DS-210: PROGRAMMING FOR DATA SCIENCE
LECTURE 21
0. ANY QUESTIONS ABOUT THE FINAL PROJECT PROPOSAL?
1. USEFUL PREDEFINED GENERIC DATA TYPES
2. TRAITS

THE FINAL PROJECT PROPOSAL

ANY QUESTIONS?

1. USEFUL PREDEFINED GENERIC DATA TYPES
2. TRAITS

LAST TIME: GENERICS AND GENERIC DATA TYPES

e Generic code

e Method for avoiding copying code

e No runtime penalty: different versions
created during compilation

LAST TIME: GENERICS AND GENERIC DATA TYPES

» Generic code Generic data types:

e Method for avoiding copying code

e No runtime penalty: different versions e Data types (struct/enum)
created during compilation parameterized by types

Two useful predifined types: Option<T> and
Result<T, E>

ENUM Option<T>

Some(T) or None

e Useful for when there may be no

output

e Compared to None or null in other
programming languages:

= Rust forces handling of this case

Presentation: "Mull References: The Billlon Dollar Mistake"

Track: Historically bad ideas
Time: Friday 13:00 - 14:00
Location: Abbey Room

Abstract: 1 call it my billion-dollar mistake. 1t was the invention af the null reference in
1565, At that time, | was designing the first comprehensive type system for references
in an object crented language (ALGOL W), My goal was to ensure that all use of
referances should be absolulely safe, with checking performed automatically by the
compiler. But | couldn't resist the temptation to put in a null reference, simply because it
was s0easy o implement, This has led o innumerable errors, volnerabilities, and
system crashes, which have probably caused a billion dollars of pain and damage in
Lhe last Torty years. In recanl yaars, a number of program analysers like PREx and
PREfast in Microsoft have been used to check references, and give warnings if there is
a rsk they may be non-null. More recent programming languages like Spec# have
introduced declarations for nan-null references. This is the solution. which | rejected in
154645,

Tony Hoare, Inventor of QuickSort, Turing Award Winner

Sir Charles Antony Richard Hoare (Tony Hoare or
C.AR. Hoare, borm January 11, 1924 is a British
computer scientist, probakbly best known for the
develapment in 1860 of Quicksarl (or Hoarasorl),
one of the world's most widely used sorting
algorithms.

He also developed Hoare logic for werifying program
correctness, and the formal language
Communicaling Sequential Processes (C5P) usead
o specify the interactions of concurrant processes
{including the Dining philosophers problem) and the
inspiration for the Occam programming language.

In [2]: fn prime(x:u32) -> bool {
for i in 2..x {

ENUM Option<T> SR

return false;

}
Some(T) or None if x <= 1 {false} else {true}

-~ Useful for When there may be no fn prime in range(a:u32,b:u32) -> Option<u32> {

for i in a..=b {

if prime(i) {return Some(i);}
output }

None

e Compared to None or null in other)
programming languages:
= Rust forces handling of this case

h Y
Presentation: “Null References: The Billlon Dollar Mistake" Tony Hoare, Inventor of QuickSort, Turing Award Winner
Track: Historically bad ideas =g B Sir Charles Antony Richard Hoare (Tony Hoare or

C.AR. Hoare, borm January 11, 1924 is a British
computer scientist, probakbly best known for the
develapment in 1860 of Quicksarl (or Hoarasorl),
one of the world's most widely used sorting
algorithms.

