist's Discrete World

- Access to an unknown function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

Computer Scientist's Discrete World

- Access to an unknown function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Can it be represented as
- a small decision tree?
- a small DNF formula?
- a small Boolean circuit?

Computer Scientist's Discrete World

- Access to an unknown function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Can it be represented as
- a small decision tree?
- a small DNF formula?
- a small Boolean circuit?

- This could help you choose the right representation, if you wanted to learn the function.

The Model

- Query access to a function $f: \Omega^{n} \rightarrow X$.

The Model

- Query access to a function $f: \Omega^{n} \rightarrow X$.
- A class C of functions.

The Model

- Query access to a function $f: \Omega^{n} \rightarrow X$.
- A class C of functions.
- Want an algorithm that
- outputs YES w.p. $\geq 2 / 3$, if $f \in C$
- outputs NO w.p. $\geq 2 / 3$, if f disagrees with each function in C on at least an ϵ-fraction of inputs (i.e. f is ϵ-far from any function in C)

The Model

- Query access to a function $f: \Omega^{n} \rightarrow X$.
- A class C of functions.
- Want an algorithm that
- outputs YES w.p. $\geq 2 / 3$, if $f \in C$
- outputs NO w.p. $\geq 2 / 3$, if f disagrees with each function in C on at least an ϵ-fraction of inputs (i.e. f is ϵ-far from any function in C)
- Primary objective: minimize the number of queries

Plan of the Talk

- Basic definitions
- Testing vs. learning
- Previous results and our results
- Review of the junta test
- Our techniques:
- Junta test + learning
- Classes of functions close to juntas
- Non-Boolean ranges
- Open questions

Political Systems

- An alternative look at a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Political Systems

- An alternative look at a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Final decision is a function of input values

Political Systems

- An alternative look at a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Final decision is a function of input values
- Dictatorship: single variable decides

$$
f=x_{i} \text { or } f=\neg x_{i}
$$

Political Systems

- An alternative look at a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Final decision is a function of input values
- Dictatorship: single variable decides

$$
f=x_{i} \text { or } f=\neg x_{i}
$$

- k-Junta: k variables decide

$$
f=f^{\prime}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)
$$

Political Systems

- An alternative look at a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Final decision is a function of input values
- Dictatorship: single variable decides

$$
f=x_{i} \text { or } f=\neg x_{i}
$$

- k-Junta: k variables decide

$$
f=f^{\prime}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)
$$

- direct democracy \approx majority

Testing vs. Learning

- Suppose you know f is a dictatorship. Need $\Omega(\log n)$ queries to learn the relevant variable.

Testing vs. Learning

- Suppose you know f is a dictatorship. Need $\Omega(\log n)$ queries to learn the relevant variable.
- $O(1 / \epsilon)$ queries suffice to test if f is a dictatorship [Parnas, Ron, Samorodnitsky 2001]

Testing vs. Learning

- Suppose you know f is a dictatorship. Need $\Omega(\log n)$ queries to learn the relevant variable.
- $O(1 / \epsilon)$ queries suffice to test if f is a dictatorship [Parnas, Ron, Samorodnitsky 2001]
- Can check if f is a dictatorship, not learning who is the dictator!!!

Testing vs. Learning

- Suppose you know f is a dictatorship. Need $\Omega(\log n)$ queries to learn the relevant variable.
- $O(1 / \epsilon)$ queries suffice to test if f is a dictatorship [Parnas, Ron, Samorodnitsky 2001]
- Can check if f is a dictatorship, not learning who is the dictator!!!
- Implicit learning: Learn the structure of f, but not which variables it depends on.

