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Abstract

We present an algorithm for simplifying Fitch-style natural deduction proofs in classical first-order logic. We

formalize Fitch-style natural deduction as a denotational proof language, NDL, with a rigorous syntax and

semantics. Based on that formalization, we define an array of simplifying transformations and show them to be

terminating and to respect the formal semantics of the language. We also show that the transformations never

increase the size or complexity of a deduction—in the worst case, they produce deductions of the same size

and complexity as the original. We present several examples of proofs containing various types of superfluous

“detours,” and explain how our procedure eliminates them, resulting in smaller and cleaner deductions. All

of the transformations are fully implemented in SML-NJ, and the complete code listing is available.

1.1 Introduction

This paper is concerned with the problem of simplifying proofs in Fitch-style natural-deduction sys-
tems. The hallmark of such systems is the idea of “making arbitrary assumptions and keeping track
of where they lead and for how long the assumptions are in effect” [26]. More briefly, we might say
that the cornerstone of such systems is the notion of conditional subproof: if at some point in a proof
D we wish to establish a conditional F ⇒G, we postulate F as a provisional hypothesis and proceed
to give a subproof D′ that derives G. The subproof D′ is free to use F along with whatever premises
and intermediate conclusions are available up to that point. D′ is written directly underneath and
to the right of the hypothesis F . This indentation serves to delineate D′ as the scope of F . Some
systems emphasize this graphically by enclosing D′ inside a square box. In other systems the subproof
is marked by drawing a vertical line extending from F to the end of D′.

This style of deduction was pioneered by the Polish logician Jáskowski in the early 1930s, not by
Fitch. But Fitch polished and streamlined Jáskowski’s method, and it is now standard practice in
the literature to speak of “Fitch systems.” Such systems are the most popular pedagogical choice
for teaching symbolic logic, used by numerous influential logic textbooks [22, 31, 15, 11, 8, 23, 9].
They are considered to be the most “natural” of the three main families of proof systems that claim
to capture the way in which mathematicians present proofs in practice, the other two being the
natural deduction trees deriving from Gentzen’s N calculus1 and sequent-based systems originating in
Gentzen’s L calculus.2 Proof readability and writability are seriously compromised both in tree-based
and in sequent-based systems, and it is questionable3 to what extent such systems may be said to
reflect ordinary mathematical reasoning.

As mentioned above, presentations of Fitch-style natural deduction have traditionally relied on
graphical devices such as boxes and lines to demarcate assumption scope. It is remarkable how little
this has changed since the introduction of the method by Jáskowski in 1934; even the most recent
textbooks continue to resort to the same diagrammatic techniques that were used 70 years ago. An
alternative formalization of Fitch-style natural deduction has been given recently [3] in the form of a
denotational proof language, NDL, that draws on contemporary advances in the field of programming
language theory. In particular, NDL proofs are succinctly specified by an abstract grammar ([32]),
while a big-step operational semantics [21, 28] attaches a rigorous meaning to every proof that is
syntactically well-formed. Assumption scope is captured by context-free block structure, obviating

1Also used by Prawitz [30] in his “Natural Deduction” [30], by Van Dalen in his “Logic and structure” [12], and by
Troelstra in “Basic Proof Theory” [33].

2Used in books such as “Mathematical Logic” by Ebbinghaus et al. [14] and in theorem-proving systems such as
HOL [18], Isabelle [18].

3Indeed, Pelletier [26] claims that sequent-based calculi are simply not natural deduction systems.
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the need for diagrams.4 Semantically, the formal meaning of a DPL proof is specified relative to a
given assumption base, which is a set of premises, i.e., a set of propositions that we take for granted for
the purposes of the proof. The key idea is that if a DPL proof is sound, then its meaning (denotation)
is the conclusion established by the proof; if the proof is unsound, then its meaning is an error token.
To obtain the meaning, we evaluate the proof in accordance with the formal semantics of the language.
Evaluation will either produce the advertised conclusion, which will verify that the proof is sound,
or else it will generate an error, which will indicate that the proof is unsound. Therefore evaluation
becomes tantamount to proof checking.

Apart from clarity and ease of presentation, defining Fitch-style natural deduction in this manner
has two additional advantages:

• Standard programming language implementation techniques become available for the purpose of
mechanizing proofs. With a formal syntax, parsing tools can be used to read input proofs; and
with a formal semantics, one can readily build an interpreter that evaluates proofs. As discussed
above, such an interpreter would be a proof checker. In the case of NDL, an interpreter can be
written in about one page of SML code, resulting in a very small trusted computing base [6].

• A formal semantics allows us to develop a rigorous theory of observational equivalence for
proofs, providing precise answers to questions such as: What does it mean for two proofs to
be equivalent? When can one proof be substituted for another, i.e., under what conditions can
one proof be “plugged in” inside another proof without changing the latter’s meaning? When
can one proof be considered more efficient than another? What kinds of optimizations can be
performed on proofs? When is it safe to carry out such optimizations? And so on.

The second point will be of key importance in this paper. In the absence of a formal abstract syntax
and semantics, most of the transformations we define in this paper would be inordinately difficult to
even state, let alone to prove correct.

Apart from the intrinsic theoretical interest of the subject, there are several practical motivations
for this work. Automated theorem proving systems based on Fitch-style natural deduction—such
as Oscar [29] and Thinker [27]—often output long proofs with many redundancies. The algorithms
we describe here could be easily implemented in these systems to “clean up” the proofs.5 Likewise,
method applications in Athena [1] and other type-ω DPLs [4] that perform proof search in a natural
deduction setting are likely to produce suboptimal proofs with various detours; our procedures should
prove useful there as well. In addition, Athena employs resolution-based systems such as Vampire
[34] and Spass [36] for proof search [5] and their output proofs also contain many redundancies.
Those resolution proofs could be converted to Fitch-style native Athena proofs and simplified with
the procedures we describe here. Another potential area of application is proof-carrying code (PCC
[24]), where proof size is a very important practical consideration [25]. Finally, our algorithms could
prove useful for educational purposes. Beginning logic students often write proofs in an immature
style, deriving extraneous conclusions, placing an inference in the scope of a hypothesis on which it
does not depend, etc. If students entered proofs into the computer (e.g., in NDL form or in a Fitch

4The idea of representing assumption scope by block structure is also present in formalizations of intuitionist natural
deduction in higher-order type theory [19, 20, 17], but there are important differences. Most notably, in the setting of
type theory assumption scope is lexical scope, that is, assumptions are represented by bound λ-calculus variables, and
hence there is a notion of alphabetic equivalence induced by “α-renaming.” That is not the case in NDL, where an
assumption P is represented directly by P—a constant data item, not a variable. Without variables, there is no notion
of alphabetic equivalence, and we have an altogether different form of scope.

5Thinker already has a “post-processor” that eliminates some redundant claims, but the procedures we describe here
are much more aggressive.
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system such as Hyperproof [7]), it would be possible to immediately simplify their deductions and
display the results to them.

1.2 Background

Our subject is related to proof-tree normalization in the sense of Prawitz [30] (or alternatively, cut-
elimination in sequent-based systems [16, 13]). In the intuitionist case, the Curry-Howard correspon-
dence means that Prawitz normalization coincides with reduction in the simply typed λ-calculus.
Accordingly, the normalization algorithm in that case is particularly simple: keep contracting as long
as there is a redex. Strong normalization and the Church-Rosser property guarantee that eventually
we will converge to a unique normal form. In the classical case, there is some pre-processing to be
done (see Section I, Chapter III of Prawitz’s book [30]) before carrying out reductions.

Fitch-style systems present complications of a different combinatorial nature. One important
difference is that in Fitch systems inference rules are applied to propositions rather than to entire
proofs. If NDL were based on a proof-tree model, where inference rules are applied to proofs, we
could then readily formulate local contraction rules in the style of Prawitz, such as

right-and(both(D1, D2)) −→ D2

modus-ponens(assume P in D1, D2) −→ D1[D2/P ]

and so on. But in NDL there is not much we can infer from looking at an individual application of an
inference rule (such as left-iff P ⇔Q), so global analyses are needed to identify and eliminate detours.
Essentially, because assumptions and intermediate conclusions can have limited and arbitrarily nested
scopes, it is generally not possible to carry out reductions in a local manner; the overall surrounding
context must usually be taken into consideration. Further, the result of one transformation might
affect the applicability or outcome of another transformation, so the order in which these occur is
important.

Our simplification procedure will consist of a series of transformations, which fall into two groups:

• restructuring transformations; and

• contracting transformations, or simply contractions.

Contracting transformations form the bedrock of the simplification process: they remove extraneous
parts, thereby reducing the size and complexity of a deduction. Restructuring transformations sim-
ply rearrange the structure of a deduction so as to better expose simplification opportunities; they
constitute a kind of pre-processing aimed at facilitating the contracting transformations.

Specifically, our top-level simplification procedure is defined as follows:

simplify = contract · restructure (1.1)

where · denotes ordinary function composition and

contract = fp (C ·P · U) (1.2)

restructure = reduce (λ f, g .MS · f · g) MS [A3,A2,A1]. (1.3)

The fixed-point-finder function fp is defined as:

fp f = λ D . let D′ = f D
in

D ≡ε D′ ? →D♦ fp f D′
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where reduce is the usual list-reducing functional and D ≡ε D′ signifies that D and D′ are identical
(or, more precisely, that they differ only in the names of their “eigenvariables”; this is rigorously
defined in Section 1.3.1). An equivalent definition of restructure is as follows:

restructure = weave MS [A3,A2,A1] (1.4)

with the weaving function defined thus:

weave f L = let T [] = f
T g::L′ = f · g · (T L′)

in
T L

We will continue to define functions in this informal notation, using pattern matching, recursion, etc.,
in the style of (strict) higher-order functional languages such as ML. Any reader moderately familiar
with a programming language of this kind should be able to make sense of our definitions.6 As a
convention, we write E ? → E1♦E2 to mean “if E then E1, else E2.” Also, we write [x1, . . . , xn] for
the list of x1, . . . , xn, n ≥ 0, and x::L for the list obtained by prepending (“consing”) x in front of L.
Finally, we use the symbol ⊕ to denote list concatenation.

We will show that our simplification procedure has three important properties: it always termi-
nates; it is safe; and it never increases the size or complexity of a deduction. Specifically, the following
will hold for all deductions D:

1. The computation of simplify(D) terminates.

2. simplify(D) respects the semantics of D, in a sense that will be made rigorous in Section 1.3.

3. The size of simplify(D) is less than or equal to the size of D.

This last point puts our work in marked contrast to cut elimination (or normalization) algorithms.
Eliminating cuts from a proof will not necessarily result in a smaller or simpler proof. In fact it may
well result in a dramatically (e.g., exponentially) larger proof, even when the original proof is fairly
short and simple. (This has led some logicians to caution against cut elimination [10].) By contrast,
the result of our simplification procedure will never be larger than the original, and will indeed often
be smaller and simpler.

The remainder of this paper is structured as follows. The next section briefly reviews the syntax
and semantics of NDL, along with some basic notions and results that will form the theoretical
background for our transformations. Omitted proofs can be found in Chapter 6 of [2]. The following
two sections discuss each group of transformations in turn: first the contractions C, P, and U; and
then the restructuring transformations MS, A1, A2, and A3. Finally,in Section 1.6 we give a number
of examples illustrating the various transformations in action; the examples demonstrate that simplify
can often result in dramatic size reductions.

1.3 NDL
1.3.1 Syntax

We assume we have a fixed signature consisting of a set of constant symbols, a set of function symbols,
and a set of relation symbols. These three sets are required to be pairwise disjoint. Every function

6All of the algorithms presented in this paper have been implemented in SML-NJ. The code is available from
www.cag.csail.mit.edu/~kostas/dpls/ndl.
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and relation symbol has a unique positive integer associated with it and known as its arity. We also
assume the existence of a set of variables, disjoint from the three sets of symbols. We will use the
letters a, b, and c as typical constant symbols; f , g, and h as function symbols; M,P,Q, and R as
relation symbols; and x, y, z, u, v, and w as variables. Symbols such as fn (Rn) will range over
function (relation) symbols of arity n. Terms are defined as usual: a term is either a constant symbol,
or a variable, or an “application” of the form fn(t1, . . . , tn) for n > 0 terms t1, . . . , tn. We will use
the letters s and t to designate terms.

The formulas of NDL have the following abstract syntax:

F ::= true | false | Rn(t1, . . . , tn) | ¬F1 | F1 ∧ F2 | F1 ∨ F2 | F1 ⇒F2 | F1 ⇔F2 | ∀ x . F | ∃ x . F

The letters F , G, H, I and J will be used to denote formulas. Parsing ambiguities will be resolved
by parentheses and brackets. By an assumption base β we will mean a finite set of formulas.

Free and bound variable occurrences in formulas are defined as usual. We write FV (F ) for the
set of those variables that have free occurences in F . Formulas that differ only in the names of their
bound variables are called alphabetically equivalent and will be identified. That is, we will consider
two formulas to be identical iff each can be obtained from the other by consistently renaming its
bound variables (see [2] for a rigorous definition). For an assumption base β, FV (β) will denote the
set of all and only those variables that occur free in some element of β. We define a substitution
as any function θ mapping variables to terms that is the identity on all but finitely many variables;
that is, θ(x) 6= x only for finitely many x. The finite set comprised by these variables is called the
support of θ, denoted Supp(θ). Since a substitution θ is completely determined by its restriction
to its support, it is customary to identify it with the finite set {〈x1, θ(x1)〉, . . . , 〈xk, θ(xk)〉}, where
{x1, . . . , xk} = Supp(θ). The more suggestive notation {x1 7→ t1, . . . , xk 7→ tk} is used to represent
the substitution that maps each xi to ti and every other variable to itself. We write θ[x 7→ t] for
the substitution that maps x to t and every other variable x′ to θ(x′), and define RanVar(θ) as the
set of all and only those variables that occur in some term θ(x), for x ∈ Supp(θ). We say that two
substitutions θ1 and θ2 are disjoint iff Supp(θ1) ∩ Supp(θ2) = ∅; and RanVar(θi) ∩ Supp(θj) = ∅
whenever i, j ∈ {1, 2}, i 6= j.

