DS-210: PROGRAMMING FOR DATA SCIENGE
LECTURE 33
1. CLOSURES (ANONYMOUS FUNCTIONS)
2. ITERATORS
J. ITERATOR + CLOSURE MAGIC
4. HOW ABOUT PYTHON?

1. CLOSURES (ANONYMOUS FUNCTIONS)
2. ITERATORS

J. ITERATOR + GLOSURE MAGIC

4. HOW ABOUT PYTHON?

CLOSURES (ANONYMOUS FUNCTIONS)

We have seen them before in Python (as lambda functions):

Llambda a b: a * b

CLOSURES (ANONYMOUS FUNCTIONS)

We have seen them before in Python (as lambda functions):

Llambda a b: a * b

In Rust (with implicit or explicit type specification):

|la, b] a * b
|la: 132, b: 132| -> 132 {a * b}

CLOSURES (ANONYMOUS FUNCTIONS)

We have seen them before in Python (as lambda functions):

Llambda a b: a * b

In Rust (with implicit or explicit type specification):

|la, b] a * b
|la: 132, b: 132| -> 132 {a * b}

In [2]: {
let f = |a, b| a * b;
let x = 10;
let y = 20;
println! ("{}",f(x,y));
}i

200

SAMPLE APPLICATION: LAZY EVALUATION OF A VALUE

Compute a value only if needed

In [3]: // What does it compute?
fn expensive function(i:u32) -> ul28 {
if i <=1 {
1 as ul2s8
} else {
expensive function(i-1) + expensive function(i-2)
}
}

In [4]: expensive function(44)

Out[4]: 701408733

SAMPLE APPLICATION: LAZY EVALUATION OF A VALUE

Compute a value only if needed

In [3]:

In [4]:

Out[4]:

In [5]:

In [6]:

Out[6]:

// What does it compute?
fn expensive function(i:u32) -> ul28 {
if 1 <=1 {
i as ul2s
} else {
expensive function(i-1) + expensive function(i-2)

}

expensive function(44)
701408733

// This function always computes expensive function(44), even
// Method unwrap or takes a default value as a parameter.
fn value or fib44(input:0ption<ul28>) -> ul28 {

input.unwrap or(expensive function(44))

}

// slow
value or fib44(None)

701408733

1f not needed.

In [7]:

Out[7]:

// slow
value or fib44(Some(123))

123

SAMPLE APPLICATION: LAZY EVALUATION OF A VALUE

Compute a value only if needed

In [8]: // This function computes expensive function(44) only if needed.
// Method unwrap or else's parameter is a function that computes
// the default value, not the default value itself.
fn value or fib44 version 2(input:0Option<ul28>) -> ul28 {
input.unwrap or else(|| expensive function(44))

}
In [9]: // slow In [10]: // fast

value or fib44 version 2(None) value or fib44 version 2(Some(1))
Out[9]: 701408733 out[1le]: 1

SAMPLE APPLICATION: LAZY EVALUATION OF A VALUE

Compute a value only if needed

In [8]: // This function computes expensive function(44) only if needed.
// Method unwrap or else's parameter is a function that computes
// the default value, not the default value itself.
fn value or fib44 version 2(input:0Option<ul28>) -> ul28 {
input.unwrap or else(|| expensive function(44))

}
In [9]: // slow In [10]: // fast

value or fib44 version 2(None) value or fib44 version 2(Some(1))
Out[9]: 701408733 out[1le]: 1

e This programing pattern appears in many places.
e Another example: default value for an entry in HashMap

In [11]: let mut map = std::collections::HashMap::<i32,132>::new();
map.insert(1l, 1);
*map.entry(1l).or insert with(|| expensive function(44) as 132) *
*map.entry(2).or _insert with(|| expensive function(44) as 132) *
println! ("{}:{:?} {}:{:?}",1,map.get(&1),2,map.get(&2));

-1;
-1;

1:Some(-1) 2:5ome(-701408733)

1. CLOSURES (ANONYMOUS FUNCTIONS)
2. ITERATORS

J. ITERATOR + GLOSURE MAGIC

4. HOW ABOUT PYTHON?

X
ITERATORS

e provide values one by one
e method next provides next one
e Some(value) or None if no more available

ITERATORS

e provide values one by one

e method next provides next one

e Some(value) or None if no more available

Some ranges are iterators:

e 1..100
e 0..

