
Paper ID #37016

Pacman Trainer: Classroom-Ready Deep Learning from Data
to Deployment
Masao Kitamura (Loyola Marymount University)

Mandy Barrett Korpusik (Assistant Professor)

Dr. Korpusik is an Assistant Professor of Computer Science at Loyola Marymount University. She received her B.S. in
Electrical and Computer Engineering from Franklin W. Olin College of Engineering and completed her S.M. and Ph.D. in
Computer Science at MIT. Her primary research interests include natural language processing and spoken language
understanding for dialogue systems. Dr. Korpusik used deep learning models to build the Coco Nutritionist application for
iOS that allows obesity patients to more easily track the food they eat by speaking naturally. This system was patented, as
well as her work at FXPAL using deep learning for purchase intent prediction.

Andrew Forney (Andrew Forney, Ph.D)

© American Society for Engineering Education, 2022
Powered by www.slayte.com



Pacman Trainer:
Classroom-Ready Deep Learning from Data to Deployment

Masao Kitamura, Mandy Korpusik, and Andrew Forney

Abstract

Deep learning has seen a meteoric rise in the machine learning community and has vastly changed
the landscape of many fields like computer vision and natural language processing. Yet, for all of
its successful applications, connecting deep learning theory to practice remains a challenge in the
classroom, with students typically only seeing parts of the data-collection, training, and deploy-
ment process at a time. To address these difficulties, this work presents Pacman Trainer, a web
application that can be used as a class activity in which students provide the best move for Pacman
to take in a given maze and prompt, thus generating a labeled dataset for supervised deep-imitation
learning. By experiencing first-hand how training data is labeled, sanitized, vectorized, used during
training, and then deployed to control Pacman in the same environment, students grasp the entirety
of the deep learning pipeline concretely. This experience also highlights the shortcomings of deep
imitation learning, which segues to discussions of overfitting, generalizability, and reinforcement
learning alternatives, in which Pacman agents can be trained online in the same environment to
juxtapose learning paradigms. Classroom-ready instructions, examples, and accessory exercises
are provided using Pytorch, complete with clonable repositories suitable for GitHub Classroom
integration.

Introduction

Deep neural networks have been studied for decades in many domains of machine learning, yet
initially lacked the required training data, computational power, and backpropagation algorithm
[1] for training the models that are applied widely today. With large datasets of speech, text, and
images publicly available online (or easily harvestable from crowdsourcing platforms like Me-
chanical Turk), free deep learning (DL) frameworks like Pytorch and Tensorflow, and fast graph-
ical processing units (GPUs), modelers can train expressive, deep neural networks with ease in a
number of popular applied domains. In the field of computer vision, convolutional neural networks
(CNNs) are used for image segmentation (i.e., outlining all the objects within an image) [2], object
recognition (identifying specific objects, such as animals or furniture) [3, 4], and scene classifica-
tion [5]. DL is used in self-driving cars (e.g., object detection), conversational agents such as Siri
and Alexa, Google search, and translation from a source language to a target language [6]. These
instances are but several applications of the many in the supervised learning domain, as DL has
also found footholds in reinforcement learning with successes like Google’s AlphaStar capable of
playing the complex game of Starcraft [7].



Yet, for all of these applications, challenges still exist in the deep-learning educational pipeline.
Focusing herein on the DL introduced in undergraduate artificial intelligence (AI) and machine
learning (ML) courses, students may be left with several blind spots: they rarely encounter the finer
details of the data gathering/labeling process nor appreciate the massive amounts often required for
complex tasks; they may find the typical performance metrics like classification accuracy, preci-
sion, etc. or the tasks of reproducing others’ models to be unengaging [8]; they may be left with
abstract (rather than concrete) warnings about overfitting and a model’s ability to generalize or
transport to different environments on which it was trained. It is these pain points, among others,
that the present work hopes to ameliorate. We approach these by first reviewing related efforts in
ML and DL education, outlining this paper’s contributions, establishing a cursory background on
the technical details that follow, and finally present a classroom-ready deep learning trainer and
agent situated in the engaging and familiar Pacman environment.

Related Work

AI educational tools in the Pacman environment have been employed in the past, most notably
by Berkeley’s “Pacman Projects” to teach introductory lessons in topics like search, filtering, and
q-learning [9]. However, these lessons are largely within the online-learning domain and stop short
of discussing deep learning either in the imitation or reinforcement learning contexts. Others have
picked up this thread and adapted deep-Q-networks to learn in the Pacman environment online
[10], but in ways that focus less on the particulars of deep learning’s fundamentals (let alone from
an educational bearing) and with more of a focus on the details of online learning.