Any substitution θ can be extended to a homomorphism θ̂ from terms to terms in the usual manner
[35]. Since the extension is unique, we may simply write θ(t) instead of θ̂(t). Substitutions can also
be applied to formulas. Further overloading our notation, we define θ(F ), the result of applying a
substitution θ to a formula F , as follows:

θ(R(t1, . . . , tn)) = R(θ(t1), . . . , θ(tn))
θ(¬F ) = ¬ θ(F )

θ(F ◦ G) = θ(F ) ◦ θ(G)
θ(∀ x . F ) = ∀ x . θ[x 7→ x](F )
θ(∃ x . F ) = ∃ x . θ[x 7→ x](F )

for ◦ ∈ {∧,∨,⇒,⇔}. For a set of formulas Φ, we write θ(Φ) to denote {θ(F ) | F ∈ Φ}. To minimize
notational clutter, we often write θ t (or θ F , or θ Φ) instead of θ(t) (respectively, θ(F ) or θ(Φ)).
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The proofs (or “deductions”) of NDL have the following abstract syntax:

D = Prim-Rule F1, . . . , Fn (Primitive rule applications)
| assume F D (Conditional deductions)
| suppose-absurd F D (Proofs by contradiction)
| D1;D2 (Compositions)
| pick-any x D (Universal generalizations)
| specialize ∀ x . F with t (Universal instantiations)
| ex-generalize ∃ x . F from t (Existential generalizations)
| pick-witness w for ∃ x . F D (Existential instantiations)

where:

Prim-Rule ::= claim | modus-ponens | true-intro | both | left-and
| right-and | double-negation | cases | left-either
| right-either | equivalence | left-iff | right-iff | absurd

Deductions of the form Prim-Rule F1, . . . , Fn are called primitive rule applications; those of the form
assume F D and D1;D2 are conditional and composite deductions, respectively; and those of the
form suppose-absurd F D are called proofs by contradiction. Primitive rule applications as well
as universal instantiations and existential generalizations are atomic deductions, as they have no
recursive structure, whereas all other forms are compound or complex. This distinction is reflected in
the definition of SZ(D), the size of a given D:

SZ(Prim-Rule F1, . . . , Fn) = 1
SZ(assume F D) = 1 + SZ(D)

SZ(suppose-absurd F D) = 1 + SZ(D)
SZ(D1;D2) = SZ(D1) + SZ(D2)

SZ(specialize ∀ x . F with t) = 1
SZ(ex-generalize ∃ x . F from t) = 1

SZ(pick-any x D) = 1 + SZ(D)
SZ(pick-witness w for ∃ x . F D) = 1 + SZ(D)

Both conditional deductions (of the form assume F D) and proofs by contradiction (of the form
suppose-absurd F D) are called hypothetical deductions. In both cases, F and D are the hypothesis
and body of the deduction, respectively. We also say that the body D represents the scope of the
hypothesis F . In universal generalizations of the form pick-any x D, we refer to x as an eigenvariable
and to D as the body; we also say that D represents the scope of x. In existential instantiations

pick-witness w for ∃ x . F D

the variable w is called the witness variable (or simply “the witness”), while D is the body of the proof;
we also say that w is an eigenvariable, and that D represents the scope of w. We write EV (D) for the
set of eigenvariables that appear in D. A trivial deduction is a claim, i.e., an atomic deduction of the
form claim F . We write u.g. and e.i. as abbreviations for “universal generalization” and “existential
instantiation,” respectively.

A deduction is well-formed iff every primitive rule application in it has one of the forms shown in
Figure 1.3. Thus, loosely put, a deduction is well-formed iff the right number and kind of arguments
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D ≡ε D

D1 ≡ε D′
1 D2 ≡ε D′

2

D1; D2 ≡ε D′
1; D

′
2

D1 ≡ε D2

assume F D1 ≡ε assume F D2

D1 ≡ε D2

suppose-absurd F D1 ≡ε suppose-absurd F D2

{x1 7→ y}D1 ≡ε {x2 7→ y}D2

pick-any x1 D1 ≡ε pick-any x2 D2

where y does not occur in D1, D2, y 6∈ {x1, x2}.

{w1 7→ y}D1 ≡ε {w2 7→ y}D2

pick-witness w1 for F D1 ≡ε pick-witness w2 for F D2

where y does not occur in D1, D2, F , y 6∈ {w1, w2}.

Figure 1.1: Definition of the eigenvariance relation ≡ε.

are supplied to every application of a primitive rule. It is straightforward to check whether a deduction
is well-formed; from now on we will only be concerned with well-formed deductions. We stipulate that
the composition operator is right-associative. A maximal-length composition D1; . . . ;Dn is called a
thread. The last element of a thread is said to be in a tail position. Ambiguities in the parsing of
NDL deductions will be resolved by the use of begin-end pairs and/or parentheses.

Substitutions can also be applied to deductions in a straightforward manner. The only slight
complication is presented by pick-any and pick-witness. Both of these introduce scope, so we must
be careful to avoid variable capture. We will say that a substitution θ is safe for a deduction D iff
RanVar(θ) ∩EV (D) = ∅.7 In general, for any substitution θ and proof D, we define θ(D), the result
of applying θ to D, as follows:

θ(Prim-Rule F1, . . . , Fn) = Prim-Rule θ(F1), . . . , θ(Fn)
θ(specialize F with t) = specialize θ(F ) with θ(t)

θ(ex-generalize F from t) = ex-generalize θ(F ) from θ(t)
θ(assume F D) = assume θ(F ) θ(D)

θ(suppose-absurd F D) = suppose-absurd θ(F ) θ(D)
θ(D1;D2) = θ(D1); θ(D2)

θ(pick-any x D) = pick-any x θ[x 7→ x](D)
θ(pick-witness w for ∃ x . F D) = pick-witness w for θ(∃ x . F ) θ[w 7→ w](D)

As with terms and formulas, we will often write θ D as a shorthand for θ(D).
Finally, two deductions will be considered identical iff each can be obtained from the other by

consistently renaming eigenvariables. This relation of “eigenvariance,” denoted by≡ε, is defined by the
7We will see eventually that, because the eigenvariables of a deduction D can be renamed to our liking without

altering the meaning of D, any substitution θ can be considered safe for any deduction D.
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β ∪ {F} `D ; G

β ` assume F D ; F ⇒G

β ∪ {F} `D ; false

β ` suppose-absurd F D ; ¬F

β `D1 ; F1 β ∪ {F1} `D2 ; F2

β `D1; D2 ; F2

β ` {x 7→ v}D ; F

β ` pick-any x D ; ∀ v . F

whenever v does not occur in β or in D.

β ∪ {∀ x . F} ` specialize ∀ x . F with t ; {x 7→ t}F

β ∪ {x 7→ t}F ` ex-generalize ∃ x . F from t ; ∃ x . F

β ∪ {∃ x . F, {x 7→ v}F} ` {w 7→ v}D ; G

β ∪ {∃ x . F} ` pick-witness w for ∃ x . F D ; G

whenever v does not occur in β ∪ {∃ x . F} or in D,

and v 6∈ FV (G).

Figure 1.2: Formal NDL semantics

rules shown in Figure 1.1. The following lemma shows that the eigenvariables of any deduction can be
“renamed away” from any particular set of variables; the result of the renaming will be eigenvariant to
the original deduction. In tandem with Theorem 1.15, which will show that eigenvariant deductions are
observationally equivalent, this will entail that consistently renaming the eigenvariables of a deduction
does not affect the latter’s meaning—in the same way that consistently renaming the bound variables
of a λ-calculus term does not change the term’s meaning.

Lemma 1.1 There is an algorithm that will take any deduction D and any finite set of variables V
and will produce a deduction D′ such that D ≡ε D′ and EV (D′) ∩ V = ∅.

The following lemmas are useful for the proofs of some subsequent results. (Proofs can be found
in Chapter 6 of [2].)

Lemma 1.2 If θ1 and θ2 are disjoint then θ2 θ1 F = θ1 θ2 F .

Lemma 1.3 Let σ = {x1 7→ x2}, τ = {x2 7→ x3}, θ = {x1 7→ x3}. If x2 6∈ FV (F ), τ σ F = θ F .

Lemma 1.4 If x2 does not occur in D then {x2 7→ x1}{x1 7→ x2}(D) = D.

1.3.2 Semantics

The semantics of NDL are given by judgments of the form β `D ; F , which are read as: “Evaluating
D in β produces the conclusion F .” The semantics of rule applications appear in Figure 1.3. The
semantics of compound deductions, universal instantiations and existential generalizations are shown
in Figure 1.2. As an example, the following NDL deduction derives the tautology

∀ x . P (x)⇒¬∃ x .¬P (x)
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β ∪ {F} ` claim F ; F

β ∪ {F ⇒G, F} `modus-ponens F ⇒G, F ; G

β ∪ {¬¬F} ` double-negation ¬¬F ; F

β ∪ {F1, F2} ` both F1, F2 ; F1 ∧ F2

β ∪ {F1 ∧ F2} ` left-and F1 ∧ F2 ; F1

β ∪ {F1 ∧ F2} ` right-and F1 ∧ F2 ; F2

β ∪ {F1} ` left-either F1, F2 ; F1 ∨ F2

β ∪ {F2} ` right-either F1, F2 ; F1 ∨ F2

β ∪ {F1 ∨ F2, F1 ⇒G, F2 ⇒G} ` cases F1 ∨ F2, F1 ⇒G, F2 ⇒G ; G

β ∪ {F1 ⇒F2, F2 ⇒F1} ` equivalence F1 ⇒F2, F2 ⇒F1 ; F1 ⇔F2

β ∪ {F1 ⇔F2} ` left-iff F1 ⇔F2 ; F1 ⇒F2

β ∪ {F1 ⇔F2} ` right-iff F1 ⇔F2 ; F2 ⇒F1

β ∪ {F,¬F} ` absurd F,¬F ; false

β ` true-intro ; true

Figure 1.3: Evaluation axioms for rule applications.

in the empty assumption base (assuming that P is a unary relation symbol):

assume ∀ x . P (x)
suppose-absurd ∃ x .¬P (x)

pick-witness w for ∃ x .¬P (x)
begin

specialize ∀ x . P (x) with w;
absurd P (w),¬P (w)

end

Theorem 1.5 (Dilution) If β `D ; F then β ∪ β′ `D ; F .

Theorem 1.6 If β `D ; F and θ is safe for D then θ β ` θ D ; θ F .

The conclusion of a deduction D, denoted C(D), is defined by structural recursion:

C(specialize ∀ x . F with t) = {x 7→ t}F (1.5)
C(ex-generalize ∃ x . F from t) = ∃ x . F (1.6)

C(assume F D) = F ⇒C(D) (1.7)
C(suppose-absurd F D) = ¬F (1.8)

C(D1;D2) = C(D2) (1.9)
C(pick-any x D) = ∀ x . C(D) (1.10)

C(pick-witness x for F D) = C(D) (1.11)

For rule applications we have:
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OA(left-either F1, F2) = {F1}
OA(right-either F1, F2) = {F2}
OA(Prim-Rule F1, . . . , Fn) = {F1, . . . , Fn}
OA(specialize ∀ x . F with t) = {∀ x . F}
OA(ex-generalize ∃ x . F from t) = {{x 7→ t}F}
OA(assume F D) = OA(D)− {F}
OA(suppose-absurd F D) = OA(D)− {F}
OA(D1; D2) = OA(D1) ∪ [OA(D2)− {C(D1)}]
OA(pick-any x D) = let Φ = OA(D)

in
Φ = error→ error, [x ∈ FV (Φ)→ error, Φ]

OA(pick-witness x for ∃ y . F D) =
x ∈ FV (C(D))→ error,

let Φ = OA(D)
in

Φ = error→ error, let Ψ = Φ− {{y 7→ x}F}
in

x ∈ FV (Ψ)→ error, Ψ ∪ {∃ y . F}

Figure 1.4: Definition of OA(D), the open assumptions of a proof D.

C(modus-ponens F ⇒G, F ) = G

C(double-negation ¬¬F ) = F

C(both F, G) = F ∧G

C(left-and F ∧G) = F

C(right-and F ∧G) = G

C(left-either F, G) = F ∨G

C(claim F ) = F

C(right-either F, G) = F ∨G

C(cases F1 ∨ F2, F1 ⇒G, F2 ⇒G) = G

C(equivalence F ⇒G, G⇒F ) = F ⇔G

C(left-iff F ⇔G) = F ⇒G

C(right-iff F ⇔G) = G⇒F

C(absurd F,¬F ) = false

C(true-intro) = true

Lemma 1.7 C(θ D) = θ C(D).

Lemma 1.8 If x does not occur in D then x does not occur in C(D).

Theorem 1.9 If β `D ; F then F = C(D).

Corollary 1.10 If β `D ; F1 and β `D ; F2 then F1 = F2.

Figure 1.4 defines OA(D), the set of open assumptions of a proof D. The elements of OA(D) are
formulas that D uses as premises, without proof. Note in particular the equations for hypothetical
deductions: the open assumptions here are those of the body D minus the hypothesis F . We will
say that the elements of OA(D) are strictly used by D. A value of error indicates that the deduction
is erroneous, in the sense that it could not possibly yield any conclusion, in any assumption base.
This will be formally captured by Theorem 1.11 below, which is an important technical result stating
that a deduction successfully produces its conclusion iff the assumption base contains all its open
assumptions.

Observe that when we write OA(D) ⊆ β we tacitly imply that OA(D) 6= error. In general,
we adopt the convention that in any context in which an expression such as OA(D) would have to
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denote a set of formulas for some enclosing expression to be meaningful, we are tacitly conjoining the
qualification OA(D) 6= error. Accordingly, the full content of Theorem 1.11 below is: β `D ; C(D) iff
OA(D) 6= error and β ⊇ OA(D). This convention is not necessary for an identity such as OA(D1) =
OA(D2), as the values of OA(D1) and OA(D2) do not have to be sets for such an identity to be
meaningful. In particular, this equality is considered valid iff both OA(D1) and OA(D2) are error, or
else both denote the same set of formulas.

Theorem 1.11 β `D ; C(D) iff OA(D) ⊆ β.

By analogy with OA(D), we define OV (D), the set of “open variables” of D, as

OV (D) = FV (OA(D)) ∪ FV (C(D))

The following lemma is readily proved by induction on D:

Lemma 1.12 If v 6∈ OV (D) then {v 7→ s}(D) = D.

We say that two deductions D1 and D2 are observationally equivalent with respect to an assump-
tion base β, written D1 ≈β D2, whenever

β `D1 ; F iff β `D2 ; F

for all F . We say that D1 and D2 are observationally equivalent, written D1 ≈D2, iff we have
D1 ≈β D2 for all β.

Lemma 1.13 If D1 ≈D2 then C(D1) = C(D2).