First value has to be known (so ..

and ..123 are not)

ITERATORS

e provide values one by one

e method next provides next one

e Some(value) or None if no more available

Some ranges are iterators:

e 1..100
e 0..

First value has to be known (so

In [12]: let mut iter = 1..3; // must be mutable

In [13]: iter.next()

Out[13]: Some(l)

and ..123 are not)

X

ITERATOR FROM SCRATCH: IMPLEMENT TRAIT Iterator

In [14]: struct Fib {
current: ul2s,

next: ul2s,
}
impl Fib {
fn new() == Fib {
Fib{current: 0, next: 1}
}
¥

impl Iterator for Fib {
type Item = ul2s;

fn next(&mut self) -> Option<Self::Item> {
let now = self.current;
self.current = self.next;
self.next = now + self.current;
Some (now)

ITERATOR FROM SCRATCH: IMPLEMENT TRAIT Iterator

In [14]: struct Fib {
current: ul2s,

next: ul2s,
}
impl Fib {
fn new() == Fib {
Fib{current: 0, next: 1}
}
¥

impl Iterator for Fib {
type Item = ul2s;

fn next(&mut self) -> Option<Self::Item> {
let now = self.current;
self.current = self.next;
self.next = now + self.current;
Some (now)

In [15]: let mut fib = Fib::new();
for in 0..10 {
print!("{:?} ",fib.next().unwrap());

}
println!();

0112358 13 21 34

X
ITERATORS COME WITH MANY USEFUL FUNCTIONS IMPLEMENTED

collect can be used to put elements of an iterator into a vector:

In [16]: let small numbers : Vec< > = (1..=10).collect();
small numbers

out[16]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

ITERATORS COME WITH MANY USEFUL FUNCTIONS IMPLEMENTED

collect can be used to put elements of an iterator into a vector:

In [16]: 1let small numbers : Vec< > = (1..=10).collect();
small numbers

out[16]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

take turns an iterator into an iterator that provides at most a specific number of elements

In [17]: let small numbers : Vec< > = (1..).take(10).collect();
small numbers

OQutf[17]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

ITERATORS COME WITH MANY USEFUL FUNCTIONS IMPLEMENTED

collect can be used to put elements of an iterator into a vector:

In [16]: let small numbers : Vec< > = (1..=10).collect();
small numbers

Qut[1le6]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

take turns an iterator into an iterator that provides at most a specific number of elements

In [17]: let small numbers : Vec< > = (1..).take(10).collect();
small numbers

Qutf1i7]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

cycle creates an iterator that repeats itself forever:

In [18]: 1let cycle : Vec< > = (1..4).cycle().take(20).collect();
cycle

outf18]: [1, 2, 3,1, 2, 3,1, 2, 3,1, 2,3,1, 2, 3,1, 2, 3, 1, 2]

1. CLOSURES (ANONYMOUS FUNCTIONS)
2. ITERATORS

J. ITERATOR + CLOSURE MAGIC

4. HOW ABOUT PYTHON?

ITERATOR + CLOSURE MAGIC

e Operate on entire sequence, sometimes lazily by creating a new iterator
e Allows for concise expression of many concepts

ITERATOR + CLOSURE MAGIC

e Operate on entire sequence, sometimes lazily by creating a new iterator
e Allows for concise expression of many concepts

for each applies a function to each element

In [19]: (0..5).for each(|x]| println!("{}",x));

= WN = O

X
ITERATOR + CLOSURE MAGIC

e Operate on entire sequence, sometimes lazily by creating a new iterator
e Allows for concise expression of many concepts

for each applies a function to each element

In [19]: (0..5).for each(|x]| println!("{}",x));

=W N = O

filter creates a new iterator that has elements for which the given function is true

In [20]: let not divisible by 3 : Vec< > = (0..10).filter(|x| x % 3 != 0).collect();
not divisible by 3

out[20]: [1, 2, 4, 5, 7, 8]

2? 1 D

ITERATOR + CLOSURE MAGIC

e Operate on entire sequence, sometimes lazily by creating a new iterator
e Allows for concise expression of many concepts

map creates a new iterator in which values are processed by a function

In [21]: let fibonacci squared : Vec< > = Fib::new().take(10).map(|x| x*x).collect();
fibonacci squared

Out[21]: [e, 1, 1, 4, 9, 25, 64, 169, 441, 1156]

PRIMES

any is true if the passed function is true on some element

Is @ number prime?

