
Metareasoning for multi-agent epistemic logics

Konstantine Arkoudas and Selmer Bringsjord

RPI
{arkouk,brings}@rpi.edu

Abstract. We present an encoding of a sequent calculus for a multi-
agent epistemic logic in Athena, an interactive theorem proving system
for many-sorted first-order logic. We then use Athena as a metalanguage
in order to reason about the multi-agent logic an as object language.
This facilitates theorem proving in the multi-agent logic in several ways.
First, it lets us marshal the highly efficient theorem provers for clas-
sical first-order logic that are integrated with Athena for the purpose
of doing proofs in the multi-agent logic. Second, unlike model-theoretic
embeddings of modal logics into classical first-order logic, our proofs are
directly convertible into native epistemic logic proofs. Third, because we
are able to quantify over propositions and agents, we get much of the
generality and power of higher-order logic even though we are in a first-
order setting. Finally, we are able to use Athena’s versatile tactics for
proof automation in the multi-agent logic. We illustrate by developing a
tactic for solving the generalized version of the wise men problem.

1 Introduction

Multi-agent modal logics are widely used in Computer Science and AI. Multi-
agent epistemic logics, in particular, have found applications in fields ranging
from AI domains such as robotics, planning, and motivation analysis in natu-
ral language [14]; to negotiation and game theory in economics; to distributed
systems analysis and protocol authentication in computer security [17, 32]. The
reason is simple—intelligent agents must be able to reason about knowledge. It
is therefore important to have efficient means for performing machine reasoning
in such logics. While the validity problem for most propositional modal logics is
of intractable theoretical complexity1, several approaches have been investigated
in recent years that have resulted in systems that appear to work well in prac-
tice. These approaches include tableau-based provers, SAT-based algorithms,
and translations to first-order logic coupled with the use of resolution-based au-
tomated theorem provers (ATPs). Some representative systems are FaCT [25],
KSATC [15], TA [26], LWB [24], and MSPASS [38].

Translation-based approaches (such as that of MSPASS) have the advantage
of leveraging the tremendous implementation progress that has occurred over
1 For instance, the validity problem for multi-agent propositional epistemic logic is

PSPACE-complete [19]; adding a common knowledge operator makes the problem
EXPTIME-complete [22].

2 Arkoudas, Bringsjord

the last decade in first-order theorem proving. Soundness and completeness are
ensured by the soundness and completeness of the resolution prover (once the
soundness and completeness of the translation have been shown), while a decision
procedure is automatically obtained for any modal logic that can be translated
into a decidable fragment of first-order logic (such as the two-variable fragment).
Furthermore, the task of translating from a modal logic to the classical first-
order setting is fairly straightforward (assuming, of course, that the class of
Kripke frames captured by the modal logic is first-order definable [18]; modal
logics such as the Gödel-Löb logic of provability in first-order Peano arithmetic
would require translation into second-order classical logic). For instance, the
well-known formula [2P ∧2(P ⇒Q)]⇒2Q becomes

∀ w1 . [(∀ w2 . R(w1, w2)⇒P (w2)) ∧
(∀ w2 . R(w1, w2)⇒P (w2)⇒Q(w2))]⇒ (∀ w2 . R(w1, w2)⇒Q(w2))

Here the variables w1 and w2 range over possible worlds, and the relation R
represents Kripke’s accessibility relation. A constant propositional atom P in
the modal language becomes a unary predicate P (w) that holds (or not) for a
given world w.

This is the (naive) classical translation of modal logic into first-order logic
[19], and we might say that it is a semantic embedding, since the Kripke se-
mantics of the modal language are explicitly encoded in the translated result.
This is, for instance, the approach taken by McCarthy in his “Formalizing two
puzzles involving knowledge” [31]. A drawback of this approach is that proofs
produced in the translated setting are difficult to convert back into a form that
makes sense for the user in the original modal setting (altough alternative trans-
lation techniques such as the functional translation to path logic can rectify this
in some cases [39]). Another drawback is that if a result is not obtained within
a reasonable amount of time—which is almost certain to happen quite often
when no decision procedure is available, as in first-order modal logics—then a
batch-oriented ATP is of little help to the user due to its “low bandwidth of
interaction” [13].