Proof: Set β = OA(D1) ∪OA(D2). By Theorem 1.11, we have β `D1 ; C(D1), so the assumption
D1 ≈D2 entails β `D2 ; C(D1). But Theorem 1.11 also gives β `D2 ; C(D2), hence C(D1) = C(D2)
by Corollary 1.10.

Theorem 1.14 D1 ≈D2 iff OA(D1) = OA(D2) and C(D1) = C(D2). Therefore, observational
equivalence is decidable.

Proof: In one direction, suppose that OA(D1) = OA(D2) and C(D1) = C(D2). Then, for any β and
F , we have:

β `D1 ; F iff (by Theorem 1.9 and Theorem 1.11)

F = C(D1) and β ⊇ OA(D1) iff (by the assumptions C(D1) = C(D2) and OA(D1) = OA(D2))

F = C(D2) and β ⊇ OA(D2) iff (by Theorem 1.9 and Theorem 1.11)

β `D2 ; F .

This shows that D1 ≈D2.
Conversely, suppose that D1 ≈D2. Then C(D1) = C(D2) follows from Lemma 1.13. Moreover,

by Theorem 1.11, OA(D1) `D1 ; C(D1), so the assumption D1 ≈D2 entails OA(D1) `D2 ; C(D1).
Therefore, by Theorem 1.11,

OA(D1) ⊇ OA(D2). (1.12)

Likewise, we have OA(D2) `D2 ; C(D2), so D1 ≈D2 implies OA(D2) `D1 ; C(D2), and hence
Theorem 1.11 gives

OA(D2) ⊇ OA(D1) (1.13)

and now OA(D1) = OA(D2) follows from 1.12 and 1.13.
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Theorem 1.15 ≡ε ⊆ ≈; i.e., eigenvariant deductions are observationally equivalent.

Observational equivalence is a very strong condition. Oftentimes we are only interested in replacing
a deduction D1 by some D2 on the assumption that D1 will yield its conclusion in the intended β (i.e.,
on the assumption that its evaluation will not lead to error), even though we might have D1 6≈D2.
To take a simple example, although we have claim F ;D 6≈D (pick D to be true-intro and consider
any β that does not contain F ), it is true that in any given assumption base, if claim F ;D produces
some conclusion G then so will D. (In fact this observation will be the formal justification for a
transformation we will introduce later for removing redundant claims.) We formalize this relation as
follows.

We write D1 �β D2 to mean that, for all F ,

if β `D1 ; F then β `D2 ; F.

And we write D1 � D2 to mean that D1 �β D2 for all β.
Clearly, � is not a symmetric relation: We vacuously have claim false; true-intro� true-intro,

but the converse does not hold. However, � is a quasi-order (reflexive and transitive), and in fact ≈
is the contensive equality generated by the weaker relation’s symmetric closure.

Lemma 1.16 � is a quasi-order whose symmetric closure coincides with ≈. Accordingly, D1 ≈D2

iff D1 � D2 and D2 � D1.

It will be useful to note that � is compatible with the syntactic constructs of NDL:

Lemma 1.17 If D1 � D′
1, D2 � D′

2 then assume F in D1 � assume F in D′
1, D1;D2 � D′

1;D
′
2;

suppose-absurd F in D1 � suppose-absurd F in D′
1; pick-any x D1 � pick-any x D′

1 and
pick-witness w for ∃ x . F D1 � pick-witness w for ∃ x . F D′

1.

Reasoning similar to that used in the proof of Theorem 1.11 will show:

Theorem 1.18 D1 � D2 iff C(D1) = C(D2) and OA(D1) ⊇ OA(D2). Therefore, the relation � is
decidable.

Finally, the following two results will help us to justify a “hoisting” transformation that we will define
later:

Theorem 1.19 If F 6∈ OA(D1) then (a) assume F (D1;D2)� D1;assume F D2;

(b) suppose-absurd F (D1;D2) � D1; suppose-absurd F D2.

Proof: We prove part (a); part (b) is similar. Suppose β ` assume F (D1;D2) ; F ⇒Q, so that
β ∪ {F} `D1;D2 ; Q. Accordingly,

β ∪ {F} `D1 ; F1 (1.14)

and
β ∪ {F} ∪ {F1} `D2 ; Q (1.15)

(where, of course, F1 = C(D1), Q = C(D2)). Thus 1.15 gives

β ∪ {F1} ` assume F D2 ; F ⇒Q. (1.16)
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From 1.14 and Theorem 1.11, β ∪ {F} ⊇ OA(D1), hence, since F 6∈ OA(D1),

β ⊇ OA(D1). (1.17)

Therefore,
β `D1 ; F1 (1.18)

so, from 1.16 and 1.18, rule [R3] gives β `D1;assume F D2 ; F ⇒Q, which establishes (a).

Theorem 1.20 If x 6∈ OV (D1) then

pick-any x (D1;D2) � D1;pick-any x D2

and pick-witness x for ∃ y . F (D1;D2)� D1;pick-witness x for ∃ y . F D2.

The relation � will serve as our formal notion of safety for the transformations that will be
introduced. That is, whenever a transformation maps a deduction D1 to some D2, we will have
D1 � D2. This is an appropriate notion of safety in the context of certificates [6], because if D1

is a certificate then presumably we already know that it works; we are only interested in making
it more efficient or succinct. For other applications, however, if we wish our transformations to be
perfectly safe then we should insist on observational equivalence. For D1 ≈D2 means that the two
deductions behave identically in all contexts, i.e., in all assumption bases. For any β, if D1 fails in
β then D2 will fail in β as well; while if D1 produces a conclusion F in β, then D2 will produce that
same conclusion in β. Accordingly, the replacement of D1 by D2 would be a completely semantics-
preserving transformation.

We close this section by introducing three derived inference rules that will come handy in the
sequel: the binary rule cond and the two unary rules neg and genx (parameterized over a variable
x). Applications of these rules are defined as syntax sugar in terms of existing rules as follows:

cond F,G =⇒ assume F claim G

neg F =⇒ suppose-absurd F claim false

genx F =⇒ pick-any x claim F

The reader will verify the following:

Lemma 1.21 (a) β ∪ {G} ` cond F,G ; F ⇒G; OA(cond F,G) = {G}; C(cond F,G) = F ⇒G.
(b) β ∪ {false} ` neg F ; ¬F ; OA(neg F ) = {false}; C(neg F ) = ¬F . (c) If x 6∈ FV (F ) then
β ∪ {F} ` genx F ; ∀ x . F ; OA(genx F ) = {F}; and C(genx F ) = ∀ x . F .

1.4 Contracting transformations

Informally, our contracting transformations will be based on two simple principles:

Productivity: Every intermediate conclusion should be used at some later point as an argument to
a primitive inference rule.

Parsimony: At no point should a non-trivial deduction establish something that has already been
established, or something that has been hypothetically postulated.

These principles are respectively based on the notions of redundancies and repetitions, which we will
now study in detail.
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`S D

whenever D is atomic

`S D

`S assume F D

`S D

`S suppose-absurd F D

`S D1 `S D2 C(D1) ∈ OA(D2)

`S D1; D2

`S D

`S pick-any x D

`S D {x 7→ w}F ∈ OA(D)

`S pick-witness w for ∃ x . F D

Figure 1.5: Definition of strict deductions.

1.4.1 Redundancies

Intuitively, a deduction contains redundancies if it derives conclusions which are not subsequently
used. For all practical purposes, such derivations are useless “noise.” We will see that they can
be systematically eliminated. Redundancy-free deductions will be called strict. As a very simple
counterexample, the following deduction, which proves F ∧G⇒F , is not strict:

assume F ∧G in begin right-and F ∧G; left-and F ∧G; end

The redundancy here is the application of right-and to derive G. This is superfluous because it plays
no role in the derivation of the final conclusion. We formally define the judgment `S D, “D is strict,”
in Figure 1.5. Verbally, the definition can be put as follows:

• Atomic deductions are always strict.

• Hypothetical deductions and universal generalizations are strict if their respective bodies are
strict.

• An existential instantiation is strict if its body is strict and strictly uses the witness premise.

• A composite deduction D1;D2 is strict if both D1 and D2 are strict, and the conclusion of D1

is strictly used in D2.

The last of the above clauses is the most important one. Note that we require that C(D1) be
strictly used in D2. Accordingly, the deduction

left-and F ∧G; assume F both F, F

is not strict: the derivation of F via left-and is extraneous because the only subsequent use of F , as
a premise to both inside the assume, has been “buffered” by the hypothetical postulation of F .

We will now present a transformation algorithm U that converts a given deduction D into a strict
deduction D′. We will prove that `S D′, and also that the semantics of D are conservatively preserved
in the sense that D � D′. The transformation is defined by structural recursion:

U (assume F D) = assume F U (D)
U (suppose-absurd F D) = suppose-absurd F U (D)
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U (D1;D2) = let D′
1 = U (D1)

D′
2 = U (D2)

in
C(D′

1) 6∈ OA(D′
2)→D′

2♦D′
1;D

′
2

U (pick-any x D) = pick-any x U (D)
U (pick-witness w for ∃ x . F D) = let D′ = U (D)

in
{x 7→ w}F ∈ OA(D′)→ pick-witness w for ∃ x . F D′♦D′

U (D) = D

Informally, it is easy to see that D � U (D) because U (D) does not introduce any additional open
assumptions (though it might eliminate some of the open assumptions of D), and does not alter C(D).
Therefore, by Theorem 1.18, we have D � U (D). More precisely:

Theorem 1.22 (a) U always terminates; (b) U (D) is strict; (c) D � U (D).

Proof: Termination is clear, since the size of the argument strictly decreases with each recursive call.
We prove (b) and (c) simultaneously by structural induction on D.

The basis case of atomic deductions is immediate. When D is of the form assume F Db, we have

U (D) = assume F U (Db). (1.19)

By the inductive hypothesis, U (Db) is strict, hence so is U (D), by the definition of strictness. Further,
again by the inductive hypothesis, we have Db � U (Db), hence by Lemma 1.17 we get

assume F Db � assume F U (Db)

which is to say, by virtue of (1.19), that D � U (D). The reasoning for proofs by contradiction is
similar.

Next, suppose that D is a composite deduction D1;D2 and let D′
1 = U (D1), D′

2 = U (D2). Ei-
ther C(D′

1) ∈ OA(D′
2) or not. If so, then U (D) = D′

1;D
′
2, and strictness follows from the induc-

tive hypothesis and our supposition that C(D′
1) ∈ OA(D′

2), according to the definition of `S ; while
D � U (D) in this case means D1;D2 � D′

1;D
′
2, which follows from the inductive hypotheses in tan-

dem with Lemma 1.17. By contrast, suppose that C(D′
1) 6∈ OA(D′

2), so that U (D) = D′
2. Since

D = D1;D2 � D′
1;D

′
2 follows from the inductive hypotheses and Lemma 1.17, if we can show that

D′
1;D

′
2 � D′

2 then D � D′
2 = U (D) will follow from the transitivity of � (Lemma 1.16). Accord-

ingly, pick any β and G, and suppose that β `D′
1;D

′
2 ; G (where, of course, by Theorem 1.9 we

must have G = C(D′
1;D

′
2) = C(D′

2)). By Theorem 1.11, this means that

β ⊇ OA(D′
1;D

′
2) (1.20)

But the supposition C(D′
1) 6∈ OA(D′

2) entails, by the definition of open assumptions, that OA(D′
1;D

′
2) =

OA(D′
1)∪OA(D′

2), so (1.20) gives β ⊇ OA(D′
2). Therefore, Theorem 1.11 implies β `D′

2 ; C(D′
2) =

G. We have thus shown that for any β and G, if β `D′
1;D

′
2 ; G then β `D′

2 ; G, which is to say
D′

1;D
′
2 � D′

2. It follows from our earlier remarks that D = D1;D2 � D′
2 = U (D).

When D is of the form pick-any x D, the result follows directly from the inductive hypothesis
and Lemma 1.17.

Finally, suppose that D is an existential instantiation of the form

pick-witness w for ∃ x . F Db

Let D′
b = U (Db). We distinguish two cases:
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1. {x 7→ w}F 6∈ OA(D′
b). In that case U (D) = D′

b, so we need to show that D′
b is strict and

that D � D′
b. The former follows immediately from the inductive hypothesis. For the latter,

consider an arbitrary assumption base β and suppose that β `D ; G. By the semantics of
pick-witness, this entails ∃ x . F ∈ β and

β ∪ {{x 7→ z}F} ` {w 7→ z}Db ; G (1.21)

for some fresh variable z (not occuring in D or in β) and such that z 6∈ FV (G). The substitution
{z 7→ w} is safe for {w 7→ z}Db (we can always ensure this by renaming the eigenvariables of
{w 7→ z}Db on the basis of Lemma 1.1 if necessary), hence (1.21) and Theorem 1.6 imply

{z 7→ w}β ∪ {{z 7→ w}{x 7→ z}F} ` {z 7→ w}{w 7→ z}Db ; {z 7→ w}G (1.22)

Since z does not occur in β or in G, we have {z 7→ w}β = β and {z 7→ w}G = G. Further,
since z 6∈ FV (F ), Lemma 1.3 gives

{z 7→ w}{x 7→ z}F = {x 7→ w}F

Finally, by Lemma 1.4 and the assumption that z does not occur in Db we infer

{z 7→ w}{w 7→ z}Db = Db

Accordingly, (1.22) becomes
β ∪ {{x 7→ w}F} `Db ; G (1.23)

Now since Db � D′
b (by the inductive hypothesis), (1.23) gives

β ∪ {{x 7→ w}F} `D′
b ; G (1.24)

By virtue of Theorem 1.11, (1.24) gives

β ∪ {{x 7→ w}F} ⊇ OA(D′
b) (1.25)

But {x 7→ w}F 6∈ OA(D′
b), hence (1.25) yields β ⊇ OA(D′

b). Therefore, by Theorem 1.11 we
conclude β `D′

b ; G.

2. {x 7→ w}F ∈ OA(D′
b). In that case the result of the algorithm is

Dr = pick-witness w for ∃ x . F D′
b

By the inductive hypothesis, D′
b is strict, therefore, by the formal definition of strictness and

the supposition {x 7→ w}F ∈ OA(D′
b), we infer that Dr is also strict. Also by the inductive

hypothesis, Db � D′
b, hence D � Dr by Lemma 1.17.

This completes the case analysis and the inductive proof.