Contributions & Outline

The distinguishing contributions of Pacman Trainer (PT), and likewise, the portions of the DL
educational pipeline that it addresses, are as follows:

Contribution Problem Proposed Solution
C1 Example problems can be large, in-

timidating, and unfamiliar in typical
deep learning application tutorials.

PT is situated in the familiar Pacman
environment with which the vast ma-
jority of students are familiar.

C2 The data collection and labeling
pipeline is left as a mystery without
exposing students to the process and
labor involved.

PT provides an interface for in-class
data collection that can be instantly
culled and distributed to its members.

C3 The effects of different model, struc-
tural, and hyperparameter choices
can be obscured by simple accuracy
reports.

Students get to observe the effects
of their choices on the Pacman agent
that performs in real time.

C4 The overfitting / generalizability dis-
cussion is mentioned as a warning
without hands-on illustration of its
challenges.

PT enables experimentation with
the richness of environments that
contrast between training and deploy-
ment (e.g., different pellet positions,
with and without ghosts, etc.)



Background

This work is intended primarily for educators already familiar with deep learning, so we provide
only a cursory overview of its many components herein. These definitions and components also
comprise the various “choice-points” that students will be able to experiment with during the de-
sign of their Pacman agents, though the intuitions and details of each are left for the context of the
full course in which Pacman Trainer is intended to be situated.

Neural network models are called “neural” because they are inspired by the neurons in the human
brain. They are more expressive than previous statistical models used in machine learning since
they apply non-linear activation functions to each layer and can stack multiple layers in sequence
(which is where the name “deep” learning comes from), enabling the models to learn more complex
functions than with simpler linear models.

Network Structures: The standard neural network (employed herein), is a fully-connected, feed-
forward neural network composed of a sequence of dense layers of neurons that are each connected
to each of the neurons in the subsequent layer, as shown in Figure 1. In the PyTorch [11] tool
detailed in the Pacman Agent tutorial of this work, these are called linear layers.

Figure 1: A traditional fully-connected neural network. Each input neuron xi is connected to each
hidden layer neuron hi, which is computed as the weighted sum of the input neurons.

The bottom layer is the input layer, where each input neuron represents one feature. In natural lan-
guage processing, the input may be a sentence, and each neuron represents one word; in computer
vision, the input is an image, and each neuron is one pixel value. The intermediate layers are called
“hidden” layers, and the final layer generates the output, which may be a single value between 0
and 1 in a binary classification task or the probability for each class in a categorical task (e.g., the
probability that an input sentence is negative, positive or neutral in a sentiment analysis task). In
the Pacman Agent setting, the input layer composes the maze state, and the output, an activation
for each of the 4 directions in which Pacman may move.

The output of each hidden layers’ neurons hi in the sample diagram are computed as follows:



hi = f(w0ix0 + w1ix1 + w2ix2 + bh) (1)

where w is a learned weight, x is the input, bh is a learned bias term, and f is an activation function.

Activation Functions: Activation functions decide the means by which a weighted input from a
previous layer is propagated to the next at each unit/neuron. Typically, the non-linear activation
function f is a variant of the rectified linear unit (ReLU) function [12], max(0, x), which is pre-
ferred over formerly used sigmoid or hyperbolic tangent (tanh) functions since it is less prone to
the vanishing gradients problem because its slope does not plateau when it gets large.

Training and Hyperparameters: Neural networks are trained using an algorithm known as back-
propagation, which works by sequentially computing gradients of the loss function with respect to
the weights at that layer, starting with the final output layer and working backwards to the first input
layer by applying the chain rule from calculus. The weights are updated through gradient descent,
where the gradient with respect to a given weight is multiplied by the step size and subtracted from
the current value of that weight: wt+1 = wt − α dL

dw
, where wt is the weight at timestep t, L is the

loss, and α is the learning rate, or step size. The loss function is one hyperparameter that may be
tuned on the development set. Simple loss functions include mean-squared error (MSE), which is
the sum of each training example’s squared error between the true label y and the predicted output
of the model, or the cross-entropy loss for classification.

Another hyperparameter that should be tuned is the optimizer. Stochastic gradient descent (SGD)
is the classic approach, which also requires tuning the learning rate α and a momentum parameter
that determines the tradeoff between how heavily to weight the current sample’s update versus the
momentum from previous samples’ updates. The preferred optimizer today is the Adam optimizer,
which dynamically adapts the learning rate as training progresses [13].