Time: Friday 13:00 - 14:00
Location: Abbey Room

Abstract: | call it my billion-dollar mistake. It was the invention af the null reference in
1565, At that time, | was designing the first comprehensive type system for references
In an object criented language (ALGOL W), My goal was to ensure that all use of
references should be absolutely safe, with checking performed automatically by the
compiler. But | couldn't resist the temptation to put in a null reference, simply because it
was s0easy o implement, This has led o innumerable errors, volnerabilities, and
system crashes, which have probably caused a billion dollars of pain and damage in
Lhe last Torty years. In recanl yaars, a number of program analysers like PREx and
PREfast in Microsoft have been used to check references, and give warnings if there is
a risk they may be non-null. Mora recent programming languages like Spec# have
introduced declarations for nan-null references. This is the solution. which | rejected in
159465,

He also developed Hoare logic for werifying program
correctness, and the formal language
Communicaling Sequential Processes (C5P) usead
o specify the interactions of concurrant processes
{including the Dining philosophers problem) and the
inspiration for the Occam programming language.

In [2]: fn prime(x:u32) -> bool ({
for i in 2..x {

ENUM Option<T> SR

return false;

}
Some(T) or None if x <= 1 {false} else {true}

-~ Useful for When there may be no fn prime in range(a:u32,b:u32) -> Option<u32> {

for i in a..=b {

if prime(i) {return Some(i);}
output }

None

e Compared to None or null in other)

programming Ianguages' In [3]: prime_in range(888,906)

= Rust forces handling of this case

OQut[3]: None

Presentation: “Null References: The Billlon Dollar Mistake" Tony Hoare, Inventor of QuickSort, Turing Award Winner
Track: Historically bad ideas *

Time: Friday 13:00 - 14:00
Location: Abbey Room

e Sir Charles Antony Richard Hoare (Tony Hoare or
C.AR. Hoare, borm January 11, 1924 is a British
computer scientist, probakbly best known for the
develapment in 1860 of Quicksarl (or Hoarasorl),
one of the world's most widely used sorting

Abstract: | call it my billion-dollar mistake. It was the invention of the null reference in
algarithms.

1565, At that time, | was designing the first comprehensive type system for references
In an object criented language (ALGOL W), My goal was to ensure that all use of
references should be absolutely safe, with checking performed automatically by the
compiler. But | couldn't resist the temptation to put in a null reference, simply because it
was s0easy o implement, This has led o innumerable errors, volnerabilities, and
system crashes, which have probably caused a billion dollars of pain and damage in
Lhe last Torty years. In recanl yaars, a number of program analysers like PREx and
PREfast in Microsoft have been used to check references, and give warnings if there is
a risk they may be non-null. Mora recent programming languages like Spec# have
introduced declarations for nan-null references. This is the solution. which | rejected in
159465,

He also developed Hoare logic for werifying program
correctness, and the formal language
Communicaling Sequential Processes (C5P) usead
o specify the interactions of concurrant processes
{including the Dining philosophers problem) and the
inspiration for the Occam programming language.

X

ENUM Option<T>

Some(T) or None

e Useful for when there may be no

output

e Compared to None or null in other

programming languages:
= Rust forces handling of this case

Presentation: "Mull References: The Billlon Dollar Mistake"

Track: Historically bad ideas
Time: Friday 13:00 - 14:00
Location: Abbey Room

Abstract: | call it my billion-dollar mistake. It was the invention af the null reference in
1565, At that time, | was designing the first comprehensive type system for references
In an object criented language (ALGOL W), My goal was to ensure that all use of
referances should be absolutely safe, with checking performed automatically by the
compiler. But | couldn't resist the temptation to put in a null reference, simply because it
was s0easy o implement, This has led o innumerable errors, volnerabilities, and
system crashes, which have probably caused a billion dollars of pain and damage in
Lhe last Torty years. In recanl yaars, a number of program analysers like PREx and
PREfast in Microsoft have been used to check references, and give warnings if there is
a risk they may be non-null. Mora recent programming languages like Spec# have
introduced declarations for nan-null references. This is the solution. which | rejected in
159465,

Tony Hoare, Inventor of QuickSort, Turing Award Winner

A Sir Charles Antony Richard Hoare (Tony Hoare or
C.AR. Hoare, borm January 11, 1924 is a British
computer scientist, probakbly best known for the
develapment in 1860 of Quicksarl (or Hoarasorl),
one of the world's most widely used sorting
algorithms.