Selected Previous Results (1/2)

- Parnas, Ron, Samorodnitsky 2001: is a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$:
- a dictator? $O(1 / \epsilon)$ queries

$$
f\left(x_{1}, \ldots, x_{2007}\right)=\neg x_{7}
$$

Selected Previous Results (1/2)

- Parnas, Ron, Samorodnitsky 2001: is a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$:
- a dictator? $O(1 / \epsilon)$ queries

$$
f\left(x_{1}, \ldots, x_{2007}\right)=\neg x_{7}
$$

- a conjunction? $O(1 / \epsilon)$ queries

$$
f\left(x_{1}, \ldots, x_{2007}\right)=x_{2} \wedge \neg x_{4} \wedge x_{10}
$$

Selected Previous Results (1/2)

- Parnas, Ron, Samorodnitsky 2001: is a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$:
- a dictator? $O(1 / \epsilon)$ queries

$$
f\left(x_{1}, \ldots, x_{2007}\right)=\neg x_{7}
$$

- a conjunction? $O(1 / \epsilon)$ queries

$$
f\left(x_{1}, \ldots, x_{2007}\right)=x_{2} \wedge \neg x_{4} \wedge x_{10}
$$

- an s-term monotone DNFs? $\tilde{O}\left(s^{2} / \epsilon\right)$ queries

$$
f\left(x_{1}, \ldots, x_{2007}\right)=\left(x_{2} \wedge x_{3} \wedge x_{20} \wedge x_{37}\right) \vee x_{21} \vee\left(x_{2} \wedge x_{5}\right)
$$

Selected Previous Results (2/2)

- Fischer, Kindler, Ron, Safra, Samorodnitsky 2002
- testing J-juntas $f: \Omega^{n} \rightarrow\{0,1\}$
- non-adaptive one-sided test: $\tilde{O}\left(J^{4} / \epsilon\right)$
- adaptive one-sided test: $\tilde{O}\left(J^{3} / \epsilon\right)$
- non-adaptive two-sided test: $\tilde{O}\left(J^{2} / \epsilon\right)$
- $\tilde{\Omega}(\sqrt{J})$ lower bound for non-adaptive testing juntas

Selected Previous Results (2/2)

- Fischer, Kindler, Ron, Safra, Samorodnitsky 2002
- testing J-juntas $f: \Omega^{n} \rightarrow\{0,1\}$
- non-adaptive one-sided test: $\tilde{O}\left(J^{4} / \epsilon\right)$
- adaptive one-sided test: $\tilde{O}\left(J^{3} / \epsilon\right)$
- non-adaptive two-sided test: $\tilde{O}\left(J^{2} / \epsilon\right)$
- $\tilde{\Omega}(\sqrt{J})$ lower bound for non-adaptive testing juntas
- Chockler, Gutfreund 2004
- $\Omega(J)$ lower bound for testing juntas

Our Results (1/2)

- Generic tester for many classes of Boolean functions:
- s-term DNFs (open problem in [PRS]): $\tilde{O}\left(s^{4} / \epsilon^{2}\right)$
- size-s decisions trees, size-s branching programs, size-s Boolean formulas, s-sparse polynomials over $\mathbb{F}_{2}: \tilde{O}\left(s^{4} / \epsilon^{2}\right)$
- size-s Boolean circuits: $\tilde{O}\left(s^{6} / \epsilon^{2}\right)$
- decision lists: $\tilde{O}\left(1 / \epsilon^{2}\right)$
- functions with Fourier degree $\leq d: \tilde{O}\left(2^{6 d} / \epsilon^{2}\right)$

Our Results (2/2)

- Extension of the junta test to functions with non-Boolean ranges

Our Results (2/2)

- Extension of the junta test to functions with non-Boolean ranges
- same complexity as for the Boolean range (only a constant-factor overhead)

Our Results (2/2)

- Extension of the junta test to functions with non-Boolean ranges
- same complexity as for the Boolean range (only a constant-factor overhead)
, also generalizes the generic algorithm:
. s-sparse polynomials over field $\mathbb{F}: \tilde{O}\left((s|\mathbb{F}|)^{4} / \epsilon^{2}\right)$
- size- s algebraic circuits, and size-s algebraic computation trees over $\mathbb{F}: \tilde{O}\left(s^{4} \log ^{4}|\mathbb{F}| / \epsilon^{2}\right)$

Our Results (2/2)