In [22]: fn is prime(k:u32) =-> bool {
1(2..K).any(|[x] kK % X == 0)
}

X

PRIMES

any is true if the passed function is true on some element

Is a number prime?

In [22]: fn is prime(k:u32) -> bool {
1(2..K).any([x] K % x == 0)
}

In [23]: is prime(6)

Out[23]: false

X

PRIMES

any is true if the passed function is true on some element

Is a number prime?

In [22]: fn is prime(k:u32) -> bool {
1(2..K).any([x] K % x == 0)
}

In [24]: is prime(17)

Out[24]: true

X

PRIMES

any is true if the passed function is true on some element

Is a number prime?

In [22]: fn is prime(k:u32) -> bool {
1(2..K).any([x] K % x == 0)
}

In [25]: is prime(31)

Out[25]: true

PRIMES

any is true if the passed function is true on some element

Is a number prime?

In [22]: fn is prime(k:u32) =-> bool {
1(2..K).any([x] K % x == 0)
}

In [25]: is prime(31)

Out[25]: true

Create infinite iterator over primes:

In [26]: {
let primes = (2..).filter(]|k| !'(2..*k).any(|x|] k % X == 0));
let v : Vec< > = primes.take(20).collect();
v

}

Qutf26]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]

FUNCTIONAL PROGRAMMING CLASSICS: fold AND reduce

iterator.fold(init,f) equivalent to

let mut accumulator = init;
while let Some(x) = iterator.next() {
accumulator = f(accumulator, Xx);

}

accumulator

FUNCTIONAL PROGRAMMING CLASSICS: Told AND reduce

iterator.fold(init,f) equivalent to

Llet mut accumulator = 1init;
while let Some(x) = iterator.next() {
accumulator = f(accumulator, Xx);

}

accumulator

10
Example: compute Y x*

In [27]: 1let sum of squares: i32 = (1..=10).fold(0,|a,x| a + X * X);
sum of squares

Out[27]: 385

X
FUNCTIONAL PROGRAMMING CLASSICS: fold AND reduce

iterator.fold(init,f) equivalent to

Llet mut accumulator = 1init;

while let Some(x) = iterator.next() {
accumulator = f(accumulator, Xx);

}

accumulator

10
Example: compute Y x°

In [27]: 1let sum of squares: i32 = (1..=10).fold(0,|a,x| a + x * X);
sum of squares

Out[27]: 385

In [28]: // Another approach: using ‘sum’ (which can be implemented using 'fold')
let sum of squares: 132 = (1..=10).map(|x]| x * x).sum();
sum of squares

Out[28]: 385

FUNCTIONAL PROGRAMMING CLASSICS: fold AND reduce

lterator.reduce(f) equivalent to

if let Some(x) = iterator.next() {
let mut accumulator = X;
while let Some(y) = iterator.next() { accumulator = f(accumulator,y}
Some(accumulator)
} else {
None

}

Differences from fold:

e no default value for an empty sequence
e output must be the same type as elements of input sequence
e output for length-one sequence equals the only element in the sequence

X
FUNCTIONAL PROGRAMMING CLASSICS: fold AND reduce

l1terator.reduce(f) equivalent to

if let Some(x) = iterator.next() {
let mut accumulator = X;
while let Some(y) = iterator.next() { accumulator
Some(accumulator)
} else {
None

f(accumulator,y}

}

Example: computing the maximum number in {x> mod 7853 : x € [123]}

In [29]: (1..=123).map(|x]| (x*x) % 7853).reduce(]|x,y| x.max(y)).unwrap()