He also developed Hoare logic for werifying program
correctness, and the formal language
Communicaling Sequential Processes (C5P) usead
o specify the interactions of concurrant processes
{including the Dining philosophers problem) and the
inspiration for the Occam programming language.

In [2]

In [3]

Out[3]

In [4]

Out[4]

fn prime(x:u32)

for i

in 2..x {

if X %1 ==0
return false;

}

{

-> bool {

if x <= 1 {false} else {true}

fn prime in range(a:u32,b:u32) -> Option<u32> {

for i

in a..=b {

if prime(i) {return Some(i);}

}

None

prime in range(888,906)

None

let tmp
tmp

Some (839)

Option<u32=>

prime _in range(830,856);

ENUM Option<T>

Some(T) or None

e Useful for when there may be no

output

e Compared to None or null in other

programming languages:

= Rust forces handling of this case

Presentation: "Mull References: The Billlon Dollar Mistake"

Track: Historically bad ideas
Time: Friday 13:00 - 14:00
Location: Abbey Room

Abstract: | call it my billion-dollar mistake. It was the invention af the null reference in
1565, At that time, | was designing the first comprehensive type system for references
In an object criented language (ALGOL W), My goal was to ensure that all use of
references should be absolutely safe, with checking performed automatically by the
compiler. But | couldn't resist the temptation to put in a null reference, simply because it
was s0easy o implement, This has led o innumerable errors, volnerabilities, and
system crashes, which have probably caused a billion dollars of pain and damage in
Lhe last Torty years. In recanl yaars, a number of program analysers like PREx and
PREfast in Microsoft have been used to check references, and give warnings if there is
a risk they may be non-null. Mora recent programming languages like Spec# have
introduced declarations for nan-null references. This is the solution. which | rejected in
159465,

Tony Hoare, Inventor of QuickSort, Turing Award Winner

| e

Sir Charles Antony Richard Hoare (Tony Hoare or
C.AR. Hoare, borm January 11, 1924 is a British
computer scientist, probakbly best known for the
develapment in 1860 of Quicksarl (or Hoarasorl),
one of the world's most widely used sorting
algorithms.

He also developed Hoare logic for werifying program
correctness, and the formal language
Communicaling Sequential Processes (C5P) usead
o specify the interactions of concurrant processes
{including the Dining philosophers problem) and the
inspiration for the Occam programming language.

In [2]:

In [3]:

Out[3]:

In [4]:

out[4]:

In [5]:

fn prime(x:u32) -> bool {
for i in 2..x {
if X %1 ==0 {
return false;

}
if x <= 1 {false} else {true}

fn prime in range(a:u32,b:u32) -> Option<u32> {
for i in a..=b {
if prime(i) {return Some(i);}

}

None

prime in range(888,906)
None

let tmp
tmp

Option<u32> = prime_in range(830,856);

Some (839)

// extracting the content of Some(...)
if let Some(x) = tmp {
println! ("Some({})",x);
}
match tmp {
Some(x) => println!("Some({})",x),
None => println!("None"),

1

Some (839)
Some (839)

INTERESTING RELATED FACT: BERTRAND'S POSTULATE

THERE IS ALWAYS A PRIME NUMBER IN [&, 2k].

ENUM Opt1on<T>: USEFUL METHODS

Check the variant

e .1S some() -> bool
e .15 none() -> bool

Get the value in Some or terminate with an
error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Some or a default value

e .unwrap or(default value:T) -> T

ENUM Opt1on<T>: USEFUL METHODS

In [6]: let x = Some(3);
X.1is none()

Check the variant

Qut[6]: false

e .1S some() -> bool
e .15 none() -> bool

Get the value in Some or terminate with an
error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Some or a default value

e .unwrap or(default value:T) -> T

ENUM Opt1on<T>: USEFUL METHODS

In [7]: let x = Some(3);
X.1ls some()