In this paper we explore another approach: We embed a multi-agent epis-
temic logic into many-sorted first-order logic in a proof-theoretic rather than in
a model-theoretic way. 2 Specifically, we use the interactive theorem proving sys-
tem Athena [2]—briefly reviewed in the Appendix—to encode the formulas of the
epistemic logic along with the inference rules of a sequent calculus for it. Hence
first-order logic becomes our metalanguage and the epistemic logic becomes our
object language. We then use standard first-order logic (our metalanguage) to
reason about proofs in the object logic. In effect, we end up reasoning about
reasoning—hence the term metareasoning. Since our metareasoning occurs at
the standard first-order level, we are free to leverage existing theorem-proving
systems for automated deduction. In particular, we make heavy use of Vampire

2 This paper treats a propositional logic of knowledge, but the technique can be readily
applied to full first-order multi-agent epistemic logic, and indeed to hybrid multi-
modal logics, e.g., combination logics for temporal and epistemic reasoning.

Metareasoning for multi-agent epistemic logics 3

[41] and Spass [42], two cutting-edge resolution-based ATPs that are seamlessly
integrated with Athena.

Our approach has two additional advantages. First, it is trivial to translate
the constructed proofs into modal form, since the Athena proofs are already
about proofs in the modal logic. Second, because the abstract syntax of the epis-
temic logic is explicitly encoded in Athena, we can quantify over propositions,
sequents, and agents. Accordingly, we get the generalization benefits of higher-
order logic even in a first-order setting. This can result in significant efficiency
improvements. For instance, in solving the generalized wise men puzzle it is nec-
essary at some point to derive the conclusion M2 ∨ · · · ∨Mn from the three
premises ¬Kα(M1), Kα(¬(M2 ∨ · · · ∨Mn)⇒M1), and

¬(M2 ∨ · · · ∨Mn)⇒Kα(¬(M2 ∨ · · · ∨Mn))

where M1, . . . ,Mn are atomic propositions and α is an epistemic agent, n > 1.
In the absence of an explicit embedding of the epistemic logic, this would have
to be done with a tactic that accepted a list of propositions [M1 · · ·Mn] as input
and performed the appropriate deduction dynamically, which would require an
amount of effort quadratic in the length of the list. By contrast, in our approach
we are able to formulate and prove a “higher-order” lemma stating

∀ P,Q, α . {¬Kα(P),Kα(¬Q⇒P),¬Q⇒Kα(¬Q)} `Q

Obtaining the desired conclusion for any given M1, . . . ,Mn then becomes a mat-
ter of instantiating this lemma with P 7→ M1 and Q 7→ M2 ∨ · · · ∨Mn. We have
thus reduced the asymptotic complexity of our task from quadratic time to con-
stant time.

But perhaps the most distinguishing aspect of our work is our emphasis on
tactics. Tactics are proof algorithms, which, unlike conventional algorithms, are
guaranteed to produce sound results. That is, if and when a tactic outputs a
result P that it claims to be a theorem, we can be assured that P is indeed a
theorem. Tactics are widely used for proof automation in first- and higher-order
proof systems such as HOL [21] and Isabelle [35]. In Athena tactics are called
methods, and are particularly easy to formulate owing to Athena’s Fitch-style
natural deduction system and its assumption-base semantics [3]. A major goal of
our research is to find out how easy—or difficult—it may be to automate multi-
agent modal logic proofs with tactics. Our aim is not to obtain a completely
automatic decision procedure for a certain logic (or class of logics), but rather to
enable efficient interactive—i.e., semi-automatic—theorem proving in such logics
for challenging problems that are beyond the scope of completely automatic
provers. In this paper we formulate an Athena method for solving the generalized
version of the wise men problem (for any given number of wise men). The relative
ease with which this method was formulated is encouraging.

