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Abstract—In this paper, we present multi-modal approaches
to diet tracking. As health and well-being become increasingly
important, mobile applications for diet tracking attract much
interest. However, these applications often require users to log
their meals based on relatively unreliable memory recall, thereby
underestimating nutritional intake and, thus, undermining the
efforts of nutrition tracking. To accurately record dietary intake,
there is an increasing need for image computational methods.
We investigated multi-modal transfer learning approaches on a
novel, food-specific image-text dataset, specifically a Vision-and-
Language Transformer that achieves a held-out test set Micro-F1
score of 77.70% and Macro-F1 score of 51.43% for 696 food
categories. We aim to give other researchers new insight into the
process of developing domain-specific, multi-modal deep learning
models with small datasets.

Index Terms—Transfer Learning, Convolutional Neural Net-
work, Long Short-Term Memory, Vision-and-Language, Trans-
former

I. INTRODUCTION

The worldwide concern of obesity dominates many head-
lines [1]. Thus, in recent years, there has been an increased
interest in tracking diets [2], [3]. We previously built a mo-
bile application prototype, Coco Nutritionist, [4]–[9] that lets
users record food intake with natural language and accurately
estimates calories and other nutrients consumed. Unbiased
estimation of daily nutritional intake is crucial for maintaining
a healthy lifestyle. The current methods of dietary assessment
only rely on self-reports, which often leads to underestimation.
Thus, it is necessary to supplement memory recall with auto-
matic food recognizers. Such a computer-aided dietary intake
analysis system could detect food items in photos, along with
quantity estimates, and translate those to nutritional values.

In recent years, the rapid development of the computer
vision field greatly boosted the accuracy and robustness of
models across various domains. As deep learning models be-
came increasingly popular, various architectures and methods
have been utilized, and the Transformer [10] has emerged as
state-of-the-art. The emphasis on performance has facilitated
an endless collection of optimization and training methods.
Even though these novel approaches are beneficial to the field
as a whole, they also pose the dilemma for researchers to select
a combination that is suitable for their specific dataset. In this
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work, we report our process of arriving at one of the most
optimal models for the diet tracking task.

The contributions of this work are as follows:
1) We present a multi-modal dataset for diet tracking. Our

dataset consists of two modalities: meal diaries as the
language modality, and food images as the vision modal-
ity. Our dataset contains over 16,600 images paired with
meal diaries and covers a label space of over 696 food
categories (Section III).

2) We present models for diet tracking and demonstrate
how each modality contributes to the final performance.

3) Our experiments and analysis show that the multi-modal
Transformer with pre-trained weights achieves state-of-
the-art performance (Sections IV-C and VI).

II. RELATED WORK

We present related work in the following subsections:

A. Image and Text Classification for Diet Tracking

The rapid development of neural networks [11] prompted
advancement in the domain of food image classification. After
the release of the benchmark ImageNet dataset for image
classification [12]–[16], food image classification models are
generally pre-trained on generic ImageNet and fine-tuned on
food image datasets (e.g., UEC-Food100, UEC-Food256, or
Food-101). One of the earliest works in classifying food im-
ages with deep learning was in 2014 with a deep convolutional
neural network (CNN) [17]. Later, the authors enhanced their
model through transfer learning [18]. Several other CNN-
based methods have been explored by other studies concerning
food image recognition [19]–[22], but none multi-modal.

For natural language processing (NLP), Transformer-based
contextual embedding models such as bidirectional encoder
representations from Transformers (BERT) [23] are state-of-
the-art. Comprehensive studies have been conducted to analyze
the rise of deep learning in text classification [24], [25].