Check the variant

OQut[7]: true

e .1S some() -> bool
e .15 none() -> bool

Get the value in Some or terminate with an
error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Some or a default value

e .unwrap or(default value:T) -> T

ENUM Opt1on<T>: USEFUL METHODS

In [7]: let x = Some(3);
Check the variant x.1is_some()

OQut[7]: true

e .15 some() -> bool In [8]: //let x = Some(3);
o iS_nonE() -> bool let y = x.ex[;ect("This should have been an integer"):;

y

: . : thread '<unnamed>' panicked at 'This should have been a
Get the value in Some or terminate with an g gy o e E
stack backtrace:
error ©: rust begin unwind
at /rustc/9d1b2106e23blabd32fcelfl7267604a
5102f57a/library/std/src/panicking.rs:498:5
1: core::panicking::panic_ fmt

e .unwrap() -> T at /rustc/9d1b2106e23blabd32fcelf17267604a
5102f57a/library/core/src/panicking.rs:116:14
® -S> 2: core::panicking::panic display
) expeCt (message) T at /rustc/9d1lb2106e23blabd32fcelfl7267604a

5102f57a/library/core/src/panicking.rs:72:5
. 3: core::panicking::panic str
Get the value in Some or a default value at /rustc/9d1b2106e23blabd32fcelf17267604a
5102f57a/library/core/src/panicking.rs:56:5
4: core::option::expect failed
at /rustc/9d1lb2106e23blabd32fcelfl7267604a
. _ 5102f57a/library/core/src/option.rs:1817:5
e .unwrap or(default value:T) -> T T e
6: evcxr::runtime: :Runtime::run_ loop
7: evexr::runtime::runtime hook
8: evcxr jupyter::main
note: Some details are omitted, run with “RUST BACKTRAC
E=full® for a verbose backtrace.
Segmentation fault.

ENUM Opt1on<T>: USEFUL METHODS

Check the variant

e .1S some() -> bool
e .15 none() -> bool

Get the value in Some or terminate with
error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Some or a default value

e .unwrap or(default value:T)

an

-> T

In [7]:

Out[7]:

In [9]:

Out[9]:

let x = Some(3);
X.1s some()

true

let x = Some(3);
//let x = None;
let y = X.expect("This should have been an integer");

y

3

ENUM Opt1on<T>: USEFUL METHODS

Check the variant

e .1S some() -> bool
e .15 none() -> bool

Get the value in Some or terminate with
error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Some or a default value

e .unwrap or(default value:T)

an

-> T

In [7]:

Out[7]:

In [9]:

Out[9]:

In [13]:

Out[13]:

let x = Some(3);
X.1s some()

true

let x = Some(3);
//let x = None;
let y = X.expect("This should have been an integer");

y

3

let x = Some(3);
//let x = None;
X.unwrap or(0)

3

ENUM Opt1on<T>: USEFUL METHODS

Check the variant

e .1S some() -> bool
e .15 none() -> bool

Get the value in Some or terminate with
error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Some or a default value

e .unwrap or(default value:T)

an

-> T

In [7]:

Out[7]:

In [9]:

Out[9]:

In [14]:

Out[14]:

let x = Some(3);
X.1s some()

true

let x = Some(3);
//let x = None;
let y = X.expect("This should have been an integer");

y

3

//let x = Some(3);
let x = None;
X.unwrap or(0)

C]

ENUM Opt1on<T>: USEFUL METHODS

In [7]: let x = Some(3);
X.1ls some()

Check the variant

Out[7]: true

— O L
o is_nonE() -> bool let y = x.expe;:t("This should have been an integer"):;

y

Get the value in Some or terminate with an R

error In [14]: //let x = Some(3);
let x = None;
X.unwrap or(0)