The remainder of this paper is structured as follows. In the next section we
present a sequent calculus for the epistemic logic that we will be encoding. In
Section 3 we present the wise men puzzle and formulate an algorithm for solving
the generalized version of it in the sequent calculus of Section 2. In Section 4

4 Arkoudas, Bringsjord

Γ ` P Γ `Q [∧-I]
Γ ` P ∧Q

Γ ` P ∧Q [∧-E1]
Γ ` P

Γ ` P ∧Q [∧-E2]
Γ `Q

Γ ` P [∨-I1]
Γ ` P ∨Q

Γ `Q [∨-I2]
Γ ` P ∨Q

Γ ` P1 ∨ P2 Γ, P1 `Q Γ, P2 `Q [∨-E]
Γ `Q

Γ, P `Q [⇒-I]
Γ ` P ⇒Q

Γ ` P ⇒Q Γ ` P [⇒-E]
Γ `Q

Γ ` ¬¬P [¬-E]
Γ ` P

Γ, P ` ⊥ [¬-I]
Γ ` ¬P

[Reflex]
Γ, P ` P

Γ ` P [Dilution]
Γ ∪ Γ ′ ` P

Γ ` P ∧ ¬P [⊥-I]
Γ ` ⊥

[>-I]
Γ ` >

Fig. 1. Inference rules for the propositional connectives.

we discuss the Athena encoding of the epistemic logic and present the Athena
method for solving the generalized wise men problem. Finally, in Section 5 we
consider related work.

2 A sequent formulation of a multi-agent epistemic logic

We will use the letters P , Q, R, . . ., to designate arbitrary propositions, built
according to the following abstract grammar:

P ::= A | > | ⊥ | ¬P | P ∧Q | P ∨Q | P ⇒Q | Kα(P) | C(P)

where A and α range over a countable set of atomic propositions (“atoms”) and
a primitive domain of agents, respectively. Propositions of the form Kα(P) and
C(P) are read as follows:

Kα(P): agent α knows proposition P

C(P): it is common knowledge that P holds

By a context we will mean a finite set of propositions. We will use the letter
Γ to denote contexts. We define a sequent as an ordered pair 〈Γ, P 〉 consisting of
a context Γ and a proposition P . A more suggestive notation for such a sequent

Metareasoning for multi-agent epistemic logics 5

[K]
Γ ` [Kα(P ⇒Q)]⇒ [Kα(P)⇒Kα(Q)]

[T]
Γ `Kα(P)⇒P

∅ ` P [C-I]
Γ ` C(P)

[C-E]
Γ ` C(P)⇒Kα(P)

[CK]
Γ ` [C(P ⇒Q)]⇒ [C(P)⇒C(Q)]

[R]
Γ ` C(P)⇒C(Kα(P))

Fig. 2. Inference rules for the epistemic operators.

is Γ ` P . Intuitively, this is a judgment stating that P follows from Γ . We will
write P, Γ (or Γ, P) as an abbreviation for Γ ∪ {P}. The sequent calculus that
we will use consists of a collection of inference rules for deriving judgments of
the form Γ ` P . Figure 1 shows the inference rules that deal with the standard
propositional connectives. This part is standard (e.g., it is very similar to the
sequent calculus of Ebbinghaus et al. [16]). In addition, we have some rules
pertaining to Kα and C, shown in Figure 2.

Rule [K] is the sequent formulation of the well-known Kripke axiom stating
that the knowledge operator distributes over conditionals. Rule [CK] is the cor-
responding principle for the common knowledge operator. Rule [T] is the “truth
axiom”: an agent cannot know false propositions. Rule [CI] is an introduction
rule for common knowledge: if a proposition P follows from the empty set of
hypotheses, i.e., if it is a tautology, then it is commonly known. This is the
common-knowledge version of the “omniscience axiom” for single-agent knowl-
edge which says that Γ `Kα(P) can be derived from ∅ ` P . We do not need to
postulate that axiom in our formulation, since it follows from [C-I] and [C-E].
The latter says that if it is common knowledge that P then any (every) agent
knows P , while [R] says that if it is common knowledge that P then it is common
knowledge that (any) agent α knows it. [R] is a reiteration rule that allows us to
capture the recursive behavior of C, which is usually expressed via the so-called
“induction axiom”

C(P ⇒E(P))⇒ [P ⇒C(P)]

where E is the shared-knowledge operator. Since we do not need E for our
purposes, we omit its formalization and “unfold” C via rule [R] instead.
We state a few lemmas that will come handy later:

Lemma 1 (Cut). If Γ1 ` P1 and Γ2, P1 ` P2 then Γ1 ∪ Γ2 ` P2.