As an illustration, suppose we wish to use the algorithm to remove redundancies from the deduction

D1;D2;both F,G; left-either F,H (1.26)

where C(D1) = F, C(D2) = G. Assuming that D1 and D2 are already strict, the interesting reduction
steps taken by the algorithm, in temporal order, may be depicted as follows (where we use the arrow
=⇒ to represent a reduction step):
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1. both F, G; left-either F, H =⇒ left-either F, H (as F ∧G 6∈ OA(left-either F, H))

2. D2; left-either A, H =⇒ left-either F, H (as C(D2) = G 6∈ OA(left-either F, H))

3. D2;both F, G; left-either F, H =⇒D2; left-either F, H (from 1)

4. D2;both F, G; left-either F, H =⇒ left-either F, H (from 2 and 3)

5. D1; D2;both F, G; left-either F, H =⇒D1; left-either F, H (from 4)

Thus the original deduction becomes reduced to D1; left-either F,H.

1.4.2 Repetitions

The principle of productivity alone cannot guarantee that a deduction will not have superfluous
components. For instance, consider a slight modification of example (1.26):

D1;D2;both F,G; left-and F ∧G (1.27)

where again C(D1) = F , C(D2) = G. The difference with (1.26) is that the last deduction is

left-and F ∧G

instead of left-either F,H. In this case algorithm U will have no effect because the deduction is
already strict: D1 establishes F ; D2 establishes G; then we use both F and G to obtain F ∧G;
and finally we use left-and F ∧G to get F . Thus the principle of productivity is observed. The
principle of parsimony, however, is violated: the left-and deduction establishes something (F ) which
has already been established by D1. For that reason, it is extraneous, and hence so are the derivations
of G and F ∧G.

This example illustrates what Prawitz called a detour: the gratuitous application of an introduction
rule followed by the application of a corresponding elimination rule that gets us back to a premise which
we had supplied to the introduction rule. The reason why these are detours is because elimination rules
are the inverses of introduction rules. Prawitz enunciated this intuition with an informal statement
that he called “the inversion principle.”

It is important to realize that Prawitz’s reductions are not readily applicable inNDL. Detours may
not be freely replaced by their obvious contractions; the greater context in which the subdeduction
occurs will determine whether the replacement is permissible. For example, the boxed subdeduction
below indicates a detour, but we may not blindly simplify it because C(D2), or C(D1) ∧ C(D2), or
both, might be needed inside D′:

· · · ;D1; D2;both C(D1), C(D2); left-and C(D1) ∧ C(D2) ; · · ·D′ · · ·

What we can do, however, is replace the inference left-and C(D1) ∧ C(D2) by the trivial claim C(D1).
A subsequent strictness analysis will determine whether C(D2) or C(D1) ∧ C(D2) are needed at any
later point. If not, then we can be sure that the deductions D2 and both C(D1), C(D2) were indeed
a detour, and algorithm U will eliminate them. We will see that this simple technique of

1. replacing every deduction whose conclusion P has already been established by the trivial de-
duction that claims P , and then

2. removing redundancies with our productivity analysis
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P(D) = RR(D, ∅)
where

RR(D, Φ) = C(D) ∈ Φ→ claim C(D)♦
match D

assume F in Db → assume F in RR(Db, Φ ∪ {F})
suppose-absurd F in Db → suppose-absurd F in RR(Db, Φ ∪ {F})
D1; D2 → let D′

1 = RR(D1, Φ)

in

D′
1;RR(D2, Φ ∪ {C(D′

1)})
pick-any x Db → pick-any x RR(Db, Φ)

pick-witness w for ∃ x . F Db → pick-witness w for ∃ x . F RR(Db, Φ ∪ {{x 7→ w}F})
D → D

Figure 1.6: Algorithm for removing repetitions.

will be sufficient for the elimination of most Prawitz-type detours. The first step can result in a
deduction with various trivial claims sprinkled throughout. This is mostly a cosmetic annoyance; a
simple contracting analysis that we will present shortly will eliminate all extraneous claims. That
analysis will always be performed at the end of all other transformations in order to clean up the final
result.

Figure 1.6 depicts an algorithm P for performing the first step of the above process.

Lemma 1.23 If β ` RR(D,Φ) ; F then β ∪Ψ ` RR(D,Φ ∪Ψ) ; F .

Proof: By induction on D. Suppose first that C(D) ∈ Φ, so that RR(D,Φ) = claim C(D). In
that case, by the semantics of claim, the assumption β ` RR(D,Φ) ; F = C(D) entails C(D) ∈ β.
Therefore,

β ∪Ψ ` RR(D,Φ ∪Ψ) = claim C(D) ; F

Now suppose C(D) 6∈ Φ. We proceed by a case analysis of the structure of D. Suppose first that
D is of the form assume H Db. We then have

β ` assume H RR(Db,Φ ∪ {H}) ; F = H ⇒G

for some G, so that
β ∪ {H} ` RR(Db,Φ ∪ {H}) ; G

By the inductive hypothesis,

β ∪Ψ ∪ {H} ` RR(Db,Φ ∪Ψ ∪ {H}) ; G

hence
β ∪Ψ ` assume H RR(Db,Φ ∪Ψ ∪ {H}) ; H ⇒G = F

i.e., β ∪Ψ ` RR(D,Φ ∪Ψ) ; F .
When D is of the form suppose-absurd H Db, we have:

β ` suppose-absurd H RR(Db,Φ ∪ {H}) ; F = ¬H
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so that β ∪ {H} ` RR(Db,Φ ∪ {H}) ; false. Inductively,

β ∪Ψ ∪ {H} ` RR(Db,Φ ∪Ψ ∪ {H}) ; false

and therefore
β ∪Ψ ` suppose-absurd H RR(Db,Φ ∪Ψ ∪ {H}) ; ¬H = F

i.e., β ∪Ψ ` RR(D,Φ ∪Ψ) ; F .
Next, suppose that D is a composition D1;D2. Then the assumption β ` RR(D,Φ) ; F entails

β ` RR(D1,Φ);RR(D2,Φ ∪ {C(RR(D1,Φ))}) ; F (1.28)

so that
β ` RR(D1,Φ) ; G (1.29)

and
β ∪ {G} ` RR(D2,Φ ∪ {G}) ; F (1.30)

where G = C(RR(D1,Φ)). By the inductive hypothesis, (1.29) and (1.30) yield, respectively,

β ∪Ψ ` RR(D1,Φ ∪Ψ) ; G (1.31)

and
β ∪Ψ ∪ {G} ` RR(D2,Φ ∪Ψ ∪ {G}) ; F (1.32)

which means C(RR(D1,Φ ∪Ψ)) = G. Therefore,

β ∪Ψ ` RR(D1,Φ ∪Ψ);RR(D2,Φ ∪Ψ ∪ {G}) ; F

i.e., β ∪Ψ ` RR(D1;D2,Φ ∪Ψ) ; F .
When D is of the form pick-any x Db, we have RR(D,Φ) = pick-any x RR(Db,Φ), so the

assumption β ` RR(D,Φ) ; F means

β ` pick-any x RR(Db,Φ) ; F (1.33)

By the semantics of pick-any, (1.33) means that F = ∀ z .G for some G and some z that does not
occur in RR(D,Φ) or in β, and such that

β ` {x 7→ z}RR(Db,Φ) ; G (1.34)

Without loss of generality, we may assume that {z 7→ x} is safe for {x 7→ z}RR(Db,Φ) (we can
always ensure this by renaming the eigenvariables of {x 7→ z}RR(Db,Φ)), hence Theorem 1.6 and
(1.34) imply

{z 7→ x}β ` {z 7→ x} {x 7→ z}RR(Db,Φ) ; {z 7→ x}G (1.35)

Since z does not occur in RR(Db,Φ), Lemma 1.4 gives

{z 7→ x} {x 7→ z}RR(Db,Φ) = RR(Db,Φ)

and, since z also does not occur in β, we have {z 7→ x}β = β. Thus (1.35) becomes:

β ` RR(Db,Φ) ; {z 7→ x}G (1.36)
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The inductive hypothesis now gives

β ∪Ψ ` RR(Db,Φ ∪Ψ) ; {z 7→ x}G (1.37)

The substitution {x 7→ z} is safe for RR(Db,Φ ∪Ψ), hence Theorem 1.6 and (1.37) entail

{x 7→ z}β ∪ {x 7→ z}Ψ ` {x 7→ z}RR(Db,Φ ∪Ψ) ; {x 7→ z} {z 7→ x}G (1.38)

Without loss of generality, we may assume that x does not occur in β or in Ψ (we can always rename
D to ensure this), and therefore

{x 7→ z}β = β (1.39)

and
{x 7→ z}Ψ = Ψ (1.40)

Moreover, x does not occur in G (this follows from (1.34), Lemma 1.8, Theorem 1.9, and the fact that
x does not occur in {x 7→ z}RR(Db,Φ)). Accordingly, by Lemma 1.3 we get

{x 7→ z} {z 7→ x}G = G (1.41)

Now (1.39), (1.40), and (1.41) transform (1.38) into:

β ∪Ψ ` {x 7→ z}RR(Db,Φ ∪Ψ) ; G

and hence, by the semantics of universal generalizations,

β ∪Ψ ` pick-any x RR(Db,Φ ∪Ψ) ; ∀ z .G = F

which is to say β ∪Ψ ` RR(D,Φ ∪Ψ) ; F .
When D is an existential instantiation of the form pick-witness w for ∃x . G Db, the assumption

β ` RR(D,Φ) ; F means that

β ` pick-witness w for ∃ x . G RR(Db,Φ ∪ {{x 7→ w}G}) ; F (1.42)

so that ∃ x . G ∈ β and, for some fresh z,

β ∪ {{x 7→ z}G} ` {w 7→ z}RR(Db,Φ ∪ {{x 7→ w}G}) ; F (1.43)

where z does not occur in F . Since {z 7→ w} is safe for {w 7→ z}RR(Db,Φ ∪ {{x 7→ w}G}), Theo-
rem 1.6 and (1.43) imply

{z 7→ w}β ∪ {{z 7→ w} {x 7→ z}G} ` {z 7→ w} {w 7→ z}RR(Db,Φ ∪ {{x 7→ w}G}) ; {z 7→ w}F

Because z is fresh, we have {z 7→ w}β = β; {z 7→ w} {x 7→ z}G = {x 7→ w}G (by Lemma 1.3);
and {z 7→ w} {w 7→ z}RR(Db,Φ ∪ {{x 7→ w}G}) = RR(Db,Φ ∪ {{x 7→ w}G}) (by Lemma 1.4).
Therefore, the preceding evaluation judgment becomes:

β ∪ {{x 7→ w}G} ` RR(Db,Φ ∪ {{x 7→ w}G}) ; F (1.44)

Inductively, (1.44) gives

β ∪Ψ ∪ {{x 7→ w}G} ` RR(Db,Φ ∪Ψ ∪ {{x 7→ w}G}) ; F (1.45)
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Now {w 7→ z} is safe for RR(Db,Φ ∪Ψ ∪ {{x 7→ w}G}), hence Theorem 1.6 and (1.45) give

{w 7→ z}β ∪ {w 7→ z}Ψ ∪ {{w 7→ z} {x 7→ w}G} `
{w 7→ z}RR(Db,Φ ∪Ψ ∪ {{x 7→ w}G}) ; {w 7→ z}F

(1.46)

Without loss of generality, we may assume that w does not occur in β, or in Ψ or in G, and therefore

{w 7→ z}β = β (1.47)
{w 7→ z}Ψ = Ψ (1.48)

{w 7→ z} {x 7→ w}G = {x 7→ z}G (by Lemma 1.3) (1.49)

In addition, w does not occur RR(Db,Φ ∪Ψ ∪ {{x 7→ w}G}), hence, by Lemma 1.8, (1.43), and
Theorem 1.9, we infer that w does not occur in F , so that

{w 7→ z}F = F (1.50)

Finally, (1.46) along with (1.47), (1.48), (1.49), and (1.50) yield

β ∪Ψ ∪ {{x 7→ z}G} `
{w 7→ z}RR(Db,Φ ∪Ψ ∪ {{x 7→ w}G}) ; F

(1.51)

so, by the semantics of pick-witness and ∃ x . G ∈ β, we obtain

β ∪Ψ ` pick-witness w for ∃ x . G RR(Db,Φ ∪Ψ ∪ {{x 7→ w}G}) ; F

which is to say β ∪Ψ ` RR(D,Φ ∪Ψ) ; F .
Finally, suppose that C(D) 6∈ Φ and D is not of any of the above forms. Then RR(D,Φ) = D, so

we have
β `D ; F = C(D) (1.52)

We distinguish two cases:

1. C(D) ∈ Ψ: In that case RR(D,Φ ∪Ψ) = claim C(D), so

β ∪Ψ ` RR(D,Φ ∪Ψ) ; C(D) = F

follows by the semantics of claim.

2. C(D) 6∈ Ψ: Then C(D) 6∈ Φ ∪Ψ, and hence

RR(D,Φ ∪Ψ) = D (1.53)

The desired judgment β ∪Ψ ` RR(D,Φ ∪Ψ) ; F now follows from (1.52), (1.53), and dilution.

This completes the case analysis and the inductive argument.

Theorem 1.24 D � P(D).
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Proof: We will prove that D � RR(D, ∅) by induction on D. When D is an atomic deduction,
RR(D, ∅) = D, so the result is immediate since � is reflexive. When D is of the form

assume F Db,

RR(D, ∅) = assume F RR(Db, {F}), so to show D � RR(D, ∅) we need to prove that if

β ` assume F Db ; F ⇒G (1.54)

then
β ` assume F RR(Db, {F}) ; F ⇒G. (1.55)

On the assumption that (1.54) holds, we have

β ∪ {F} `Db ; G. (1.56)

By the inductive hypothesis, Db � RR(Db, ∅), so from (1.56) we get

β ∪ {F} ` RR(Db, ∅) ; G

and by Lemma 1.23, β ∪ {F} ` RR(Db, {F}) ; G. Therefore,

β ` assume F RR(Db, {F}) ; F ⇒G

which is the desired (1.55).
Proofs by contradiction are handled similarly. Specifically, suppose that D is of the form

suppose-absurd F Db

and assume β ` suppose-absurd F Db ; ¬F , for arbitrary β, so that

β ∪ {F} `Db ; false. (1.57)

Inductively, Db � RR(Db, ∅), so (1.57) gives

β ∪ {F} ` RR(Db, ∅) ; false.

