Solutions for Problem Set 1

DPL Seminar, Summer 2001
Handout 3

Konstantine Arkoudas

July 12, 2001
Problem 1

We first issue some declarations and define a few auxiliary methods that will simplify life:

(domain Thing)
(declare P (→ (Thing) Boolean))
(declare Q (→ (Thing) Boolean))
(declare R (→ (Thing) Boolean))
(declare S (→ (Thing) Boolean))
(declare R2 (→ (Thing Thing) Boolean)) ; A binary R
(declare Q2 (→ (Thing Thing) Boolean)) ; A binary Q

;; A method for modus tollens:
(define (mt P Q)
 (match [P Q]
 ;;;;;;;; (if P1 P2) (not P2) ; (suppose-absurd P1
 ; (absurd (impl P P1) Q)))

;; The ds method implements the so-called "disjunctive syllogism":
;; it takes two premises of the form P1 \lor P2 and "P1 and derives P2.
(define (ds P Q)
 (match [P Q]
 ;;;;;;;; (or P1 P2) (not P1) ; (impl (assume P1
 ; (impl (suppose-absurd (not P2) (absurd P1 (not P1))))
 ; (impl2 (assume P2
 ; (impl P impl2))))

;; A method that successively specializes a premise of the
;; form (forall x1 (forall x2 (... (forall xn P) ...))
;; a list of terms [t1 ... tn].
(define (uspec* P terms)
 (match terms
 ;;;;;;;; ([] (inclaim P))
 ; (list-of t rest) (uspec* (uspec P t) rest)))))

Part a

(define premise1 (forall ?x (if (and (P ?x) (Q ?x)) (R ?x))))
(define premise2 (exists ?x (and (Q ?x) (not (R ?x)))))
(define conclusion (exists ?x (not (P ?x))))
(assert premise1 premise2)
(pick-witness w premise1)
 (impl ((w-property (and (Q w) (not (R w))))
 (w-is-not-P (suppose-absurd (P w))
 (absurd (impl (uspec premise1 w)
 (both (P w) (left-and w-property)))
 (right-and w-property))))))

(assert conclusion w)))

Part b

(define premise1 (forall ?x (if (P ?x) (Q ?x))))
(define premise2 (exists ?x (and (R ?x) (not (Q ?x)))))
(define premise3 (forall ?x (if (R ?x) (or (P ?x) (S ?x))))
(define conclusion (exists ?x (and (R ?x) (S ?x))))
(assert premise1 premise2 premise3)
(pick-witness w premise2
 (dlet ((w-property (and (R w) (not (Q w)))))
 (L1 (fst (tuspec premise1 w))
 (!right-and w-property))
 (L2 (fdir (suppose-absurd (not (S w)))))
 (tfalse (mds (imp (tuspec premise3 w)
 (left-and w-property)))
 L1)
 (not (S w))))
 (L3 (tboth (!left-and w-property) L2)))
(tequiv conclusion w))

Part c
(define premise1 (exists ?y (forall ?x (R2 ?x ?y))))
(assert premise1)
(define conclusion (forall ?x (exists ?y (R2 ?x ?y))))
(pick-witness w premise1
 (pick-any foo
 (dbegin (tuspec (forall ?x (R2 ?x w)) foo)
 (!equiv (exists ?y (R2 foo ?y)) w))))

Part d
(define premise1 (forall ?x (forall ?y (if (and (P ?x) (Q ?y)) (R2 ?x ?y))))
(define premise2 (forall ?x (forall ?y (if (and (P ?x) (Q ?x)) (S ?y))))
(assert premise1 premise2)
(define conclusion (exists ?x (if (P ?x) (forall ?x (if (Q ?x) (S ?x))))))
(dbegin (assume (P ?foo))
 (pick-any a
 (assume (Q a))
 (dbegin (imp (!tuspec premise1 [?foo a])
 (tboth (P ?foo) (Q a)))
 (imp (!tuspec premise2 [?foo a])
 (tboth (P ?foo) (R2 ?foo a))))
 (!equiv conclusion ?foo))