Proof: Assume Γ1 ` P1 and Γ2, P1 ` P2. Then, by [⇒-I], we get Γ2 ` P1 ⇒P2.
Further, by dilution, we have Γ1 ∪ Γ2 ` P1 ⇒P2 and Γ1 ∪ Γ2 ` P1. Hence, by
[⇒-E], we obtain Γ1 ∪ Γ2 ` P2. ut

The proofs of the remaining lemmas are equally simple exercises:

6 Arkoudas, Bringsjord

Lemma 2 (⇒-transitivity). If Γ ` P1 ⇒P2, Γ ` P2 ⇒P3 then Γ ` P1 ⇒P3.

Lemma 3 (contrapositive). If Γ ` P ⇒Q then Γ ` ¬Q⇒¬P .

Lemma 4. (a) ∅ ` (P1 ∨ P2)⇒ (¬P2 ⇒P1); and (b) Γ ` C(P2) whenever
∅ ` P1 ⇒P2 and Γ ` C(P1).

Lemma 5. For all P,Q, and Γ , Γ ` [C(P) ∧ C(Q)]⇒C(P ∧Q).

3 The generalized wise men puzzle

Consider first the three-men version of the puzzle:

Three wise men are told by their king that at least one of them has a
white spot on his forehead. In reality, all three have white spots on their
foreheads. We assume that each wise man can see the others’ foreheads
but not his own, and thus each knows whether the others have white
spots. Suppose we are told that the first wise man says, “I do not know
whether I have a white spot,” and that the second wise man then says,
“I also do not know whether I have a white spot.” Now consider the
following question: Does the third wise man now know whether or not
he has a white spot? If so, what does he know, that he has one or doesn’t
have one?

This version is essentially identical to the muddy-children puzzle, the only
difference being that the declarations of the wise men are made sequentially,
whereas in the muddy-children puzzle the children proclaim what they know (or
not know) in parallel at every round.

In the generalized version of the puzzle we have an arbitrary number n + 1
of wise men w1, . . . , wn+1, n ≥ 1. They are told by their king that at least one
them has a white spot on his forehead. Again, in actuality they all do. And they
can all see one another’s foreheads, but not their own. Supposing that each of
the first n wise men, w1, . . . , wn, sequentially announces that he does not know
whether or not he has a white spot on his forehead, the question is what would
the last wise man wn+1 report.

For all n ≥ 1, it turns out that the last—(n + 1)st—wise man knows he is
marked. The case of two wise men is simple. The reasoning runs essentially by
contradiction. The second wise man reasons as follows:

Suppose I were not marked. Then w1 would have seen this, and knowing
that at least one of us is marked, he would have inferred that he was
the marked one. But w1 has expressed ignorance; therefore, I must be
marked.

Consider now the case of n = 3 wise men w1, w2, w3. After w1 announces that
he does not know that he is marked, w2 and w3 both infer that at least one of
them is marked. For if neither w2 nor w3 were marked, w1 would have seen this

Metareasoning for multi-agent epistemic logics 7

and would have concluded—and stated—that he was the marked one, since he
knows that at least one of the three is marked. At this point the puzzle reduces
to the two-men case: both w2 and w3 know that at least one of them is marked,
and then w2 reports that he does not know whether he is marked. Hence w3

proceeds to reason as previously that he is marked.

In general, consider n + 1 wise men w1, . . . , wn, wn+1, n ≥ 1. After the first
j wise men w1, . . . , wj have announced that they do not know whether they are
marked, for j = 1, . . . , n, the remaining wise men wj+1, . . . , wn+1 infer that at
least one of them is marked. This holds for j = n as well, which means that the
last wise man wn+1 will infer (and announce, owing to his honesty) that he is
marked.