® .unwrap() -> T out[14]: @

e .expect(message) -> T
More details:
Get the value in Some or a default value

e https://doc.rust-lang.org/std/option/
e .unwrap_or(detault_value:T) -> T e https://doc.rust-lang.org/std/option
[enum.Option.html

ENUM Result<T, E>

Ok(T) or Err(E)

e Useful when you want to pass a
solution or information about an error

ENUM Result<T, E>

Ok(T) or Err(E)

e Useful when you want to pass a
solution or information about an error

In [15]:

fn divide(a: ,b:) -> Result< ,String> {
match b {
@ => Err(String::from("Division by zero")),
=> 0Ok(a / b)

}

ENUM Result<T, E>

Ok(T) or Err(E)

e Useful when you want to pass a
solution or information about an error

In [15]: fn divide(a: ,b:) -> Result< ,String> {
match b {
@ => Err(String::from("Division by zero")),
__=> 0k(a / b)

}
}

In [16]: divide(3,0)

Out[1l6]: Err("Division by zero")

ENUM Result<T, E>

Ok(T) or Err(E)

e Useful when you want to pass a
solution or information about an error

In [15]:

In [16]:

Out[l6]:

In [17]:

Out[17]:

fn divide(a: b) -> Results< ,String> {

match b {
@ => Err(String::from("Division by zero")),
_=> 0k(a / b)
}
}
divide(3,0)

Err("Division by zero")
divide(2022,3)

0k(674)

ENUM Result<T, E>:USEFUL METHODS

In [18]: let r1 : Result<
//rl.is ok()
rl.is err()

Check the variant

Out[18]: false
e .15 ok() -> bool

e .1s err() -> bool

Get the value in Ok or terminate with an
error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Ok or a default value

e .unwrap or(default value:T) -> T

, ()= = 0k(3);

ENUM Result<T, E>:USEFUL METHODS

In [20]: let r1 : Result<
//rl.is err()
rl.is ok()

Check the variant

Out[20]: true

e .15 ok() -> bool
e .1s err() -> bool

Get the value in Ok or terminate with an
error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Ok or a default value

e .unwrap or(default value:T) -> T

, ()= = 0k(3);

ENUM Result<T, E>:USEFUL METHODS

In [20]:

Check the variant

Out[20]:

e .15 ok() -> bool
e .1s err() -> bool

Get the value in Ok or terminate with an
error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Ok or a default value

e .unwrap or(default value:T) -> T

In [21]:

Out[21]:

let r1 : Result<
//rl.is err()
rl.is ok()

true
rl.unwrap()

3

, ()= = 0k(3);

ENUM Result<T, E>:USEFUL METHODS

Check the variant

e .15 ok() -> bool
e .1s err() -> bool

Get the value in Ok or terminate with an

error

e .unwrap() -> T
e .expect(message) -> T

Get the value in Ok or a default value

e .unwrap or(default value:T)

-> T

In [20]:

Out[20]:

In [21]:

Out[21]:

In [22]:

let rl : Result< , ()= = 0k(3);
//rl.is err()

ri.is ok()

true

rl.unwrap()

3

let r2 : Result< , ()= = Err(());
let r3 : Result< , ()= = 0k(123);

println!("r2: {}\nr3: {}",
r2.unwrap or(0),
r3.unwrap or(0));

rz: 0
r3: 123

ENUM Result<T, E>:USEFUL METHODS

In [20]: 1let rl1 : Result<i32,()> = 0k(3);
Check the variant //rl.is_err()

rl.is ok()

Out[20]: true

e .15 0K() -> bool

In [21]: rl.unwrap()
e .1s err() -> bool

Qut([21]: 3
. - a In [22]: 1let r2 : Result<u32,()> = Err(());
Get the value in Ok or terminate with an Lot 13 Reetltcuss (1o = Ok(123).
error println!("r2: {}\nr3: {}",
r2.unwrap or(0),
r3.unwrap or(0));
e .unwrap() -> T
r2: 0
e .expect(message) -> T i
Get the value in Ok or a default value More details:
e .unwrap_or(default_value:T) -> T e https://doc.rust-lang.org/std/result/

e https://doc.rust-lang.org/std/result

/enum.Result.html

1. USEFUL PREDEFINED GENERIC DATA TYPES
2. TRAITS

TRAITS

e Common behavior for a set of types
e Some other programming languages: interface