Overfitting and Transportability: A common issue in machine learning, and deep learning in
particular due to the models’ power, is that of overfitting [14, 15]. If there is insufficient training
data, or the model is too powerful, the model may memorize the training dataset and generalize
poorly to an unseen test set. This challenge is often related to the transportability problem in which
a model trained in an environment with different constraints than the one in which it is deployed
may suffer degraded performance [16, 17]. Students should be able to juxtapose these different
challenges and appreciate how a lack of sample diversity contributes to each.

Methods

Outline: This work aims to provide students with concrete, hands-on experience with all stages of
the deep learning pipeline (including its challenges and limits) as intimated in the previous section.
Illustrated in Figure 2, we partition this effort as follows:

• Tasks: decompose the deep learning pipeline into three, sequentially-dependent conceptual
categories: data collection, model training / tuning, and tests for generalizability.

• Learning Tools: the main deliverables of the present work: we provide exercises and accom-
panying code for each of the given tasks.



Figure 2: Outline of methods by task, associated learning tools, and student choice-points.

• Choice Points: experimental steps or conceptual questions that accompany each of the learn-
ing tools. These serve as explicit points at which students must make important decisions
that will affect the resulting model or to validate its generalizability.

Environment: For each of these tasks, students will find examples in the familiar game of Pacman,
a gridworld with simple objectives:

• The model controls the movements of Pacman in a grid maze in any of the cardinal direc-
tions, [Up,Down, Left, Right].

• The objective is to collect all of the “food pellets” (white dots within the maze) while avoid-
ing adversarial ghosts that seek to eat Pacman.

• A single game ends if either Pacman eats all of the maze’s pellets or is eaten by a ghost.

Student Objective: The student’s overall task at-hand is to craft a policy that successfully1 con-
trols Pacman, though is learned through the tenets of supervised / imitation learning from samples
that are gathered from the class itself. Just as most classification tasks must assign some label to
some input, the policy’s (π) job is to map some state (s) of the Pacman board to some action (a)
that is best to take: π(s) = a

What follows is a detailed description of each learning tool presented herein alongside suggested
choice points with which students may experiment for the purposes of deeply understanding the
deep-learning pipeline (and its limitations).

1Here, “successful” control of Pacman is dictated by the transportability tier being solved (detailed later). In
general, the idea of a successful policy in this environment is one that efficiently collects pellets while avoiding ghosts.



Pacman Trainer (PT)

Pacman Trainer (PT)2 is a web application akin to data crowdsourcing platforms like Ama-
zon’s Mechanical Turk [https://www.mturk.com/] and the more academically-oriented Prolific
[https://prolific.co/]. The general recipe for these platforms is to provide some job that has been
posted by a requester and is then completed by workers who are compensated by the requester for
their efforts. PT follows this same recipe, though without the hassle of requiring student workers
to set up accounts, and is restricted to tasks only within the Pacman environment. The general
steps of the PT workflow are depicted in Figure 3 and are detailed next.

Figure 3: Outline of Pacman Trainer steps.

PT Requester Interface

Figure 4: Pacman Trainer Requester interface with enumerated components.

2https://github.com/masaok/pacman-trainer-web



Lobby Creation: The first step in using Pacman Trainer [https://pacmantrain.com/] is for a Re-
quester (the instructor) to create a lobby that students will join to produce labeled data that will be
used to train Pacman on the task at-hand. The lobby creation phase is parameterized by a variety
of options, detailed as-follows:

1. Maze Preview: an example of how student workers will see the maze in the Maze Editor (2).

2. Maze Editor: row-by-row specification of the maze’s contents (which will change according
to certain parameters described later), with the following options: Walls [X] defining the
maze’s bounds and cells in which neither Pacman nor ghosts can move, Pellets [O] defining
Pacman’s chief objective (to eat these), Ghosts [G] defining the adversaries that will hunt
Pacman, and Open cells [.] containing none of the above, but which allow movement.

3. Random Maze Generator: generates a new, random maze configuration.

4. Requester Name: the name of the lobby owner / instructor.

5. Worker Prompt: the prompt that will be shown to students as they label mazes.

6. Desired Samples Per Student: students will be considered “done” labeling when they have
completed the specified number of samples.