B. Vision-and-Language Models

Recent Vision-and-Language (V+L) research has been ori-
ented towards pre-training on extensive image-text datasets,
observing significant improvements in learning joint modality
relationships. Experiments indicate that they achieve notable



results in tasks such as visual question answering and text-
image generation [26]. Starting with ViLBERT [27], there
is a surge in using Transformers as the main architecture,
shifting away from recurrent neural networks (RNNs). Both
ViLBERT and LXMERT [28] fuse two separate Transformers,
one for images and one for text. Later, researchers [29]–
[31] introduced a single-stream Transformer model to better
understand joint representations.

Even though the aforementioned deep learning architectures
are crucial for achieving breakthrough achievements, there is
still a lack of real-world deployment of these models. This
issue is largely due to the fact that downstream tasks require
specific domain expertise. Thus, in our paper, we collected
a food-specific multi-modal dataset and developed a novel
architecture to accomplish multi-modality in the real world.

III. DATA COLLECTION

Collecting training data is one of the important aspects of
supervised machine learning. It is well-known that quality data
is crucial to model performance. Previously, we were able to
directly use or expand upon an open-source dataset. However,
with multi-modal learning, the model requires two modalities
of data, doubling the time and effort required for collection. In
the new multi-modal dataset we constructed, we approached
the problem by combining two sets of data: text-to-image and
image-to-text which are described in detail in the following
section. The dataset maps an image containing food to a user’s
natural language meal description. There is a total of 16,600
images from 696 food categories.

Fig. 1. Examples of Text-to-Image data

Fig. 2. Examples of Image-to-Text data

A. Text-to-Image Data

In our prior work [32], [33], meal diaries were crowd-
sourced from Amazon Mechanical Turk [8]. Workers were
prompted to write down in natural language a description of a

particular food item with a property token and a food token.
The property token ranges from brands (e.g., McDonald’s,
Cheerios) to quantity (e.g., half a dozen, a cup). The food
token represents a particular food item (e.g., apples, pancakes).

At the beginning of the data collection process, we at-
tempted to use novel zero-shot text-to-image generators (e.g,
Deep-Daze [34]) to gather more images. However, the results
proved to be unsatisfactory for real food image classifica-
tion. Many of our natural language meal descriptions include
multiple food categories,1 but finding images with the exact
combination of food categories mentioned in the diary is hard,
so we used images with one of the food categories in the
natural language meal description (see Figure 1). We have 696
food categories from which we picked the 89 most common
classes within our assembled meal diary dataset. For 66 of
the 89 classes, we collected food images from Flickr’s dataset
and mapped them to the natural language sentences. For the
remaining 23 food classes, we used 100 images per category
from the training set of the Food-101 dataset [35].

B. Image-to-Text Data

For the second part of the dataset, we selected 100 images
each from the remaining 78 food categories in the Food-101
dataset. In total, we had 167 food categories (i.e., 89 classes in
text-to-image and 78 classes in image-to-text). Due to the lack
of natural language food dietary data, we needed to generate
natural sentences in order to complete the multi-modal dataset.

During our first attempt, we employed state-of-the-art auto-
mated image captioning with visual attention [36]. There were
two issues with this approach. First and most importantly, the
generated text does not follow the format of nutritional diaries
with a quantity and food token. Often, the generated text only
describes the visual aspects of the image, which renders it
insufficient for a diet tracking system. Second, similar to many
pre-trained models, the description is not specific enough to
the food categories to be useful. Due to the fact that each
image is a close-up of the food, the generated captions are so
similar that even if we replaced the food token with a more
distinct category, the image caption would remain inadequate.

To solve the first problem, we attempted to generate a diary,
using a text generator [37] trained on our set of existing dietary
entries. However, we realized that this form of generation is
too general in the category of food to be valuable as training
data. Thus, we decided to generate a diary based on a custom
text template composed of the most common phrases found
in the natural language dataset (see Figure 2).

C. Merge

In the end, we collected 16,600 food-specific image-text
pairs with images from Flickr or Food-101 and text from our
previously collected natural language dataset or a targeted text
template. The text may consist of multiple food categories, but
the images were consist of only one food. As a result, we used
167 classes for the image modality and 696 total classes for
the natural language modality.