Therefore, Lemma 1.23 yields
β ∪ {F} ` RR(Db, {F}) ; false

and this implies β ` suppose-absurd F RR(Db, {F}) ; ¬F . We have thus shown that

suppose-absurd F Db � suppose-absurd F RR(Db, {F})

which is to say D � RR(D, ∅).
Finally, suppose that D is of the form D1;D2 and that β `D1;D2 ; G, so that

β `D1 ; F (1.58)

and
β ∪ {F} `D2 ; G. (1.59)

We have RR(D, ∅) = D′
1;D

′
2, where

D′
1 = RR(D1, ∅) (1.60)
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and
D′

2 = RR(D2, C(D′
1)) (1.61)

From the inductive hypothesis, D1 � RR(D1, ∅), hence from (1.58),

β ` RR(D1, ∅) ; F (1.62)

so from (1.60),
β `D′

1 ; F (1.63)

and
C(D′

1) = F. (1.64)

Likewise, D2 � RR(D2, ∅), so from (1.59),

β ∪ {F} ` RR(D2, ∅) ; G

and from Lemma 1.23,
β ∪ {F} ` RR(D2, {F}) ; G

which, from (1.61) and (1.64) means

β ∪ {F} `D′
2 ; G. (1.65)

Finally, from (1.63) and (1.65) we obtain β `D′
1;D

′
2 ; G, and thus we infer D � RR(D, ∅) = D′

1;D
′
2.

When D is of the form pick-any x Db, the inductive hypothesis gives Db � RR(Db, ∅), and now
D � RR(D, ∅) follows from Lemma 1.17 and the definition of RR.

Finally, suppose that D is an existential instantiation pick-witness w for ∃ x . F Db and assume
β `D ; G, so that

β ∪ {{x 7→ z}F} ` {w 7→ z}Db ; G (1.66)

for some fresh variable z, where z 6∈ FV (G) and ∃ x . F ∈ β. The substitution {z 7→ w} is safe for
{w 7→ z}Db, hence Theorem 1.6 and (1.66) imply

{z 7→ w}β ∪ {{z 7→ w} {x 7→ z}F} ` {z 7→ w} {w 7→ z}Db ; {z 7→ w}G (1.67)

Since z does not occur in β ∪ {F} or in Db, Lemma 1.3 and Lemma 1.4 transform (1.67) into

β ∪ {{x 7→ w}F} `Db ; {z 7→ w}G (1.68)

By the inductive hypothesis, Db � RR(Db, ∅), so (1.68) yields

β ∪ {{x 7→ w}F} ` RR(Db, ∅) ; {z 7→ w}G (1.69)

By Lemma 1.23, (1.69) gives

β ∪ {{x 7→ w}F} ` RR(Db, {{x 7→ w}F}) ; {z 7→ w}G (1.70)

Now {w 7→ z} is safe for RR(Db, {{x 7→ w}F}), hence Theorem 1.6 and (1.70) yield

{w 7→ z}β ∪{{w 7→ z} {x 7→ w}F} ` {w 7→ z}RR(Db, {{x 7→ w}F}) ; {w 7→ z} {z 7→ w}G (1.71)
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Without loss of generality, we may assume that w does not occur in F or in β (we can always rename
w to ensure this), hence {w 7→ z}β = β, while Lemma 1.3 implies

{w 7→ z} {x 7→ w}F = {x 7→ z}F

Moreover, w does not occur in G (this follows from (1.66), Lemma 1.8, Theorem 1.9, and the fact
that w does not occur in {w 7→ z}Db), hence

{w 7→ z} {z 7→ w}G = G

Accordingly, (1.71) becomes

β ∪ {{x 7→ z}F} ` {w 7→ z}RR(Db, {{x 7→ w}F}) ; G

and therefore, since ∃ x . F ∈ β,

β ` pick-witness w for ∃ x . F RR(Db, {{x 7→ w}F}) ; G

which is to say β ` RR(D, ∅) ; G.

1.4.3 Claim elimination

The third and final contracting transformation we will present is particularly simple: it eliminates all
claims in non-tail positions. It is readily verified that all such claims are superfluous. For example,
the claim in

D = dn ¬¬F ; claim G;both F, F

can be removed because D � dn ¬¬F ;both F, F .
Claims in tail positions cannot in general be removed, since they serve as conclusions. One

exception, however, occurs when the claim of some F is the last element of a thread whose immediately
preceding element concludes F . In those cases the claim can be removed despite being in tail position.
An example is

dn ¬¬F ;both F,G; claim F ∧G.

Here the tail claim of F ∧G can be eliminated because it is derived by the immediately dominating
deduction both F,G.

The following algorithm removes all claims in non-tail positions, as well as all extraneous tail
claims of the sort discussed above:

C(D) =
match D

assume F Db→ assume F C(Db)
suppose-absurd F Db→ suppose-absurd F C(Db)
D1;D2→ let D′

1 = C(D1)
D′

2 = C(D2)
in

claim?(D′
1)→D′

2♦ claim?(D′
2) and C(D′

1) = C(D′
2)→D′

1♦D′
1;D

′
2

pick-any x Db→ pick-any x C(Db)
pick-witness w for ∃ x . F Db→ pick-witness w for ∃ x . F C(Db)
D→D
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where claim?(D) returns true iff D is an application of claim. We have:

Lemma 1.25 claim F ;D � D. Further, D; claim F � D whenever C(D) = F .

Using this lemma, a straightforward induction will show that D � C(D). Termination is immediate.

Theorem 1.26 C always terminates. In addition, D � C(D).

Another property that will prove useful is the following:

Lemma 1.27 Let D1; . . . ;Dn;Dn+1 be a chain in C(D), n > 0. Then ∀ i ∈ {1, . . . , n}, Di is not a
claim.

Recall from (1.2) that the contracting phase of simplify is defined as

contract = fp (C ·P · U)

For any given D, let us write NT (D) to denote the number of non-trivial subdeductions of D,
i.e., the number of subdeductions of D that are not claims. Define a quantity Q(D) as the pair
(SZ(D),NT (D)). A simple induction on D will show:

• U D = D or SZ(U D) < SZ(D);

• P D = D or else SZ(P D) < SZ(D) or SZ(P D) = SZ(D) and NT (P D) < NT (D);

• C D = D or SZ(C D) < SZ(D).

Therefore, writing (a1, b1) <lex (a2, b2) to mean that the pair (a1, b1) is lexicographically <-smaller
than (a2, b2), we have:

Lemma 1.28 For all D, either (C ·P · U) D = D or else Q((C ·P · U) D) <lex Q(D).

It follows that the fixed-point algorithm will eventually converge, since an infinitely long chain of
distinct deductions D1, D2, . . . produced by repeated applications of C ·P · U would entail

Q(Di) >lex Q(Di+1)

for all i, which is impossible since >lex is well-founded. It also follows from Lemma 1.28 that the
size of the final result of contract will not be greater than the size of the original input. Finally,
D � contract(D) follows from Theorem 1.22, Theorem 1.24, Theorem 1.26, and the transitivity of
� . We summarize:

Theorem 1.29 The contraction procedure always terminates. In addition, D � contract(D) and
SZ(contract(D)) ≤ SZ(D).

1.5 Restructuring transformations

1.5.1 Scope maximization

The most fundamental restructuring transformation is scope maximization. Intuitively, this aims at
making the conclusion of a subdeduction available to as many subsequent inferences as possible. Scope
can be limited in three ways: with bracketing (begin-end pairs); with assumption scope; and with
eigenvariable scope. We examine each case below.
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Left-linear compositions

One factor that can affect conclusion visibility is left-linear composition, namely, deductions of the
form (D1;D2);D3, where the conclusion of D1 is only available to D2. Such deductions are rare in
practice because the natural threading style in NDL is right-associative (which is why composition
associates to the right by default). When they occur, left-linear compositions can complicate our
parsimony analysis. Consider, for instance, D = (D1;D2);D3 where C(D1) = C(D3). Algorithm
P might well find D to be repetition-free even though, intuitively, it is clear that D3 unnecessarily
duplicates the work of D1. The problem is the limited scope of D1: As long as D2 does not replicate
the conclusion of D1 and D3 the conclusion of D1;D2, i.e., the conclusion of D2, then D will be found
repetition-free. The problem can be avoided by right-associating D, thereby maximizing the scope of
D1. The algorithm RL that we present below converts every subdeduction of the form (D1;D2);D3

into D1; (D2;D3). Our proof that this is a safe transformation will be based on Lemma 1.30 below.
The proof of the lemma is straightforward and omitted, but the intuition is important: in both cases
D1 is available to D2, and D2 to D3, but in D1; (D2;D3) we also have D1 available to D3. So if
(D1;D2);D3 goes through, then certainly D1; (D2;D3) will do too.

Lemma 1.30 (D1;D2);D3 � D1; (D2;D3).

Let us say that a deduction D is right-linear iff it has no subdeductions of the form (D1;D2);D3.
The following is immediate:

Lemma 1.31 If D is right-linear then so is any hypothetical deduction, u.g., or e.i. with body D.
Moreover, if D1 and D2 are right-linear and D1 is not a composite deduction then D1;D2 is right-
linear.

Algorithm RL will transform any given D into a right-linear D′ such that D � D′:

RL(assume F D) = assume F RL(D)
RL(suppose-absurd F D) = suppose-absurd F RL(D)

RL(Dl;Dr) =
match Dl

D1;D2 → RL(D1; (D2;Dr))

→ RL(Dl);RL(Dr)

RL(pick-any x D) = pick-any x RL(D)

RL(pick-witness w for ∃ x . F D) = pick-witness w for ∃ x . F RL(D)

RL(D) = D

For our termination proof, let us define a quantity LSZ(D) as follows: if D is of the form D1;D2 then
LSZ(D) = SZ(D1); otherwise LSZ(D) = 0.

Theorem 1.32 RL always terminates.

Proof: We claim that with each recursive call, the pair (SZ(D),LSZ(D)) strictly decreases lexico-
graphically.8 This can be seen by checking each recursive call: in the recursive calls for assume,
suppose-absurd, pick-any and pick-witness, the size of D strictly decreases. In the recursive call
RL(D1; (D2;Dr)) the size does not increase, while the quantity LSZ strictly decreases. Finally, in
both recursive calls in the next line, the size strictly decreases.

8Using the lexicographic extension of < to pairs of natural numbers: (n1, n2) is smaller than (n′
1, n′

2) iff n1 < n′
1 or

else n1 = n′
1 and n2 < n′

2.
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Theorem 1.33 RL(D) is right-linear. Furthermore, D � RL(D).

Proof: Let us write D1 ≺ D2 to mean that the pair (SZ(D1),LSZ(D1)) is lexicographically smaller
than (SZ(D2),LSZ(D2)). We will use well-founded induction on the relation ≺, i.e., we will show
that for all deductions D, if the result holds for every D′ such that D′ ≺ D then it also holds for
D. We proceed by a case analysis of an arbitrary D. If D is an atomic deduction then RL(D) = D
and the result follows immediately. If D is a conditional deduction with hypothesis F and body D′

then RL(D) = assume F RL(D′). Since D′ ≺ D, the inductive hypothesis entails that RL(D′)
is right-linear and that D′ � RL(D′). The same reasoning is used for proofs by contradiction. The
result now follows from Lemma 1.31 and Lemma 1.17.

Finally, suppose that D is of the form Dl;Dr. Then either Dl is of the form D1;D2, or not. In
the first case we have

RL(D) = RL(D1; (D2;Dr)) (1.72)

and since D = (D1;D2);Dr � D1; (D2;Dr), we conclude inductively that

(i) RL(D1; (D2;Dr)) is right linear, and

(ii) D1; (D2;Dr) � RL(D1; (D2;Dr)).

Thus the conclusion that RL(D) is right-linear follows from (i) and (1.72), while

D � RL(D) = RL(D1; (D2;Dr))

follows from (ii) and the transitivity of �, since D � D1; (D2;Dr) from Lemma 1.30. If Dl is not of
the form D1;D2 then

RL(D) = RL(Dl);RL(Dr) (1.73)

and since Dl ≺ D, Dr ≺ D, the inductive hypothesis entails that (i) RL(Dl) and RL(Dr) are right-
linear, and (ii) Dl � RL(Dl), Dr � RL(Dr). Because Dl is not a composite deduction, neither is
RL(Dl) (a necessary condition for RL(D) to be composite is that D be composite), hence it follows
from Lemma 1.31 and (1.73) that RL(D) is right-linear. Further, D � RL(D) follows from (ii) and
Lemma 1.17. This concludes the case analysis and the inductive argument.

Assumption and eigenvariable scope

The other cases of undue scope limitation arise in hypothetical deductions and in eigenvariable de-
ductions (universal generalizations and existential instantiations). Consider a hypothetical deduction
with body Db and hypothesis F . If D is a subdeduction of Db then its scope cannot extend beyond Db.
But this need not be the case if D is not strictly dependent on the hypothesis F . If there is no such
dependence, then D is unnecessarily restricted by being inside Db. Its scope should be maximized by
hoisting it outside Db. As a simple example, consider

assume G in
begin

double-negation ¬¬F ;
both F,G

end

Here the subdeduction double-negation ¬¬F makes no use of the hypothesis G, and therefore it is
appropriate to pull it outside, resulting in
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double-negation ¬¬F ;
assume G in

both F,G

This deduction is observationally equivalent to the first one, and has a cleaner structure that better
reflects the various logical dependencies. Besides increased clarity, hoisting will greatly facilitate our
repetition analysis later on. Repetitions are much easier to detect and eliminate when they are in the
same scope. Consider, for instance, the deduction

assume G in
begin

double-negation ¬¬F ;
both F,G

end;
left-and F ∧H;
both F,G⇒F ∧G

In view of double-negation ¬¬F , the deduction left-and F ∧H is superfluous, but this is not easy
to determine mechanically because the former deduction lies inside the scope of the hypothesis G.
More importantly, neither deduction can be safely eliminated as things stand, even though it is clearly
extraneous to have both of them. If we eliminated the double-negation then the assume might fail;
while if we eliminated the left-and, the composition might fail. But if we hoist the double negation
outside of the assume, resulting in

double-negation ¬¬F ;
assume G in

both F,G;
left-and F ∧H;
both F,G⇒F ∧G

then the repetition becomes much easier to detect, and the left-and can be confidently eliminated.
Similar remarks apply when an inference inside the body of an u.g. or an e.i. does not depend on the
respective eigenvariable, as in:

pick-any x

begin
left-and R(z) ∧R(a);
D

end

In what follows we will be dealing with lists of deductions [D1, . . . , Dn]. We will use the letter
∆ to denote such lists. For a non-empty list ∆ = [D1, . . . , Dn], n > 0, we define ∆ as the thread
D1; . . . ;Dn. The following will come handy later:

Lemma 1.34 ∆1 ⊕∆2 = ∆1;∆2

We adopt the convention that when ∆ is empty the expresssion ∆; D stands for D.
The algorithm H in Figure 1.7 examines a right-linear thread D = D1; . . . ;Dn (we make the

simplifying convention that we might have n = 1, in which case D1 will not be composite, since we
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H(D1;D2,Φ, V ) =

let (D′
1,Φ1,∆1) = H(D1,Φ, V )

(D′
2,Φ2,∆2) = H(D2,Φ1, V )

in
(D′

1;D
′
2,Φ2,∆1 ⊕∆2)

H(D,Φ, V ) = [OA(D) ∩ Φ = ∅ and OV (D) ∩ V = ∅]→
(claim C(D),Φ, [D])♦ (D,Φ ∪ {C(D)}, [])

Figure 1.7: The kernel of the hoisting algorithm.

are assuming that D is right-linear) and pulls out every Di that is not transitively dependent on a
set of assumptions Φ or a set of variables V .