7. Sampling Options: presently, only two options that will change the behavior of samples
shown to students for labeling (locking pellets in-place and generating subsets of these for
when Pacman has eaten some; detailed ahead).

8. Lobby Launch Button: Once all of the parameters above are set, launches an active lobby
that students may join and begin the labeling task within.

Figure 5: Pacman Trainer Requester lobby monitor with enumerated components.



Lobby Monitoring: Once the lobby has been constructed, the requester is sent to the Lobby
Monitoring page depicted in Figure 5. This page can be used to monitor the class’ progress in
joining the lobby and labeling samples, with the key components enumerated as follows:

1. Lobby ID: the identifier associated with this lobby. The four-letter code (in this example,
AGAR) is given to the students to be able to join.

2. Worker Panel: Table containing all students who have joined the lobby. Students decide
their displayed worker name when joining, though their identity is not coupled with their
responses in the final dataset. Individual student responses can be culled immediately by
pushing the button next to their name. The number of completed samples from each student
is listed next to their name, up to the maximum specified in the lobby creation parameters.

3. Sample Culling: Once the lobby has reached a desired level of completion, the requester may
“Cull All Samples” to obtain the full labeled dataset complete with all student responses.

Training Dataset: The culled dataset consists of two columns:

• X , the input maze state with positions of all relevant entities represented as a string with
new-line characters separating each row.

• y, the labeled action assigned by a student participant to the corresponding maze state.

Note one of the initial challenges of the task at hand: the state space of even small mazes combines
all of the possible locations that Pacman, pellets, pellet subsets (from Pacman eating them), and
ghosts can be found in, requiring thousands of samples through which the traditional deep learning
pipeline will train. Despite this challenge, and depending upon the difficulty of the task (discussed
in Transportability Tiers section ahead), even small classes can make short work of the labeling
process. Anecdotally, in 5 minutes, a class of 30 students generated roughly 6000 labeled data
points using Pacman Trainer.

PT Student Interface

After entering the lobby, students will be shown consecutive sample maze states Xi and click the
action that best accomplishes the given prompt, as depicted in Figure 6. Each sample maze state is
generated according to a simple ruleset that features into the generalizability tiers that follow.

1. For all samples: all walls are kept in their locations specified in the maze editor.

2. At each sample:

• If the Lock Pellets option was selected during lobby creation, pellets will only appear
in the locations specified in the maze editor. Otherwise, the same number of pellets
will appear in randomly chosen non-wall locations.

• If the Pellet Subsets option was selected during lobby creation, some non-empty subset
of the number of pellets specified in the maze editor will appear.

• The locations of any ghosts and Pacman are randomly assigned to remaining open cells.



Figure 6: Pacman Trainer Student Labeler interface in which students in a lobby click the move
button for Pacman that best accomplishes the prompt for the presently shown maze state, Xi. Upon
creating a label, they are then shown the next state Xi+1 until reaching desired number of samples.

Pacman Agent (PA)

Figure 7: Outline of Pacman Agent steps.

Following successful data collection using the Pacman Trainer app, students are now tasked with
training a deep imitation learner given the samples that they just generated. This phase is ac-
complished in a templated Pacman Agent (PA) Python implementation: The full Pacman Agent
activity, including the environment and agent scaffolding, setup instructions, and steps of the
exercise can be found at https://github.com/masaok/pacman-agent. As part of this tutorial, stu-
dents are tasked with familiarizing themselves with each part of the basic Pytorch documentation:
https://bit.ly/3BgCkyR. Having read this guide, students are prepared to map each section to the
Pacman Trainer problem as outlined in Figure 7 and scaffolded in the pac trainer.pymodule:

1. Maze Preprocessing: Requires students to convert the 2-D mazes of Strings in their training
data to a 1-D one-hot encoded representation amenable as an input layer for the network.
This is accomplished within the PacmanMazeDataset class with methods to vectorize
both maze and its associated label/move.

2. Model Structure Choices: Students will then choose the structure of the dense neural net-
work, which has “correct” answers for the input layer (which must have dimensionality equal
to the product of rows, cols, and possible maze entities) and output layer (one unit for each of
the four movement actions), but allows experimentation with the hidden layers. Students are
also able to juxtapose different activation function, though the standard ReLU will suffice.



All of the above is packaged in the PacNet class.

3. Training and Hyperparameters: The choice of learning rate, batch size, number of training
epochs, loss function, and optimizer can all be made at this stage of training with little need
to deviate from the Pytorch tutorial apart from choosing the Adam optimizer over SGD.