- Extension of the junta test to functions with non-Boolean ranges
. same complexity as for the Boolean range (only a constant-factor overhead)
- also generalizes the generic algorithm:
. s-sparse polynomials over field $\mathbb{F}: \tilde{O}\left((s|\mathbb{F}|)^{4} / \epsilon^{2}\right)$
- size-s algebraic circuits, and size-s algebraic computation trees over $\mathbb{F}: \tilde{O}\left(s^{4} \log ^{4}|\mathbb{F}| / \epsilon^{2}\right)$
- Lower bounds:
- s-sparse polynomials over $\mathbb{F}_{2}: \tilde{\Omega}(\sqrt{s})$
- functions with Fourier degree $\leq d: \tilde{\Omega}(\sqrt{d})$
- s-sparse polynomials over field $\mathbb{F}: \tilde{\Omega}(\sqrt{s})$ for $|\mathbb{F}|=O(1)$

The (Simplest) Junta Test [FKRSS]

- Assign input variables to $O\left(J^{2}\right)$ buckets at random.

$$
x_{2} x_{7}\left|x_{8}\right| x_{1} x_{5} x_{6} \mid x_{3} x_{4}
$$

The (Simplest) Junta Test [FKRSS]

- Assign input variables to $O\left(J^{2}\right)$ buckets at random.
- For each bucket, do $\tilde{O}\left(J^{2} / \epsilon\right)$ times the following:

$$
x_{2} x_{7}\left|x_{8}\right| x_{1} x_{5} x_{6} \mid x_{3} x_{4}
$$

The (Simplest) Junta Test [FKRSS]

- Assign input variables to $O\left(J^{2}\right)$ buckets at random.
- For each bucket, do $\tilde{O}\left(J^{2} / \epsilon\right)$ times the following:
- Random assignment to the variables not in the bucket.

$$
\begin{array}{cc|c|c|c}
x_{2} & x_{7} & x_{8} & x_{1} x_{5} x_{6} & x_{3} x_{4} \\
1 & 0 & 1 & & \\
\text { Krzysztof Onak - Testing for Concise Representations - p. 13/21 }
\end{array}
$$

The (Simplest) Junta Test [FKRSS]

- Assign input variables to $O\left(J^{2}\right)$ buckets at random.
- For each bucket, do $\tilde{O}\left(J^{2} / \epsilon\right)$ times the following:
- Random assignment to the variables not in the bucket.
- Two random assignments to the variables in the bucket.

$$
\begin{array}{cc|c|ccc|c}
x_{2} & x_{7} & x_{8} & x_{1} & x_{5} & x_{6} & x_{3} x_{4} \\
1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array} \underbrace{}_{\text {Krzysztof Onak - Testing for Concise Representations - p. 13/21 }}
$$

The (Simplest) Junta Test [FKRSS]

- Assign input variables to $O\left(J^{2}\right)$ buckets at random.
- For each bucket, do $\tilde{O}\left(J^{2} / \epsilon\right)$ times the following:
- Random assignment to the variables not in the bucket.
- Two random assignments to the variables in the bucket.
- If the value of the function on the two assignments is different, mark the bucket.

The (Simplest) Junta Test [FKRSS]

- Assign input variables to $O\left(J^{2}\right)$ buckets at random.
- For each bucket, do $\tilde{O}\left(J^{2} / \epsilon\right)$ times the following:
- Random assignment to the variables not in the bucket.
- Two random assignments to the variables in the bucket.
- If the value of the function on the two assignments is different, mark the bucket.
- If more than J buckets marked, output no. Otherwise, output YES.

$$
x_{2} x_{7}\left|x_{8}\right| x_{1} x_{5} x_{6}| | x_{3} x_{4}
$$

Variation [FKRSS]

- The variation of $f: \Omega^{n} \rightarrow\{0,1\}$ on a subset of variables I is

$$
\begin{aligned}
\operatorname{Vr}_{f}(I)= & \mathbb{E}_{\text {random }} \\
\begin{array}{ll}
\text { assignment } \\
\text { to vars } & \text { assignment }
\end{array} & \begin{array}{l}
\text { to vars } \\
\text { not in } I
\end{array} \\
& \text { in } I
\end{aligned}
$$

Variation [FKRSS]

- The variation of $f: \Omega^{n} \rightarrow\{0,1\}$ on a subset of variables I is

$$
\begin{aligned}
\operatorname{Vr}_{f}(I)= & \mathbb{E}_{\text {random }} \\
\begin{array}{ll}
\text { assignment } & \mathbb{V}_{\text {random }} \\
\text { to vars } & \text { assignment }
\end{array} & \begin{array}{l}
\text { to vars }
\end{array} \\
& \text { not in } I
\end{aligned} \quad \text { in } I . c\binom{\text { concatenation of }}{\text { assignments }}
$$

- Measures sensitivity of f to the values of variables in I.