Each hoisted Di is replaced in-place in D by the trivial deduction claim C(Di). Specifically,
H(D,Φ, V ) returns a triple (D′,Ψ,∆), where

• D′ is obtained from D by replacing every Di that does not transitively depend on Φ or on V
by C(Di).

• Ψ ⊇ Φ is monotonically obtained from Φ by incorporating the conclusions of those deductions
Dj that do depend (transitively) on Φ (or on V ). This is essential in order to handle transitive
dependence.

• ∆ is a list [Di1 , . . . , Dik
], 1 ≤ ij ≤ n, j = 1, . . . , k ≥ 0, of those deductions that do not depend

on Φ. The order is important for preserving dominance constraints: we have ia < ib for a < b,
since, e.g., D5 and D8 might not be dependent on Φ or on V , but D8 might depend on D5.
Accordingly, ∆ should respect the original ordering.

As Theorem 1.40 will prove, the idea is that we will have D � ∆; D′. The thread D1; · · · ;Dn can
be thought of as the body of a hypothetical deduction with hypothesis F , with Φ and V respectively
as {F} and ∅. Alternatively, we can think of D1; · · · ;Dn as the body of an u.g. or an e.i. with
eigenvariable x, in which case Φ = ∅ and V = {x}. Then if H(D1; . . . ;Dn,Φ, V ) = (D′,Ψ,∆), D′

will be the new body of the deduction, and the thread ∆ will comprise the hoisted deductions, with
a dominance relation that respects the original ordering 1, . . . , n.

Lemma 1.35 Let H(D1,Φ1, V ) = (D2,Φ2,∆). Then for all D ∈ ∆, (a) Φ1 ∩ OA(D) = ∅; (b)
V ∩OV (D) = ∅; and (c) D is not a composition.

Proof: By induction on D1. Suppose first that D1 is not composite. There are two cases: either
OA(D1) ∩ Φ1 = ∅ and OV (D1) ∩ V = ∅; or not. If not, then ∆ = [] so the result holds vacuously.
Otherwise, ∆ = [D1], and the result holds by supposition. If D1 is a composition Dl;Dr then
∆ = ∆l ⊕∆r, where H(Dl,Φ1, V ) = (D′

l,Φl,∆l) and H(Dr,Φl, V ) = (D′
r,Φr,∆r). Inductively,

∀D ∈ ∆l [Φ1 ∩OA(D) = ∅ and V ∩OV (D) = ∅] (1.74)

and
∀D ∈ ∆r [Φl ∩OA(D) = ∅ and V ∩OV (D) = ∅ (1.75)
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while every D in ∆l and ∆r is a non-composition. Since Φ1 ⊆ Φl, (1.75) entails

∀D ∈ ∆r,Φ1 ∩OA(D) = ∅ (1.76)

Parts (a) and (b) now follow from (1.74), (1.75), and (1.76), since ∆ = ∆l ⊕∆r; while (c) follows
directly from the inductive hypotheses.

We will also need the following four results, whose proofs are simple and omitted:

Lemma 1.36 Let H(D1,Φ1, V ) = (D2,Φ2,∆). If D1 is right-linear then D2 is right-linear, and
every D ∈ ∆ is right-linear too.

Lemma 1.37 Let (D′,Ψ,∆) = H(D,Φ, V ). Then either

1. D′ = D; or else

2. D′ is a claim; or

3. D is a chain D1, . . . , Dn, Dn+1 and D′ is a chain D′
1, . . . , D

′
n, D′

n+1, where for all i, either
D′

i = Di or else D′
i is a claim.

Lemma 1.38 If C(D) 6∈ OA(Di) for i = 1, . . . , n then

D;D1; . . . ;Dn;D′ � D1; . . . ;Dn;D;D′.

Lemma 1.39 claim F ;D1; . . . ;Dn;D � D1; . . . ;Dn; claim F ;D.

Theorem 1.40 If D is right-linear and H(D,Φ, V ) = (D′,Ψ,∆) then D � ∆; D′.
Proof: By induction on D. Suppose first that D is not a composition. Then either

OA(D) ∩ Φ = OV (D) ∩ V = ∅

or not. If not, then D′ = D and ∆ = [], so the result is immediate. Otherwise, D′ = claim C(D)
and ∆ = [D], so again the result follows immediately. In contradistinction, suppose that D is a
composition D1;D2. Then, letting

H(D1,Φ, V ) = (D′
1,Φ1,∆1) (1.77)

and
H(D2,Φ1, V ) = (D′

2,Φ2,∆2) (1.78)

we have D′ = D′
1;D

′
2 and ∆ = ∆1 ⊕∆2, so we have to show

D � ∆1 ⊕∆2;D′
1;D

′
2. (1.79)

From (1.77), (1.78), and the inductive hypothesis, we have

D1 � ∆1;D′
1 (1.80)

and
D2 � ∆2;D′

2 (1.81)
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Therefore,
D = D1;D2 � ∆1;D′

1;∆2;D′
2 (1.82)

Since we are assuming that D is right-linear, D1 cannot be composite, so we again distinguish two
cases:

OA(D1) ∩ Φ = OV (D1) ∩ V = ∅

or not. If not, then D′
1 = D1,Φ1 = Φ∪{C(D1)}, and ∆1 = []. From (1.78) and Lemma 1.35 it follows

that for every Dx ∈ ∆2, Φ1 ∩OA(Dx) = ∅, and since C(D1) ∈ Φ1, this means that C(D1) 6∈ OA(Dx).
Hence, by Lemma 1.38 (and remembering that D′

1 = D1):

D′
1;∆2;D′

2 � ∆2;D′
1;D

′
2

and thus
∆1;D′

1;∆2;D′
2 � ∆1;∆2;D′

1;D
′
2 (1.83)

By contrast, if OA(D1) ∩ Φ = OV (D1) ∩ V = ∅ then D′
1 = C(D1), so by Lemma 1.39 we have

D′
1;∆2;D′

2 � ∆2;D′
1;D

′
2

and hence (1.83) follows again. Thus we have shown that in either case (1.83) holds, and since
∆1 ⊕∆2 = ∆1 ⊕∆2, it now follows from (1.82), (1.83), and the transitivity of � that

D � ∆1 ⊕∆2;D′
1;D

′
2

which is precisely our goal (1.79).

Theorem 1.41 If D is right-linear and H(D, {F}, ∅) = (D′,Φ,∆) then

(a) assume F D � ∆;assume F D′; and

(b) suppose-absurd F D � ∆; suppose-absurd F D′.

Proof: We prove (a); the proof of (b) is similar. We will first use induction on the list ∆ to show
that

assume F ∆; D′ � ∆;assume F D′ (1.84)

When ∆ is the empty list this is immediate. For the inductive step, suppose that ∆ is of the form
D1::∆1. Lemma 1.35 gives {F} ∩OA(D1) = ∅, so Theorem 1.19 yields

assume F D1;∆1;D′ � D1;assume F ∆1;D′ (1.85)

Inductively, assume F ∆1;D′ � ∆1;assume F D′, so, by Lemma 1.17,

D1;assume F ∆1;D′ � D1;∆1;assume F D′ = ∆;assume F D′ (1.86)

The goal (1.84) now follows from (1.85), (1.86), and the transitivity of � , and the induction is
complete. Now by Theorem 1.40, D � ∆; D′, hence Lemma 1.17 gives

assume F D � assume F ∆; D′ (1.87)

(a) follows from (1.84), (1.87), and the transitivity of � .
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Theorem 1.42 If D is right-linear and H(D, ∅, {x}) = (D′,Φ,∆) then

(a) pick-any x D � ∆;pick-any x D′;

and (b) pick-witness x for ∃ y . F D � ∆;pick-witness x for ∃ y . F D′.

Proof: For part (a), we will use induction on the list ∆ to show that

pick-any x ∆; D′ � ∆;pick-any x D′ (1.88)

Since Theorem 1.40 gives D � ∆; D′, Lemma 1.17 implies

pick-any x D � pick-any x ∆; D′ (1.89)

Hence, once (1.88) is proven, part (a) will follow from it, (1.89), and the transitivity of � .
When ∆ is the empty list, (1.88) is immediate. When ∆ is of the form D1::∆1, Lemma 1.35

implies {x} ∩OV (D1) = ∅, so Theorem 1.20 yields

pick-any x D1;∆1;D′ � D1;pick-any x ∆1;D′ (1.90)

By the inductive hypothesis,

pick-any x ∆1;D′ � ∆1;pick-any x D′ (1.91)

therefore, by Lemma 1.17,

D1;pick-any x ∆1;D′ � D1;∆1;pick-any x D′

which is to say (by virtue of Lemma 1.34)

D1;pick-any x ∆1;D′ � ∆;pick-any x D′ (1.92)

Now (1.88) follows from (1.90), (1.92), and the transitivity of � .
We use a similar technique for part (b). We note that (by Theorem 1.40) D � ∆; D′ and hence

(by Lemma 1.17):

pick-witness x for ∃ y . F D � pick-witness x for ∃ y . F ∆; D′ (1.93)

As we did above, we will use induction on ∆ to show

pick-witness x for ∃ y . F ∆; D′ � ∆;pick-witness x for ∃ y . F D′ � (1.94)

When ∆ is empty the result is immediate. When ∆ is of the form D1::∆1, Lemma 1.35 tells us that
{x} ∩OV (D1) = ∅, so Theorem 1.20 gives

pick-witness x for ∃ y . F ∆; D′ = pick-witness x for ∃ y . F D1;∆1;D′

�
D1;pick-witness x for ∃ y . F ∆1;D′

(1.95)

Inductively,

pick-witness x for ∃ y . F ∆1;D′ � ∆1;pick-witness x for ∃ y . F D′ (1.96)
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hence, by Lemma 1.17,

D1;pick-witness x for ∃ y . F ∆1;D′ � D1;∆1;pick-witness x for ∃ y . F D′ (1.97)

and now (1.94) follows from (1.95), (1.97), and the transitivity of � . The desired result finally
follows from (1.93), (1.94), and the transitivity of � .

As an illustration of the algorithm, let D be the deduction

1. modus-ponens F ⇒G ∧H,F ;
2. double-negation ¬¬I;
3. left-and G ∧H;
4. right-either J, I;
5. both G, J ∨ I

and consider the call H(D, {F}). Let D1–D5 refer to the deductions in lines 1–5, respectively.
Since D is composite, the first clause of the algorithm will be chosen, so the first recursive call
will be H(D1, {F}), which, since D1 is not composite and OA(D1) ∩ {F} 6= ∅, will yield the result
(D1, {F,G ∧H}, []). The second recursive call is H(D2;D3;D4;D5, {F,G ∧H}). This in turn gives
rise to the recursive calls H(D2, {F,G ∧H}), which returns

(claim I, {F,G ∧H}, [double-negation ¬¬I]),

and H(D3;D4;D5, {F,G ∧H}). The latter will spawn H(D3, {F,G ∧H}), which will produce

(D3, {F,G ∧H,G}, []),

and H(D4;D5, {F,G ∧H,G}). In the same fashion, the latter will invoke H(D4, {F,G ∧H,G}),
which will return

(claim J ∨ I, {F,G ∧H,G}, [right-either J, I]),

and H(D5, {F,G ∧H,G}), which will produce (D5, {F,G ∧H,G,G ∧ (J ∨ I)}, []). Moving up the
recursion tree, we eventually obtain the final result (D′,Ψ,∆), where D′ is the deduction

1.modus-ponens F ⇒G ∧H,F ;
2.claim I;
3.left-and G ∧H;
4.claim J ∨ I;
5.both G, J ∨ I

while Ψ = {F,G ∧H,G,G ∧ (J ∨ I)} and ∆ = [double-negation ¬¬I, right-either J, I]. Thus
∆; D′ is the deduction

double-negation ¬¬I;
right-either J, I;

modus-ponens F ⇒G ∧H,F ;
claim I;
left-and G ∧H;
claim J ∨ I;
both G, J ∨ I
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The horizontal line demarcates the hoisted inferences from D′.
If D were the body of a hypothetical deduction with hypothesis F , then the result of the hoisting

would be ∆;assume F D′, namely,

double-negation ¬¬I;
right-either J, I;
assume F

begin
modus-ponens F ⇒G ∧H,F ;
claim I;
left-and G ∧H;
claim J ∨ I;
both G, J ∨ I

end

A subsequent contracting transformation to remove claims (algorithm C) would result in

double-negation ¬¬I;
right-either J, I;
assume F

begin
modus-ponens F ⇒G ∧H,F ;
left-and G ∧H;
both G, J ∨ I

end

The hoisting algorithm should be applied to every hypothetical deduction, every u.g., and every
e.i. inside a given D. This must be done in stages and in a bottom-up direction in order for hoisted
inferences to “bubble” as far up as possible (to maximize their scope). Specifically, let D be a given
deduction. The hoisting will proceed in stages i = 1, . . . , n, . . ., where we begin with D1 = D. At
each stage i we replace certain candidate subdeductions of Di by new deductions, and the result we
obtain from these replacements becomes Di+1. We keep going until we reach a fixed point, i.e., until
Di+1 = Di.