Part e
(define premise1 (exists ?x (and (P ?x) (for all ?y (if (Q ?y) (R2 ?x ?y))))))
(define premise2 (forall ?x (forall ?y (if (and (P ?x) (Q ?x)) (S ?y))))
(define premise3 (not (exists ?x (and (S ?x) (not (Q ?x))))))
(assert premise1 premise2 premise3)
(define conclusion (forall ?x (iff (Q ?x) (S ?x))))
(pick-any x
 (dlet (L1 (assume (Q x))
 (pick-witness w premise1
 (dlet ((w-property (and (P w) (forall ?y (if (Q ?y) (R2 w ?y))))))
 (L1 (P w) BY (!left-and w-property)))
 (L2 (R2 w x) BY (!imp (!tuspec (!right-and w-property) x) (Q x))))
 (imp (!tuspec premise2 [w x]) (tboth L1 L2))))
 (L2 (assume (S x))
 (fdir (suppose-absurd (not (Q x)))
 (dbegin (tboth (S x) (not (Q x)))
 (tfalse (equiv conclusion (exists ?x (and (S ?x) (not (Q ?x)))) x)
 premise3)))))))
(tequiv L1 L2))
Part f

(define premise1 (?x (and (P ?x) (forall ?y (if (and (P ?y) (Q2 ?x ?y))
(Q2 ?y ?a))))))

(define premise2 (?x (and (P ?x) (not (Q2 ?x ?a))))))

(define premise3 (?x (not (P ?x))) (Q2 ?x ?a))))

(define conclusion (?x (exists ?y (and (P ?x) (and (P ?y) (not (Q2 ?x ?y)))))))

(pick-witness w1 premise1

(pick-witness w2 premise2

(dlet ((w2-property (and (P w2) (not (Q2 w2 ?a)))))

(l1 ((if (and (P w2) (Q2 w1 w2)) (Q2 w2 ?a)) BY

(tspec (w1-and w2-property) w2)))

(l2 ((not (and (P w2) (Q2 w2 w2))) BY

(m1 l1 (w1-and w2-property))))

(l3 (not (Q2 w1 w2)) BY

(suppose-absurd (Q2 w1 w2)

(labsurd (both (left-and w2-property) (Q2 w1 w2) L2)))

(l4 (both (left-and w1-property) (both (left-and w2-property) L3)))

(l5 (legen (exists ?y (and (P w1) (and (P ?y) (not (Q2 w1 ?y)))))) w2))

(legen conclusion w1))))

Problem 2

(define (ord L)

 (match L

 (split L1 (list-of x (split L2 (list-of x L3)))) (ord (join L1 L2 L3))

 (else L))

Problem 3

We first define the map functional:

(define (map f L)

 (match L

 ([] (list-of f x)

 ((add (f x) (map f rest))))))

Then we define a function rv-in-term (“replace variable in term”) that replaces every occurrence of a variable v in a term t by some other term new; and a similar function rv-in-prop that replaces every free occurrence of a variable v in a proposition P by some term new:

(define (rv-in-term v new t)

 (match t

 ((some-var x) (check ((equal? x v) new)

 (else t)))

 ((some-special f) (some-list arg))

 (make-term f (map (function (a) (rv-in-term v new a) arg)))))

(define (rv-in-prop v new P)

 (match P

 ((some-atom t) (rv-in-term v new t))

 ((not Q) (not (rv-in-prop v new Q)))

 ((some-prop-con pc P1 P2) (pc (rv-in-prop v new P1) (rv-in-prop v new P2)))

 ((some-quant q) (val-of v body) (q v body))

 ((some-quant q) (body) (q x (rv-in-prop v new body))))

3
Finally, the definition of rename-prop:

```
(define (rename-prop P)
  (match P
    ((not Q) (not (rename-prop Q)))
    (((some-prop-con pc) P1 P2) (pc (rename-prop P1) (rename-prop P2)))
    (((some-quant q) x B) (let (Gx' (fresh-var)))
      (q x' (rename-prop (rv-in-prop x x' B))))
    (else P))
```

Problem 4

```
(!claim (fresh-var))
```