1We use the term ‘category’ interchangeably with terms ‘label’ and ‘class.’



IV. MODELS

Our approach is based on transfer learning which is a tech-
nique to leverage existing resources and transfer knowledge
learned from a related domain to another. Rather than building
a deep neural network from scratch, we utilized the weights
from models that are already trained on large-scale datasets
and only replaced the last layer to adapt to our specific dataset.

A. MODEL-I: Baseline Vision-and-Language Model without
Pre-Trained Weights

Our first conceptually simple approach for the vision-
and-language pipeline is based on CNN and LSTM (i.e.,
Long Short-Term mMemory recurrent neural network)
architectures. The motivation behind this approach is to
develop a single neural network that is able to effectively
employ information from two modalities and analyze the
results without pre-trained weights. In this model, we
concatenated a convolutional neural network (CNN) [12]
with an LSTM [39] for joint visual and textual classification.
Due to the difference in the mixed features of the data, each
modality (i.e., image and text) is trained separately. The
image input is handled by a CNN, and the text is processed
by an LSTM, which are described in the following subsections.

1) CNN: For this network, we use 2x32, 2x64, and 1x128
dimension layers with a 3x3 kernel and rectified linear unit
(ReLU) activation function. In our model architecture, we use
max-pooling to extract the maximum value with a 2x2 filter.
Each convolution layer, except for the last one, is followed
by a max-pooling layer to decrease the dimensionality of
the convolution output vector. After several convolution and
pooling layers, the feature map is flattened and fed into
a fully-connected layer. To reduce overfitting, we added a
dropout layer before feeding the CNN output vector into a
softmax activation layer to generate a probability distribution.

2) LSTM: For our LSTM model, we first fed the input
text into an embedding layer, followed by an LSTM (128
dimensions) and a dropout layer. This layer is then followed
by a linear layer of 696 neurons. This process allows the
network to assign a domain-specific food category to each
natural language sentence.

3) Concatenation: Our proposed model consists of the two
separate input layers, with each one followed by a hidden
layer, and then merged by a concatenation layer. The merge is
followed by a dense layer, a dropout layer, and a final output
classification layer with a softmax activation function.

The image features are extracted by the CNN model out-
lined in section IV-A1 to output a classification result. The
second input is processed by the LSTM model described in
section IV-A2. The classification outputs of the two branches
are concatenated together by a final layer to obtain the global
output. We used the Adam optimizer with binary cross-entropy
loss, a batch size of eight, and trained until convergence.

B. MODEL-VII: Vision-and-Language Transformer (ViLT)
with Pre-Trained Weights

Although the baseline model supports multi-modality, it
consists of two drastically different architectures, the CNN
and LSTM. Moreover, both CNN and LSTM have been
replaced by Transformers as the state-of-the-art for both text
and vision modalities. In this section, we explore Vision-
and-Language Transformer (ViLT) [38] (see Fig. 3), which
uses a unified and efficient architecture for both text and
image modalities. ViLT builds upon BERT [23], which is
the current best model for the language modality, and Vision
Transformer (ViT) [40], which is the current best model for the
vision modality. The Transformer layers in the ViLT model are
initialized from ViT, and the language pre-processing pipeline
uses bert-base-uncased. Since our food classification
task is very similar to the visual question answering task
(VQA), we use a ViLT with pre-trained weights, specifically
vilt-b32-mlm.2 We further fine-tune the model on our
dataset (Section III) with a batch size of 32 until convergence.
We use the Adam optimizer with a learning rate of 0.001.