TRAITS

e Common behavior for a set of types
e Some other programming languages: interface

SAMPLE TRAIT DEFINITION

In [23]: trait Person {
// method header specifications
fn get name(&self) -> String;
fn get age(&self) -> u32;

// default implementation of a method
fn description(&self) -> String {

format! ("{} ({})",self.get name(),self.get age())
}

SAMPLE TRAIT IMPLEMENTATION 1

In [24]: struct SoccerPlayer {
name: String,
age: u32,
team: String,

}

impl Person for SoccerPlayer {
fn get age(&self) -> u32 {
self.age

}

fn get name(&self) -> String {
self.name.clone()
}
}

impl SoccerPlayer {
fn create(name:String,age:u32,team:String) -> SoccerPlayer{
SoccerPlayer{name, age, team}

}

X

SAMPLE TRAIT IMPLEMENTATION 2

In [25]: #[derive(Debug)]
struct RegularPerson {
year born: u32,
first name: String,
middle name: String,
last name: String,

}

impl Person for RegularPerson {
fn get age(&self) -> u32 {
2022 - self.year born

}
fn get name(&self) -> String {
if self.middle name == "" {
format! ("{} {}",self.first name,self.last name)
} else {

format! ("{} {} {}",self.first name,self.middle name,self.last name)

}
}

impl RegularPerson {

fn create(first name:String,middle name:String,last name:String,year born:u32) -> RegularPerson {
RegularPerson{first name,middle name,last name,year born}

}

3
.-]

USING TRAITS IN FUNCTIONS

In [26]: // sample function accepting object implementing trait
fn long description(person: &impl Person) {
println!("{}, who is {} old", person.get name(), person.get age());

}

USING TRAITS IN FUNCTIONS

In [26]: // sample function accepting object implementing trait
fn long description(person: &impl Person) {

println!("{}, who is {} old", person.get name(), person.get age());

}

EXAMPLES

In [27]: 1let mlk = RegularPerson::create(
String::from("Martin"),
String::from("Luther"),
String::from("King"),

1929
);

let zlatan = SoccerPlayer::create(String

::from("Zlatan Ibrahimovic"), 40, String::from("AC Milan"));

USING TRAITS IN FUNCTIONS

In [26]: s/ sample function accepting object implementing trait
fn long description(person: &impl Person) {

printin!("{}, who is {} old", person.get name(), person.get age());

EXAMPLES

In [27]:

In [28]:

}

Let mlk = RegularPerson::create(
String::from("Martin"),
String::from("Luther"),
String::from("King"),

1929

);

let zlatan = SoccerPlayer::create(String

println!("{}",mlk.description());
long description(&zlatan);

Martin Luther King (93)
Zlatan Ibrahimovic, who 1is 40 old

::from("Zlatan Ibrahimovic"), 40, String::from("AC Milan"));

USING TRAITS IN FUNCTIONS: LONG VS. SHORT FORM

In [29]: s/ short version
fn long description(person: &impl Person) {
println!("{}, who is {} old", person.get name(), person.get age());

}

// longer version
fn long description 2<T: Person>(person: &T) {
println!("{}, who is {} old", person.get name(), person.get age());

}

USING TRAITS IN FUNCTIONS: LONG VS. SHORT FORM

In [29]: // short version
fn long description(person: &impl Person) {

println!("{}, who is {} old", person.get name(), person.get age());
}

// longer version
fn long description 2<T: Person>(person: &T) {
println!("{}, who is {} old", person.get name(), person.get age());