4. Deployment: Once trained, the model can be inserted within the PacmanAgent class
within the pacman agent.py module to choose actions given the current maze state. The
model’s performance can then be visualized by running the environment.py module to
watch it make choices in real time.

Readers should consult the EXERCISE.md guide in the project repository to see detailed in-
structions on all of the above. As a final feature of this package, users may optionally use the
maze gen.py module, which can generate a faux-training set of the same format as culled from
the Pacman Trainer; this may be used if the data collection exercise is infeasible, or to demonstrate
the increased data needs for more complex tasks in the Pacman environment (see following section
for tiers of difficulty in this environment).

Transportability and Activity Outlines

Although deep learning is an impressive tool for imitation learning, students should likewise be
aware of this technique’s risks, shortcomings, and data requirements so as to appreciate that it is
not a magic-wand that can be waved at a dataset to accomplish any task.

Pacman Tiers of Transportability

Herein, we discuss several “tiers” of transportability in the Pacman environment that can be demon-
strated to students in-class or left as exercises for them to explore. By no means is this an exhaustive
partition of the tasks possible in this environment, but can scaffold discussions surrounding differ-
ences in training and deployment environments and the accompanying differences in required data
for more complex tasks.

In any given machine learning task, it is important to explicitly define the training and deployment
environments, which this exercise allows students to easily juxtapose. Successful deployment can
be loosely defined as one in which a trained agent successfully controls Pacman in the environment
to which it’s deployed. As such, within each tier:

• If training and deployment settings are the same, a properly constructed model should intel-
ligently control Pacman during deployment.

• The same should be said for an agent that is trained at a higher tier and deployed to a lower
one (i.e., when trained on a complex task and deployed to a simpler).

• However, an agent trained in a lower tier will falter in a higher one (i.e., when trained on a
simpler task and deployed to a more complex one).

We depict a suggested set of transportability tiers in Figure 8 with the following properties: (I)
Locked Pellets: The pellets and walls will always have the same position in training as during
deployment, though Pacman can start the game anywhere in the maze. (II) Ghostly Adversaries:



Figure 8: Example samples required to accomplish the tasks described in each transport tier.

Tier 1 plus ghosts that are added to the maze and must be avoided. (III) Dynamic Pellets: Tier 2
except pellets can be found in any maze location. (IV) Shifting Walls: Tier 3 except walls may be
found anywhere in the maze.

Note, for instance, that an agent trained on Tier 1 samples will sufficiently find the pellets in its
maze during deployment, but the addition of ghosts in Tier 2 will cause Pacman to walk blithely
into certain doom having never encountered them while training. Note also that this is just one
possible tier list, e.g., the novel introduction from Tiers 2 and 3 can be swapped, first requiring
Pacman to find dynamically placed pellets before accounting for ghosts.

Suggested Activities

Depending on the size of a class, instructors may choose to begin the exercise in Tiers 1 or 2, given
the escalating data requirements of higher tiers and class time they wish to allocate. The present
work assumes a simple start at Tier 1 and a small maze like those depicted in Figure 8. With
in-class data collected through the trainer, students can complete the network training exercise
outlined in the Pacman Agent repository.

Having students deploy their Tier X agent on a Tier Y task with X ̸= Y and record the results in a
lab report. Moreover, students may be tasked with amending the MazeGenmodule to manufacture
their own training sets for higher tiers; this lesson can tie in to traditional topics in AI like A* search
and also helps students appreciate the data requirements for even modestly higher tiers. Students
may also experiment with the parameters of the PacNet, including the number of hidden layers,
units per layer, activation functions, and other learning hyperparameters to witness the effects on
Pacman’s performance, time-to-train, or generalizability. The data collection can serve as a day-
one teaser of an AI course, in which imitation learning is demonstrated immediately by training
the model in-class via the instructor’s solution.

Results

Although this introductory work with Pacman Trainer does not provide empirical results for in-
class reception, anecdotal offerings in an undergraduate artificial intelligence class were positive
with students enjoying the intuitive walkthrough in the familiar Pacman environment. In a class of



roughly 35 students, all but one team successfully completed the activity outlined in the Pacman
Agent description, and several explicitly commented on how glad they were to have had the activity
for understanding advanced topics in follow-on courses. By way of “solution” to the environment,
we do provide an example network, generated training set, and MazeGen implementation that can
be amended to create training data for any tier independent of human-data obtained through the
trainer. Readers may see the EXERCISE.md readme in the Pacman Agent repository for more
information on this solution.