C. Experiments

This section describes the experimental results on the
dataset described in Section III. 80% of the data comprises the
training set, 10% of the data constitutes the validation set, and
the remaining 10% forms the test set. The process described
above demonstrates the difficulty in collecting a quality multi-
modal dataset for a specific downstream task. As shown in
Figure 4, our dataset has class imbalance. We see that only a
small fraction of food categories have more than 100 examples,
and the majority of them have 10 or fewer examples. Due to
the class imbalance, we report both Macro-F1 and Micro-F1
scores [41]. While the Micro-F1 metric assigns equal weight
to each instance, the Macro-F1 metric assigns equal weights
to each class. Macro-F1 is a useful metric in data imbalance
scenarios like ours. Our results in Table I show that ViLT with
pre-trained weights outperforms the CNN+LSTM baseline.

TABLE I
MACRO-F1 AND MICRO-F1 SCORES FOR MULTI-MODAL MODELS

Model Macro-f1 Micro-f1
MODEL-I (CNN+LSTM) 26.3 42.5
MODEL-II (ViLT with pre-trained weights) 51.4 77.7

V. ABLATION OF VISION-AND-LANGUAGE
TRANSFORMERS

The ViLT architecture is better than the CNN+LSTM model.
In this section, we conduct an ablation study. We investigate
the language and vision modalities, each in isolation.

Language: To understand the diet tracking ability with
language only, we fine-tune a BERT [23] contextual embed-
ding model on our downstream sequence classification task of
natural language meal diaries. The BERT model is initialized

2https://huggingface.co/dandelin/vilt-b32-mlm-itm



Fig. 3. ViLT Model overview; image credit: [38].
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Fig. 4. Food category distribution. The vertical axis is in log scale. Categories
in our dataset are imbalanced as in the real-world scenario.

with pre-trained weights from the bert-base-uncased
model.3 We fine-tune the model using the Adam optimizer
[42] (similar to [23]) with weight decay of 0.1 and a learning
rate of 0.001. Since our meal diaries’ annotations are multi-
label, we use binary cross entropy loss (i.e., 0 or 1 per food).

Vision: To understand the diet tracking ability with images
only, we fine-tune a Vision Transformer (ViT) model [40] on
our downstream food image classification task. The ViT model
is initialized with pre-trained weights from ViT_B_16.4 We
fine-tune the model using the stochastic gradient descent
(SGD) optimizer (similar to [40]), with a learning rate of
0.0001. Since images in our dataset are annotated with a
single label only (see Section III-A), we use cross entropy
loss. For a fair comparison we also train another version

3https://huggingface.co/bert-base-uncased
4https://pytorch.org/vision/main/models/generated/torchvision.models.vit_

b_16.html

TABLE II
A SUMMARY OF MODEL ARCHITECTURES, LABELS, AND MACRO-F1 AND

MICRO-F1 SCORES DESCRIBED IN THIS WORK

Model Multi-Label Single-Label
Macro-F1 Micro-F1 Macro-F1 Micro-F1

ViLT 51.4 77.7 84.5 84.0
BERT (Text Only) 31.5 56.1
ViT (Image Only) 76.7 77.5

of ViLT with a single-label objective. Note that our single-
label setup has 167 balanced classes, whereas the multi-label
setup has 696 imbalanced classes. As shown in Table I, ViLT
achieves significantly higher F1 scores than BERT for multi-
label classification and than ViT for single-label classification,
demonstrating that both modalities are helpful.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed two related models that
attempt to achieve food classification in the domain of diet
tracking. We have achieved significant results with our ViLT
model trained on a custom dataset of 16,600 image-text pairs.

In future work, we will continue to expand our dataset to
be more inclusive and reflective of user input and also handle
the imbalance in the classes. The current dataset also suffers
from bias due to the limited dataset. For example, we rely on
the USDA food database, which is primarily American food,
but aim to expand to international cuisines in the future. In
addition, the two modalities are not always reflective of each
other. Some text descriptions include more food items than the
image, while images might not necessarily reflect the quantity
described in the text due to the fact that we combined inputs
from different sources. In the future, we will not only predict
the food category, but also the quantity.
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