}

In [30]: long description(&zlatan);
long description 2(&zlatan);

Zlatan Ibrahimovic, who is 40 old
Zlatan Ibrahimovic, who is 40 old

USING TRAITS IN FUNCTIONS: MULTIPLE TRAITS

In [31]: use core::fmt::Debug;

fn multiple 1(person: &(impl Person + Debug)) {
println!("{:?}",person);
println!("Age: {}",person.get age());

}

USING TRAITS IN FUNCTIONS: MULTIPLE TRAITS

In [31]: use core::fmt::Debug;

fn multiple 1(person: &(impl Person + Debug)) {
println!("{:?}",person);
println! ("Age: {}",person.get age());

In [32]: multiple 1(&zlatan);

multiple 1(&zlatan);

nannnns “SoccerPlayer cannot be formatted using {:?}
multiple 1(&zlatan);
nanananans required by a bound introduced by this call
"SoccerPlayer’™ doesn't implement “Debug’
help: the trait "Debug’ is not implemented for “SoccerPlayer’

USING TRAITS IN FUNCTIONS: MULTIPLE TRAITS

In [31]: use core::fmt::Debug;

fn multiple 1(person: &(impl Person + Debug)) {
println!("{:?}",person);
println!("Age: {}",person.get age());

In [32]: multiple 1(&zlatan);

multiple 1(&zlatan);

nannnns “SoccerPlayer cannot be formatted using {:?}
multiple 1(&zlatan);
nanananans required by a bound introduced by this call
"SoccerPlayer”™ doesn't implement “Debug’
help: the trait "Debug’ is not implemented for “SoccerPlayer’

In [33]: multiple 1(&mlk);

RegularPerson { year born: 1929, first name: "Martin", middle name: "Luther", last name: "King" }
Age: 93

USING TRAITS IN FUNCTIONS: MULTIPLE TRAITS

In [34]:

//

fn

fn

fn

three options, useful for different settings

multiple 1(person: &(impl Person + Debug)) {
println!("{:?}",person);
println!("Age: {}",person.get age());

multiple 2<T: Person + Debug>(person: &T) {
println!("{:?}",person);
println!("Age: {}",person.get age());

multiple 3<T>(person: &T)
where T: Person + Debug

println!("{:?}",person);
println!("Age: {}",person.get age());

USING TRAITS IN FUNCTIONS: MULTIPLE TRAITS

In [34]: // three options, useful for different settings

fn multiple 1(person: &(impl Person + Debug)) {
println!("{:?}",person);
println!("Age: {}",person.get age());

}

fn multiple 2<T: Person + Debug>(person: &T) {
println!("{:?}",person);
println!("Age: {}",person.get age());

}

fn multiple 3<T>(person: &T)
where T: Person + Debug

{
println!("{:?}",person);
println! ("Age: {}",person.get age());

In [35]: multiple 1(&mlk);
multiple 2(&mlk);
multiple 3(&mlk);

RegularPerson { year born: 1929, first name: "Martin", middle name: "Luther", last name: "King" }

Age: 93
RegularPerson { year born: 1929, first name: "Martin", middle name: "Luther", last name: "King" }
Age: 93

RegularPerson { year born: 1929, first name: "Martin", middle name: "Luther", last name: "King" }
Age: 93

RETURNING TYPES IMPLEMENTING A TRAIT

In [36]: fn get zlatan() -> impl Person {
SoccerPlayer: :create(String::from("Zlatan Ibrahimovic"), 40, String::from("AC Milan"))

}

RETURNING TYPES IMPLEMENTING A TRAIT

In [36]: fn get zlatan() -> impl Person {
SoccerPlayer: :create(String::from("Zlatan Ibrahimovic"), 40, String::from("AC Milan"))

}

In [37]: {
let zlatan 2 = get_zlatan();
long description(&zlatan 2);

i

Zlatan Ibrahimovic, who is 40 old