Out[29]: 7744

FUNCTIONAL PROGRAMMING CLASSICS: fold AND reduce

l1terator.reduce(f) equivalent to

if let Some(x) = iterator.next() {

let mut accumulator = X;
while let Some(y) = iterator.next() { accumulator

Some(accumulator)

f(accumulator,y}

} else {

}

None

Example: computing the maximum number in {x> mod 7853 : x € [123]}

In [29]:

Out[29]:

In [30]:

Out[30]:

(1..=123).map(|x]| (x*x) % 7853).reduce(|x,y| x.max(y)).unwrap()

7744

// 1n this case one can use the builtin "max method (which can be implemented, using fold)
(1..=123).map(|x]| (x*x) % 7853).max().unwrap()

7744

COMBINING TWO ITERATORS: z1p

e Returns an iterator of pairs
e The length is the minimum of the lengths

COMBINING TWO ITERATORS: z1p

e Returns an iterator of pairs
e The length is the minimum of the lengths

In [31]: let v: Vec< > = (1..10).zip(11..20).collect();
v

Out[31]: [(1, 11), (2, 12), (3, 13), (4, 14), (5, 15), (6, 16), (7, 17), (8, 18), (9, 19)]

COMBINING TWO ITERATORS: z1p

e Returns an iterator of pairs
e The length is the minimum of the lengths

In [31]: let v: Vec< > = (1..10).zip(11..20).collect();
v

Out[31]: [(1, 11), (2, 12), (3, 13), (4, 14), (5, 15), (6, 16), (7, 17), (8, 18), (9, 19)]

Inner product of two vectors:

In [32]: 1let x: Vec<f64> = vec![1l.1, 2.2, -1.3, 2.2];
let y: Vec<fb4> = vec![2.7, -1.2, -1.1, -3.4];
let inner product: 764 = x.iter().zip(y.iter()).map(|(a,b)| a * b).sum();
inner product

Out[32]: -5.72

5.1)

1. CLOSURES (ANONYMOUS FUNCTIONS)
2. ITERATORS

J. ITERATOR + GLOSURE MAGIC

4. HOW ABOUT PYTHON?

[SWITCH TO THE PYTHON NOTEBOOK]

Quick look at a 20th century programming language

Generators:

e they can be defined like functions

e use yleld instead of return to provide a sequence of values

Quick look at a 20th century programming language

Generators:

e they can be defined like functions

e use yleld instead of return to provide a sequence of values

In [1]: def fib(up to):
current, next = 0, 1
while current <= up to:
yield current
current, next = next, current + next

Quick look at a 20th century programming language

Generators:

e they can be defined like functions

e use yleld instead of return to provide a sequence of values

In [1]: def fib(up to):
current, next = 0, 1
while current <= up to:
yield current
current, next = next, current + next

In [2]: # output Fibonacci numbers up to 1000
for x in fib(1000):
print(x,end=" ")

0112358 13 21 34 55 89 144 233 377 610 987

Example: map in Python

In [3]: # * using ‘map"’ in Python
* output squares of the same Fibonacci numbers
for x in map(lambda x: x*x, fib(1000)):
print(x,end=" ")

011409 25 64 169 441 1156 3025 7921 20736 54289

142129 372100 974169

3

Example: map in Python

In [3]: # * using “map’ in Python
* output squares of the same Fibonaccli numbers
for x in map(lambda x: x*x, fib(1000)):
print(x,end=" ")

011409 25 64 169 441 1156 3025 7921 20736 54289 142129 372100 974169

Compute the maximum of the squares of the same Fibonacci numbers modulo 789:

In [4]: max(map(lambda x: (x*x) % 789, fib(1000)))

Out[4]: 658

List comprehensions and generator expressions

e more Pythonic

e often a great replacement for functional primitives

List comprehensions and generator expressions

e more Pythonic

e often a great replacement for functional primitives

In [5]: max((x*x) % 789 for x in fib(1000))

Out[5]: 658

List comprehensions and generator expressions

e more Pythonic

e often a great replacement for functional primitives

In [5]: max((x*x) % 789 for x in fib(1000))

Out[5]: 658

e Good overview of some of these topics: https://realpython.com /python-map-function/

e An attempt at eliminating functional features from Python 3.0 was not successtul :-)

https: //www.artima.com /weblogs /viewpost.jsp?thread=98196