At each point in the process every hypothetical deduction (as well as every u.g. and every e.i.)
inside Di is either marked, indicating that its body has already been processed, or unmarked. An
invariant we will maintain throughout is that a marked subdeduction will never contain unmarked
deductions; this will be enforced by the way in which we will be choosing our candidates, and will
ensure that hoisting proceeds in a bottom-up direction. Initially, every hypothetical deduction as well
as every u.g. and e.i. inside D1 = D is unmarked. On stage i, an unmarked subdeduction of Di is
a candidate for hoisting iff it is as deep as possible, i.e., iff it does not itself contain any unmarked
subdeductions. For each such candidate Dc of the form assume F Db or suppose-absurd F Db

occurring in position u ∈ Dom(Di), we compute (D′
b,Ψ,∆) = H(Db, {F}, ∅), and we replace Dc

in position u of Di by ∆;assume F D′
b (or ∆; suppose-absurd F D′

b, respectively), where the
assume (or suppose-absurd) is now marked to indicate that its body D′

b has been combed bottom-
up and we are thus finished with it—it can no longer serve as a candidate. Likewise, for each
candidate Dc of the form pick-any x Db or pick-witness x for ∃ y . F Db occuring in position
u ∈ Dom(Di), we compute (D′

b,Ψ,∆) = H(Db, ∅, {x}), and we replace Dc in u by ∆;pick-any x D′
b

(or ∆;pick-witness x for ∃ y . F D′
b, respectively). The deduction we obtain from Di by carrying
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out these replacements becomes Di+1. One pitfall to be avoided: the replacements might introduce
left-linear subdeductions in Di+1. Algorithm H, however, expects its argument to be right-linear, so
after the replacements are performed we need to apply RL to Di+1 before continuing on to the next
stage.

We will say that a deduction D is fully marked iff every assume, suppose-absurd, pick-any,
and pick-witness inside D is marked. Algorithm Hoist below replaces every candidate subdeduction
of a given D in the manner discussed above and marks the processed subdeduction:

Hoist(D) = match D

assume F Db→
Is Db fully marked? →

let (D′
b, , ∆) = H(Db, {F}, ∅)

in

∆;assume F D′
b♦

assume F Hoist(Db)

suppose-absurd F Db→
Is Db fully marked? →

let (D′
b, , ∆) = H(Db, {F}, ∅)

in

∆; suppose-absurd F D′
b♦

suppose-absurd F Hoist(Db)

pick-any x Db→
Is Db fully marked? →

let (D′
b, , ∆) = H(Db, ∅, {x})

in

∆;pick-any x D′
b♦

pick-any x Hoist(Db)

pick-witness w for ∃ x . F Db→
Is Db fully marked? →

let (D′
b, , ∆) = H(Db, ∅, {w})

in

∆;pick-witness w for ∃ x . F D′
b♦

pick-witness w for ∃ x . F Hoist(Db)

D1; D2→Hoist(D1);Hoist(D2)

D→D

Using Theorem 1.41, Theorem 1.42, and Lemma 1.17, a straightforward induction on D will prove:

Theorem 1.43 If D is right-linear then D � Hoist(D).

We can now formulate our scope-maximization transformation as:

MS D = fp (RL ·Hoist) (RL D)

where fp is as defined in Section 1.1. That MS always terminates follows from the fact that Hoist
does not introduce any additional hypothetical deductions, universal generalizations, or existential
instantiations; and either outputs the same result unchanged or a deduction with at least one more
subdeduction marked. Since any deduction only has a finite number of subdeductions, this means that
MS will eventually converge to a fixed point. Further, D � MS(D) follows from the corresponding
property of RL, from Theorem 1.43, and from the transitivity of the � relation. The right-linearity
of the result follows directly from the definition of MS. We summarize:
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Theorem 1.44 (a) MS always terminates; (b) MS(D) is right-linear; (c) D � MS(D).

We close by addressing the question of whether this restructuring algorithm might ever increase
the size of a deduction. Since MS works by repeatedly applying the composition of Hoist with RL, it
will follow that MS preserves the size of its argument if both RL and Hoist do. This is readily verified
for RL; we have SZ(RL(D)) = SZ(D) for all D. Consider now the hoisting transformation H, which
is the core of Hoist. When Hoist applies H to the body of a hypothetical deduction (or u.g. or e.i.),
say assume F Db, thereby obtaining a new deduction ∆;assume F D′

b, the new part ∆ is obtained
by trimming down the body Db, so, intuitively, we should have SZ(Db) = SZ(D′

b) + SZ(∆). But
that will not always be true because the new body D′

b might contain some claims where the hoisted
deductions used to be, and those claims will cause the size of the result to be somewhat larger than
that of the original. However, most such claims will be subsequently removed by the claim-elimination
algorithm presented earlier, and this will rebalance the final size—even in the worst-case scenario in
which the hoisting did not expose any new contraction opportunities. This is evinced by Lemma 1.37:
claims inserted in D′

b in non-tail positions will be eliminated by C , as guaranteed by Lemma 1.27.
There is only one exception, again as prescribed by Lemma 1.37: when the new body D′

b is a chain
of the form D1; . . . ;Dn, n ≥ 1, and the last element of the thread, Dn, is a newly inserted claim.
Such a claim, being in a tail position, will not be removed by the claim-elimination algorithm. As a
simple example, consider

D = assume F double-negation ¬¬G. (1.98)

Here the body does not depend on the hypothesis F , so hoisting it outside results in the deduction

double-negation ¬¬G;assume F claim G

which is slightly larger than the original (1.98). But this minor wrinkle is easily rectified using cond
(or neg and gen in the case of suppose-absurd and pick-any, respectively). Specifically, by the
way H is defined, if a trivial deduction claim G is inserted in the last slot of D′

b (viewing D′
b as

a chain of length n ≥ 1), then the last element of the produced list ∆ will be a deduction with
conclusion G. Therefore, in that case, instead of producing ∆;assume F D′

b we may simply output
∆; cond F, C(∆); or, in the case of proofs by contradiction, ∆;neg F . Accordingly, we modify Hoist
by replacing the line ∆;assume F D′

b, by

∆ 6= [] and C(∆) = C(D′
b) ? →∆; cond F, C(D′

b)♦∆;assume F D′
b,

Note that “∆ 6= [] and C(∆) = C(D′
b)” is not a sufficient condition for guaranteeing that the hoisting

algorithm has inserted a trivial claim in the tail position of D′
b (although it is necessary). The

transformation is safe nevertheless because the identity C(∆) = C(D′
b) ensures that

∆;assume F D′
b � ∆; cond F, C(D′

b)

Likewise, the line ∆; suppose-absurd F D′
b is replaced by

∆ 6= [] and C(∆) = C(D′
b) ? →∆;neg F ♦∆; suppose-absurd F D′

b

which is safe because if C(∆) = C(D′
b) then C(∆) = false. The line ∆;pick-any x D′

b is replaced by

∆ 6= [] and C(∆) = C(D′
b) ? →∆;genx C(D′

b)♦∆;pick-any x D′
b

which is safe because OV (D) ∩ {x} = ∅ for all D ∈ ∆ (Lemma 1.35), which means that

x 6∈ FV (C(∆)) = FV (C(D′
b))
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Finally, we replace the line ∆;pick-witness w for ∃ x . F D′
b by

∆ 6= [] and C(∆) = C(D′
b) ? →∆♦∆;pick-witness w for ∃ x . F D′

b

which is safe because C(pick-witness w for ∃ x . F D′
b) = C(D′

b). It is readily verified that these
changes do not affect Theorem 1.44, while ensuring that all claims inserted by H will be subsequently
elimimated (during the contraction phase).

1.5.2 Global transformations of hypothetical deductions

The hoisting algorithm is a focused, local transformation: we delve inside a given deduction D and
work on subdeductions of the form assume F Db or suppose-absurd F Db, taking into account
only the hypothesis F and the body Db. We do not utilize any knowledge from a wider context.
More intelligent transformations become possible if we look at the big picture, namely, at how F
and Db relate to other parts of the enclosing deduction D. In this section we will present three such
transformations, A1, A2, and A3. All three of them perform a global analysis of a given deduction D
and replace every hypothetical subdeduction D′ of it by some other deduction D′′ (where we might
have D′′ = D′). These transformations expect their input deductions to have been processed by
MS, but their output deductions might contain left-linear compositions or hoisting possibilities that
were not previously visible. It is for this reason that their composition must be interleaved with the
scope-maximization procedure MS, as specified in (1.3) (or (1.4)).

The first transformation, A1, targets every hypothetical subdeduction of D of the form D′ =
assume F Db whose hypothesis F is an open assumption of D, i.e., such that F ∈ OA(D). Clearly,
D can only be successfully evaluated in an assumption base that contains F (Theorem 1.11). But
if we must evaluate D in an assumption base that contains F , then there is no need to hide Db

behind that hypothesis; we can pull it outside. Accordingly, this analysis will replace D′ by the
composition D′′ = Db; cond F, C(Db). Thus the final conclusion is unaffected (it is still the conditional
F ⇒C(Db)), but the scope of Db is enlarged. An analogous transformation is performed for proofs
by contradiction. Specifically, we define:

A1(D) = T (D)
where
T (assume F Db) =

let D′
b = T (Db)

in
F ∈ OA(D) ? →D′

b; cond F, C(D′
b)♦assume F D′

b

T (suppose-absurd F Db) =
let D′

b = T (Db)
in

F ∈ OA(D) ? →D′
b;neg F ♦ suppose-absurd F D′

b

T (Dl;Dr) = T (Dl);T (Dr)
T (pick-any x Db) = pick-any x T (Db)
T (pick-witness w for ∃ x . F Db) = pick-witness w for ∃ x . F T (Db)
T (D) = D

Note that we first process Db recursively and then pull it out, since Db might itself contain
hypothetical deductions with open assumptions as hypotheses. For example, if D is the deduction
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assume F in
begin
both F , F ;
assume G in

both G, F ∧F
end;

both F ,G;
both F ∧G, F ⇒ G ⇒ G ∧ F ∧ F

where both conditional deductions have open assumptions as hypotheses (F and G) then A1(D) will
be:

begin
begin

both F , F ;
both G, F ∧ F ;
cond G, G ∧ F ∧ F

end;
cond F ,G ⇒ G ∧ F ∧ F

end;
both F ,G;
both F ∧G, F ⇒ G ⇒ G ∧ F ∧ F

Observe that the output deduction is heavily skewed to the left (when viewed as a tree). After a pass
of the right-linearization algorithm, we will obtain the following:

both F , F ;
both G, F ∧ F ;
cond G, G ∧ F ∧ F ;
cond F ,G ⇒ G ∧ F ∧ F ;
both F ,G;
both F ∧G, F ⇒ G ⇒ G ∧ F ∧ F

A straightforward induction will show:

Lemma 1.45 A1 terminates. Moreover, D � A1(D) and SZ(A1(D)) ≤ SZ(D).

The two remaining transformations turn not on whether the supposition of a hypothetical deduc-
tion is an open assumption, but on whether it is deduced at some prior or subsequent point. For
the second transformation, A2, suppose that during our evaluation of D we come to a conditional
subdeduction D′ = assume F Db whose hypothesis F either has already been established or else has
already been hypothetically postulated (e.g., D′ is itself nested within an assume with hypothesis
F ). Then we may again pull Db out, replacing D′ by the composition D′′ = Db; cond F, C(Db).
(More precisely, just as in A1, we first have to process Db recursively before hoisting it.) A similar
transformation is possible for proofs by contradiction.

To motivate this transformation, consider the following deduction:

left-and ¬¬F ∧H;
assume ¬¬F
begin
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dn ¬¬F ;
both F,G

end;
modus-ponens ¬¬F ⇒F ∧G,¬¬F

This deduction illustrates one of the detours we discussed earlier, whereby F2 is derived by first
inferring F1, then F1 ⇒F2, and then using modus-ponens on F1 ⇒F2 and F1. The detour arises
because the hypothesis F1 is in fact deducible, and hence there is no need for the implication F1 ⇒F2

and the modus-ponens. We can simply deduce F1 and then directly perform the reasoning of the
body of the hypothetical deduction. Thus we arrive at the following algorithm:

A2(D) = T (D, ∅)
where
T (D, Φ) = match D

assume F Db→
F ∈ Φ→ let D′

b = T (Db, Φ)

in

D′
b; cond F, C(D′

b)♦
assume F T (Db, Φ ∪ {F})

suppose-absurd F Db→
F ∈ Φ→ let D′

b = T (Db, Φ)

in

D′
b;neg F ♦

suppose-absurd F T (Db, Φ ∪ {F})
pick-any x Db→ pick-any x T (Db, Φ)

pick-witness w for ∃ x . F Db→ pick-witness w for ∃ x . F T (Db, Φ ∪ {{x 7→ w}F})
D1; D2→ let D′

1 = T (D1, Φ)

in

D′
1; T (D2, Φ ∪ {C(D1)})

D→D

Applying this algorithm to the foregoing example would yield:

left-and ¬¬F ∧H;
begin

begin
dn ¬¬F ;
both F,G

end;
cond ¬¬F, F ∧G

end;
modus-ponens ¬¬F ⇒F ∧G,¬¬F

Passing this on to the scope-maximization procedure and then to the contraction algorithm will
produce the final result:

left-and ¬¬F ∧H;
dn ¬¬F ;
both F,G
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We can establish the soundness of this algorithm in two steps. First, we can prove by induction on
D that if β ` T (D,Φ) ; G then β∪{F} ` T (D,Φ∪{F}) ; G. Then, using this lemma, an induction
on D will show that D � T (D, ∅), which will prove that D � A2(D) for all D. However, it is readily
observed that A1 and A2 can be combined in one pass simply by calling T (D,OA(D)). In other words,
applying the composition of A1 with A2 to some D produces the same result as T (D,OA(D)):

A1 · A2 = λ D . T (D,OA(D))

Accordingly, we define an algorithm A as A(D) = T (D,OA(D)). In our implementation, instead of
first calling A2, then MS, and then A1, as prescribed by (1.4), we simply call A once. (For exposition
purposes, we choose to keep the presentations of A1 and A2 distinct.) The following lemma will prove
useful in showing the soundness of A.

Lemma 1.46 If β `D ; G then β ` T (D,β) ; G.