Variation [FKRSS]

- The variation of $f: \Omega^{n} \rightarrow\{0,1\}$ on a subset of variables I is

$$
\begin{aligned}
\operatorname{Vr}_{f}(I)= & \mathbb{E}_{\text {random }} \\
& \mathbb{V}_{\text {assignment }} \\
& \text { to vars } \\
& \text { assignment } \\
\text { not in } I & \text { in vars }
\end{aligned} \quad f\binom{\text { concatenation of }}{\text { assignments }}
$$

- Measures sensitivity of f to the values of variables in I.
- Plays a central role in the proof that the junta test works.

Testing Classes of Juntas

- Let C be a class of functions such that
- each function in C is a J-junta
- C is closed under permutations

Testing Classes of Juntas

- Let C be a class of functions such that
- each function in C is a J-junta
- C is closed under permutations
- Algorithm for testing if $f \in C$:

Testing Classes of Juntas

- Let C be a class of functions such that
- each function in C is a J-junta
- C is closed under permutations
- Algorithm for testing if $f \in C$:
- Run the junta test, make sure that f is a J-junta, and identify at most J subsets of variables such that each subset contains at most one relevant variable, and no relevant variable is left out.

Testing Classes of Juntas

- Let C be a class of functions such that
- each function in C is a J-junta
- C is closed under permutations
- Algorithm for testing if $f \in C$:
- Run the junta test, make sure that f is a J-junta, and identify at most J subsets of variables such that each subset contains at most one relevant variable, and no relevant variable is left out.
(. Collect sufficiently many samples for the function restricted to the relevant variables (see next slide).

Testing Classes of Juntas

- Let C be a class of functions such that
- each function in C is a J-junta
- C is closed under permutations
- Algorithm for testing if $f \in C$:
- Run the junta test, make sure that f is a J-junta, and identify at most J subsets of variables such that each subset contains at most one relevant variable, and no relevant variable is left out.
(. Collect sufficiently many samples for the function restricted to the relevant variables (see next slide).
- Test them against all restrictions of functions in C to relevant variables. If at least one restriction survives, output YES. Otherwise, output NO.

$x_{3} x_{4}$

Collecting a Sample

- Pick a random assignment $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Need to read off the hidden relevant variables.

Collecting a Sample

- Pick a random assignment $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Need to read off the hidden relevant variables.
- Let I be a set of variable indices. At most one variable is relevant.

$$
\left.\begin{array}{rl|c|ccc|ccc}
x_{2} & x_{7} & x_{8} & x_{1} & x_{5} & x_{6} & x_{3} & x_{4} \\
f\left(\begin{array}{ll}
0 & 0
\end{array}\right. & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right)=0
$$

Collecting a Sample

- Pick a random assignment $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Need to read off the hidden relevant variables.
- Let I be a set of variable indices. At most one variable is relevant.
- Check as in the junta test which of $\left\{i: x_{i}=0\right\} \cap I$ and $\left\{i: x_{i}=1\right\} \cap I$ contains an index of a relevant variable. If you don't detect a relevant variable in any, pick a random value as the assignment on this set.

Collecting a Sample

- Pick a random assignment $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Need to read off the hidden relevant variables.
- Let I be a set of variable indices. At most one variable is relevant.
- Check as in the junta test which of $\left\{i: x_{i}=0\right\} \cap I$ and $\left\{i: x_{i}=1\right\} \cap I$ contains an index of a relevant variable. If you don't detect a relevant variable in any, pick a random value as the assignment on this set.