Discussion

While providing many insights into the power and caveats surrounding deep learning, this project
also has the benefits of leading to, or transitioning from, adjacent topics in machine learning (ML)
and artificial intelligence (AI). We briefly discuss its limits and these “educational adjacencies”
that can enrich AI curricula.

Limitations: The primary drawback of Pacman Trainer is that the Pacman environment is one
that is best solved by earlier tools in AI, like search for pathfinding and minimax for adversarial
problems. Without the context that deep learning deployed in this environment is for illustrative
purposes only, and to serve as an intuitive sandbox in which to experiment with different stages of
the deep learning pipeline, students may mistake the types of problems for which deep learning is
better suited (like machine vision and natural language processing). However, we argue that Pac-
man Trainer serves as a more engaging and visual introduction to deep learning beyond examining
traditional classification accuracy metrics and that students easily grasp this caveat.

Educational Adjacencies: Apart from its own merits, the Pacman Agent exercise can serve as a
launchpad between two adjacent topics: (1) Reinforcement Learning: once students encounter the
data and person-power required to train deep learning systems on even modest problems, this pain
point can be used to motivate reinforcement learning applications like deep-Q-networks, which
can also be applied to learn optimal policies in the same Pacman environment through online
exploration. (2) Causal Inference and Transportability: although the “transportability tiers” given
in this work rested on intuition, modern courses in AI and ML may choose to integrate topics from
causal inference wherein structural formalisms for transportability can determine which results
from training to deployment are transportable or not.

Conclusion

By using this educational tool, students gain hands-on experience with the entirety of the deep,
supervised, imitation learning pipeline: by labeling moves for Pacman to make in the Pacman
Trainer, using these in training a Pacman Agent, and lastly testing generalized deployment, stu-
dents gain familiarity with the data required for deep learning, how this data is integrated into
Pytorch implementations of neural networks, and witness firsthand the power and limits of deep
learning as a supervised learning tool. These lessons motivate adjacent topics in modern AI edu-
cation into reinforcement learning and causal inference, and provide an unintimidating invitation
to the more complex topics of deep learning that welcomes the next generation of data scientists.



References

[1] Y. Chauvin and D. E. Rumelhart, Backpropagation: Theory, architectures, and applications. Psychology press,
2013.

[2] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using
deep learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–778.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[5] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label scene classification,” Pattern recogni-
tion, vol. 37, no. 9, pp. 1757–1771, 2004.

[6] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey
et al., “Google’s neural machine translation system: Bridging the gap between human and machine translation,”
arXiv preprint arXiv:1609.08144, 2016.

[7] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev et al., “Grandmaster level in starcraft ii using multi-agent reinforcement learning,” Nature, vol. 575,
no. 7782, pp. 350–354, 2019.

[8] T. W. Smith and S. A. Colby, “Teaching for deep learning,” The clearing house: A journal of educational
strategies, issues and ideas, vol. 80, no. 5, pp. 205–210, 2007.

[9] J. DeNero and D. Klein, “Teaching introductory artificial intelligence with pac-man,” in First AAAI Symposium
on Educational Advances in Artificial Intelligence, 2010.

[10] F. Fallas-Moya, J. Duncan, T. Samuel, and A. Sadovnik, “Measuring the impact of memory replay in training
pacman agents using reinforcement learning,” in 2021 XLVII Latin American Computing Conference (CLEI).
IEEE, 2021, pp. 1–8.

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga
et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information
processing systems, vol. 32, pp. 8026–8037, 2019.

[12] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint arXiv:1803.08375, 2018.

[13] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimiza-
tion.” Journal of machine learning research, vol. 12, no. 7, 2011.

[14] R. Caruana, S. Lawrence, and L. Giles, “Overfitting in neural nets: Backpropagation, conjugate gradient, and
early stopping,” Advances in neural information processing systems, pp. 402–408, 2001.

[15] P. Baldi and P. J. Sadowski, “Understanding dropout,” Advances in neural information processing systems,
vol. 26, pp. 2814–2822, 2013.

[16] E. Bareinboim and J. Pearl, “Transportability of causal effects: Completeness results,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 26, 2012.

[17] Y. Chung, P. J. Haas, E. Upfal, and T. Kraska, “Unknown examples & machine learning model generalization,”
arXiv preprint arXiv:1808.08294, 2018.