Proof: By induction on the structure of D. When D atomic the result is immediate. When D is a
conditional deduction assume F Db, the assumption β `D ; G means that

β ∪ {F} `Db ; H (1.99)

where G = F ⇒H. Inductively, (1.99) gives

β ∪ {F} ` T (Db, β ∪ {F}) ; H (1.100)

We now distinguish two cases:

1. F 6∈ Φ: Then T (D,β) = assume F T (Db, β ∪ {F}), and (1.100) yields the desired

β ` assume F T (Db, β ∪ {F}) ; F ⇒H = G

2. F ∈ Φ: Then
T (D,β) = T (Db, β); cond F, C(T (Db, β)) (1.101)

Since β ∪ {F} = β, (1.100) becomes β ` T (Db, β) ; H and hence, by (1.101), we get

β ` T (D,β) ; F ⇒H = G

When D is of the form suppose-absurd F Db, we have β ∪ {F} `Db ; false, where G = ¬F .
By the inductive hypothesis,

β ∪ {F} ` T (Db, β ∪ {F}) ; false (1.102)

and we again distinguish two cases:

1. F 6∈ β: In that case T (D,β) = suppose-absurd F T (Db, β ∪ {F}) and (1.102) yields the
desired

β ` suppose-absurd F T (Db, β ∪ {F}) ; ¬F = G

2. F ∈ β: In that case β ∪ {F} = β, so (1.102) becomes β ` T (Db, β) ; false, which implies
β ` T (Db, β);neg F ; ¬F , i.e., β ` T (D,β) ; G.
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Next, suppose that D is a composition D1;D2. The assumption β `D ; G then means that
β `D1 ; F and β ∪ {F} `D2 ; G, where F = C(D1). Inductively, β ` T (D1, β) ; F and

β ∪ {F} ` T (D2, β ∪ {F}) ; G

Therefore, β ` T (D1, β);T (D2, β ∪ {F}) ; G, i.e., β ` T (D1;D2, β) ; G.
When D is a u.g. pick-any x Db, we have T (D,β) = pick-any x T (Db, β). The assumption

β `D ; G means that
β ` {x 7→ z}Db ; F (1.103)

for some fresh z, where G = ∀ z . F . Now {z 7→ x} is safe for {x 7→ z}Db (we can always rename D
to ensure this), hence (1.103) and Theorem 1.6 give

{z 7→ x}β ` {z 7→ x} {x 7→ z}Db ; {z 7→ x}F (1.104)

Since z does not occur in β, we have {z 7→ x}β = β; and since z does not occur in Db, Lemma 1.4
gives {z 7→ x} {x 7→ z}Db = Db, so (1.104) becomes

β `Db ; {z 7→ x}F

Inductively,
β ` T (Db, β) ; {z 7→ x}F (1.105)

The substitution {x 7→ z} is safe for T (Db, β) (owing to z’s freshness), hence, by (1.105) and Theo-
rem 1.6, we get

{x 7→ z}β ` {x 7→ z}T (Db, β) ; {x 7→ z} {z 7→ x}F (1.106)

Without loss of generality, we may assume that x does not occur in β (again, this can be ensured by
renaming D), hence {x 7→ z}β = β. Moreover, x does not occur in {x 7→ z}Db, hence Lemma 1.8
and Theorem 1.9 entail that x does not occur in F . Accordingly, Lemma 1.3 yields

{x 7→ z} {z 7→ x}F = F

Therefore, (1.106) becomes β ` {x 7→ z}T (Db, β) ; F and thus

β ` pick-any x T (Db, β) ; ∀ z . F = G

which is to say β ` T (D,β) ; G.
Finally, suppose that D is of the form pick-witness w for ∃ x . F Db. The assumption β `D ; G

entails
∃ x . F ∈ β (1.107)

and that
β ∪ {{x 7→ z}F} ` {w 7→ z}Db ; G (1.108)

for some fresh z such that z 6∈ FV (G). Without loss of generality, we may assume that w does not
occur in {w 7→ z}Db, which means that {z 7→ w} is safe for {w 7→ z}Db, so that, by Theorem 1.6
and (1.108),

{z 7→ w}β ∪ {{z 7→ w} {x 7→ z}F} ` {z 7→ w} {w 7→ z}Db ; {z 7→ w}G

Since z does not occur in β, F , Db, or G, the above becomes (by Lemma 1.3 and Lemma 1.4):

β ∪ {{x 7→ w}F} `Db ; G (1.109)
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The inductive hypothesis transforms (1.109) into

β ∪ {{x 7→ w}F} ` T (Db, β ∪ {{x 7→ w}F}) ; G (1.110)

Now {w 7→ z} is safe for T (Db, β ∪ {{x 7→ w}F}), hence (1.110) and Theorem 1.6 imply

{w 7→ z}β ∪ {{w 7→ z} {x 7→ w}F} ` {w 7→ z}T (Db, β ∪ {{x 7→ w}F}) ; {w 7→ z}G (1.111)

Without loss of generality, we may assume that w does not occur in β or in F , so that {w 7→ z}β = β
and, by Lemma 1.3, {w 7→ z} {x 7→ w}F = F . Moreover, w does not occur in {w 7→ z}Db,
hence by (1.108), Lemma 1.8 and Theorem 1.9, we conclude that w does not occur in G, and hence
{w 7→ z}G = G. Accordingly, (1.111) becomes

β ∪ {{x 7→ z}F} ` {w 7→ z}T (Db, β ∪ {{x 7→ w}F}) ; G

which is to say, by virtue of (1.107),

β ` pick-witness w for ∃ x . F T (Db, β ∪ {{x 7→ w}F}) ; G

i.e., β ` T (D,β) ; G. This completes the case analysis and the inductive argument.

Theorem 1.47 A terminates; D � A(D); and SZ(A(D)) ≤ SZ(D).

Proof: Termination is obvious. That the size of A(D) is never more than the size of D also follows
by a straightforward induction on D. Finally, to prove D � A(D), suppose that β `D ; F for some
β. By Theorem 1.11, we must have

β ⊇ OA(D). (1.112)

By the same result, OA(D) `D ; F , hence, by Lemma 1.46, OA(D) ` T (D,OA(D)) ; F , i.e.,

OA(D) ` A(D) ; F.

Therefore, by (1.112) and dilution we get β ` A(D) ; F , which shows that D � A(D).

The final transformation, A3, determines whether the hypothesis F of a conditional deduction
D′ = assume F Db is deduced at a later point, or, more precisely, whether it is deduced somewhere
within a deduction dominated by D′, as in the following picture:

...
D′ = assume F Db;

...
D′′; (Deduces F )

...

This can lead to the following variant of the detour we discussed earlier:

(1) assume ¬¬F
begin
dn ¬¬F ;
both F,G

end;
(2) left-and ¬¬F ∧H;
(3) modus-ponens ¬¬F ⇒F ∧G,¬¬F
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However, unlike the cases discussed in connection with A2 and A1, here we cannot hoist the body
of (1) above the assume (and replace the assume by an application of cond), because the said body
strictly uses the hypothesis ¬¬F , which is neither an open assumption of the overall deduction nor
deduced prior to its hypothetical postulation in (1). Rather, ¬¬F is deduced after the conditional
deduction where it appears as a hypothesis. What we will do instead is reduce this case to one that
can be handled by the simple hoisting method of algorithm A. We can do that by “bubbling up” the
deduction which derives the hypothesis in question until it precedes the hypothetical deduction, at
which point A will be able to perform as usual. Specifically, we define:

1. A3(assume F Db) = assume F A3(Db)
2. A3(suppose-absurd F Db) = suppose-absurd F A3(Db)
3. A3((assume F Db);D) =
4. let (D′

b, D
′) = (A3(Db),A3(D))

5. (D′′, ,∆) = H(D′, {F ⇒C(D′
b)}, ∅)

6. in
7. ∆;assume F D′

b;D
′′

8. A3((suppose-absurd F Db);D) =
9. let (D′

b, D
′) = (A3(Db),A3(D))

10. (D′′, ,∆) = H(D′, {¬F}, ∅)
11. in
12. ∆; suppose-absurd F D′

b;D
′′

13. A3(pick-any x Db) = pick-any x A3(Db)
14. A3(pick-witness w for ∃ x . F Db) = pick-witness w for ∃ x . F A3(Db)
15. A3(D1;D2) = A3(D1);A3(D2)
16. A3(D) = D

Applying this algorithm to the deduction above yields:

left-and ¬¬F ∧H;
assume ¬¬F
begin
dn ¬¬F ;
both F,G

end;
claim ¬¬F ;
modus-ponens ¬¬F ⇒F ∧G,¬¬F

which will be readily handled by A. In particular, after applying A to the above deduction, followed
by MS and contract, we obtain the final result:

left-and ¬¬F ∧H;
dn ¬¬F ;
both F,G

We can prove:

Theorem 1.48 A3 terminates. Moreover, if D is right-linear then D � A3(D).

Proof: Termination is straightforward. We will prove D � A3(D) by induction on the structure of
D. When D is an atomic deduction, the result is immediate. When D is a hypothetical deduction,
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the result follows by straightforward applications of the inductive hypothesis and Lemma 1.17. Next,
suppose that D is of the form D1;D2. We distinguish three subscases:

(a) D1 is of the form assume F Db: In that case, letting D′
b = A3(Db) and D′

2 = A3(D2), we have

A3(D) = ∆;assume F D′
b;D

′′
2 (1.113)

where (D′′
2 ,, ∆) = H(D′

2, {F ⇒C(D′
b)}, ∅). Inductively, Db � D′

b and D2 � D′
2, so, by Lemma 1.17,

(assume F Db);D2 � (assume F D′
b);D

′
2. (1.114)

Further, Lemma 1.40 implies
D′

2 � ∆; D′′
2 . (1.115)

From (1.115) and (1.114) we get

(assume F Db);D2 � (assume F D′
b);∆; D′′

2 . (1.116)

By Lemma 1.35, we have OA(Dx) ∩ {F ⇒C(D′
b)} = ∅ for all Dx ∈ ∆, hence, by Lemma 1.38,

(assume F D′
b);∆; D′′

2 � ∆; (assume F D′
b);D

′′
2 . (1.117)

Finally, from (1.116), (1.117), and the transitivity of � , and in view of (1.113), we conclude
D � A3(D).

(b) D1 is of the form suppose-absurd F Db: The reasoning here is as in (a).

(c) None of the above: In this case the result follows directly from the inductive hypotheses.

When D is an u.g. or an e.i., the result follows from the inductive hypothesis and Lemma 1.17.

Finally, we address the question of size—whether A3(D) is always smaller than D. This will
usually be the case, but there is an exception similar to that which we discussed in connection with
Hoist: when algorithm H inserts a tail-position claim in D′′ (lines 5 and 10). This will increase the
size of the resulting deduction by one. (Any other claims generated by H will be eliminated later
by the claim-removal algorithm, C, as guaranteed by Lemma 1.27). However, it is easy to avoid this
special case, since H is defined so that whenever a tail-position claim is appended to D′′, the last
deduction of the list ∆ has the same conclusion as the proposition asserted by the said claim. But
if this is the case we can do away with D′′ altogether, as well with the assume F D′

b, and simply
output ∆ (and likewise for the suppose-absurd), in which case the size of the resulting deduction
will be strictly smaller than that of the original. Accordingly, we modify lines 7 and 12 to be as
follows, respectively:

∆ 6= [] and C(∆) = C(D′′) ? →∆♦∆;assume F D′
b;D

′′

and
∆ 6= [] and C(∆) = C(D′′) ? →∆♦∆; suppose-absurd F D′

b;D
′′.

This affects neither termination nor the property D � A3(D) (on the assumption that D is right-
linear), since the reduction is performed only if C(∆) = C(D′′), so Theorem 1.48 continues to hold.
Further, the modification guarantees that every claim inserted by H will eventually be removed by
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C, which ensures that the ultimate result of the simplification procedure will never be of greater size
than the original.9

In conclusion, we define

restructure = MS · A ·MS · A3 ·MS

and
simplify = contract · restructure.

Putting together the various preceding results will show that simplify always terminates and that
D � simplify(D). Size is always either strictly decreased or preserved, except by Hoist, during the
application of MS, and by A3. Both of these transformations may introduce some additional trivial
claims. However, we have taken care to define MS and A3 so that all such claims will be in non-tail
positions and will thus be eventually eliminated by the claim-removal algorithm, C. Therefore, we
conclude:

Theorem 1.49 simplify always terminates; D � simplify(D); SZ(simplify(D)) ≤ SZ(D).

1.6 Examples

In this section we illustrate simplify with a few examples of detours. For brevity, we write mp and
dn for modus-ponens and double-negation, respectively. We begin with a couple of examples of
conditional detours.

D =

dn ¬¬F ;
assume F in

both F, G;
mp F ⇒F ∧G, F

restructure
−−−−−−−−→

dn ¬¬F ;
both F, G;
cond F, F ∧G;
mp F ⇒F ∧G, F

contract
−−−−−−→

dn ¬¬F ;
both F,G;

We continue with a detour based on negation:

D =

left-and F ∧G;
suppose-absurd ¬F in

absurd F,¬F ;
dn ¬¬F

restructure
−−−−−−−−→

left-and F ∧G;
suppose-absurd ¬F in

absurd F,¬F ;
dn ¬¬F

contract
−−−−−−→ left-and F ∧G

Next we illustrate a disjunction detour. Let D be the following deduction:

dn ¬¬(F1 ∧G);
left-either F1 ∧G, F2 ∧G;
assume F1 ∧G in

right-and F1 ∧G;
assume F2 ∧G in

right-and F2 ∧G;

9Moreover, to avoid gratuitous hoistings, in practice we perform these restructurings only if the hypothesis F is in
fact derived within D (lines 3 and 8).
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cases (F1 ∧G) ∨ (F2 ∧G), (F1 ∧G)⇒G, (F2 ∧G)⇒G

We have:

D
restructure
−−−−−−−−→

dn ¬¬(F1 ∧G);
left-either F1 ∧G, F2 ∧G;
right-and F1 ∧G;
cond F1 ∧G, G;
assume F2 ∧G in

right-and F2 ∧G;
cases (F1 ∧G) ∨ (F2 ∧G), (F1 ∧G)⇒G, (F2 ∧G)⇒G

contract
−−−−−−→

dn ¬¬(F1 ∧G);
right-and F1 ∧G

We close with a biconditional detour. Let D be the following deduction:

assume F ∧G in
begin
left-and F ∧G;
right-and F ∧G;
both G, F

end;
assume G ∧ F in
begin
right-and G ∧ F ;
left-and G ∧ F ;
both F, G

end;
equivalence F ∧G⇒G ∧ F, G ∧ F ⇒F ∧G;
left-iff F ∧G⇔G ∧ F

We have:

D
restructure
−−−−−−−−→ D

contract
−−−−−−→

assume F ∧G in
begin
left-and F ∧G;
right-and F ∧G;
both G, F

end
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