Approximation by Juntas

- s-term DNFs are not a class of small juntas.

$$
f\left(x_{1}, \ldots, x_{1000}\right)=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{4} \wedge \neg x_{5}\right) \vee\left(x_{6} \wedge x_{7} \wedge \ldots \wedge x_{1000}\right)
$$

Approximation by Juntas

- s-term DNFs are not a class of small juntas.
$f\left(x_{1}, \ldots, x_{1000}\right)=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{4} \wedge \neg x_{5}\right) \vee\left(x_{6} \wedge x_{7} \wedge \ldots \wedge x_{1000}\right)$
- If a DNF term $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{k}$ is long, it becomes almost irrelevant. The probability of difference in a random assignment is $\leq 2^{k}$.

$$
f\left(x_{1}, \ldots, x_{1000}\right) \approx\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{4} \wedge \neg x_{5}\right)
$$

Approximation by Juntas

- s-term DNFs are not a class of small juntas.
$f\left(x_{1}, \ldots, x_{1000}\right)=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{4} \wedge \neg x_{5}\right) \vee\left(x_{6} \wedge x_{7} \wedge \ldots \wedge x_{1000}\right)$
- If a DNF term $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{k}$ is long, it becomes almost irrelevant. The probability of difference in a random assignment is $\leq 2^{k}$.

$$
f\left(x_{1}, \ldots, x_{1000}\right) \approx\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{4} \wedge \neg x_{5}\right)
$$

- Can drop such a term for large k 's. Each of our arguments to f is random.

Approximation by Juntas

- s-term DNFs are not a class of small juntas.
$f\left(x_{1}, \ldots, x_{1000}\right)=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{4} \wedge \neg x_{5}\right) \vee\left(x_{6} \wedge x_{7} \wedge \ldots \wedge x_{1000}\right)$
- If a DNF term $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{k}$ is long, it becomes almost irrelevant. The probability of difference in a random assignment is $\leq 2^{k}$.

$$
f\left(x_{1}, \ldots, x_{1000}\right) \approx\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{4} \wedge \neg x_{5}\right)
$$

- Can drop such a term for large k 's. Each of our arguments to f is random.
- Suffices to focus on DNFs that are J-juntas for sufficiently large J.

Approximation by Juntas

- s-term DNFs are not a class of small juntas.
$f\left(x_{1}, \ldots, x_{1000}\right)=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{4} \wedge \neg x_{5}\right) \vee\left(x_{6} \wedge x_{7} \wedge \ldots \wedge x_{1000}\right)$
- If a DNF term $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{k}$ is long, it becomes almost irrelevant. The probability of difference in a random assignment is $\leq 2^{k}$.

$$
f\left(x_{1}, \ldots, x_{1000}\right) \approx\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{4} \wedge \neg x_{5}\right)
$$

- Can drop such a term for large k 's. Each of our arguments to f is random.
- Suffices to focus on DNFs that are J-juntas for sufficiently large J.
- If want to stay τ-close, suffices to take $J=s \log (s / \tau)$.

Non-Boolean Ranges $\left(f: \Omega^{n} \rightarrow X\right)$

- We prove that the junta test works with only a constant factor overhead.

Non-Boolean Ranges $\left(f: \Omega^{n} \rightarrow X\right)$

- We prove that the junta test works with only a constant factor overhead.
- Our testing techniques can be applied as well.

Non-Boolean Ranges $\left(f: \Omega^{n} \rightarrow X\right)$

- We prove that the junta test works with only a constant factor overhead.
- Our testing techniques can be applied as well.
- Need new tools to prove that. The variation only works for the Boolean range.

Non-Boolean Ranges $\left(f: \Omega^{n} \rightarrow X\right)$

- Maybe mapping to $\{0,1\}$? Won't lose much? Which mapping?

Non-Boolean Ranges $\left(f: \Omega^{n} \rightarrow X\right)$

- Maybe mapping to $\{0,1\}$? Won't lose much? Which mapping?

- Need both! But they are within a constant factor.

Non-Boolean Ranges $\left(f: \Omega^{n} \rightarrow X\right)$

- Maybe mapping to $\{0,1\}$? Won't lose much? Which mapping?

- Need both! But they are within a constant factor.
- Can make all the proofs work.

Open Questions

- We gave a generic algorithm. Can improve the query complexity for any of the considered classes of functions?
- Can improve the exponential running time by, for instance, replacing the exponential implicit learning step with a more efficient algorithm?

Questions?