The question is how to formalize this in our logic. Again consider the case
of two wise men w1 and w2. Let Mi, i ∈ {1, 2} denote the proposition that wi

is marked. For any proposition P , we will write Ki(P) as an abbreviation for
Kwi

(P). We will only need three premises:

S1 = C(¬K1(M1))
S2 = C(M1 ∨M2)
S3 = C(¬M2 ⇒K1(¬M2))

The first premise says that it is common knowledge that the first wise man
does not know whether he is marked. Although it sounds innocuous, note that
a couple of assumptions are necessary to obtain this premise from the mere
fact that w1 has announced his ignorance. First, truthfulness—we must assume
that the wise men do not lie, and further, that each one of them knows that
they are all truthful. And second, each wise man must know that the other
wise men will hear the announcement and believe it. Premise S2 says that it is
common knowledge that at least one of the wise men is marked. Observe that
the announcement by the king is crucial for this premise to be justified. The
two wise men can see each other and thus they individually know M1 ∨M2.
However, each of them may not know that the other wise man knows that at
least one of them is marked. For instance, w1 may believe that he is not marked,
and even though he sees that w2 is marked, he may believe that w2 does not
know that at least one of them is marked, as w2 cannot see himself. Finally,
premise S3 states that it is common knowledge that if w2 is not marked, then
w1 will know it (because w1 can see w2). From these three premises we are to
derive the conclusion C(M2)—that it is common knowledge that w2 is marked.
Symbolically, we need to derive the judgment {S1, S2, S3} ` C(M2). If we have
encoded the epistemic propositional logic in a predicate calculus, then we can
achieve this immediately by instantiating Lemma 7 below with α 7→ w1, P 7→ M1

and Q 7→ M2—without performing any inference whatsoever. This is what we
have done in Athena.

8 Arkoudas, Bringsjord

For the case of n = 3 wise men our set of premises will be:

S1 = C(¬K1(M1))
S2 = C(M1 ∨M2 ∨M3)
S3 = C(¬(M2 ∨M3)⇒K1(¬(M2 ∨M3)))
S4 = C(¬K2(M2))
S5 = C(¬M3 ⇒K2(¬M3))

Consider now the general case of n + 1 wise men w1, . . . , wn, wn+1. For any
i = 1, . . . , n, define

Si
1 = C(¬Ki(Mi))

Si
2 = C(Mi ∨ · · · ∨Mn+1)

Si
3 = C(¬(Mi+1 ∨ · · · ∨Mn+1)⇒Ki(¬(Mi+1 ∨ · · · ∨Mn+1)))

and Sn+1
2 = C(Mn+1). The set of premises, Ωn+1, can now be defined as

Ωn+1 = {C(M1 ∨ · · · ∨Mn+1)}
n⋃

i=1

{Si
1, S

i
3}

Hence Ωn+1 has a total of 2n + 1 elements. Note that S1
2 is the commonly

known disjunction M1 ∨ · · · ∨Mn+1 and a known premise, i.e., a member of
Ωn+1. However, Si

2 for i > 1 is not a premise. Rather, it becomes derivable
after the ith wise man has made his announcement. Managing the derivation
of these propositions and eliminating them via applications of the cut is the
central function of the algorithm below. Before we present the algorithm we
state a couple of key lemmas.

Lemma 6. Consider any agent α and propositions P,Q, and let R1, R2, R3 be
the following three propositions:

1. R1 = ¬Kα(P);
2. R2 = Kα(¬Q⇒P);
3. R3 = ¬Q⇒Kα(¬Q)

Then {R1 ∧R2 ∧R3} `Q.

Proof. By the following sequent derivation:
1. {R1 ∧R2 ∧R3} `R1 [Reflex], ∧-E1

2. {R1 ∧R2 ∧R3} `R2 [Reflex], ∧-E1, ∧-E2

3. {R1 ∧R2 ∧R3} `R3 [Reflex], ∧-E2

4. {R1 ∧R2 ∧R3} `Kα(¬Q)⇒Kα(P) 2, [K], ⇒-E
5. {R1 ∧R2 ∧R3} ` ¬Q⇒Kα(P) 3, 4, Lemma 2
6. {R1 ∧R2 ∧R3} ` ¬Kα(P)⇒¬¬Q 5, Lemma 3
7. {R1 ∧R2 ∧R3} ` ¬¬Q 6, 1, ⇒-E
8. {R1 ∧R2 ∧R3} `Q 7, [¬-E]

ut

Metareasoning for multi-agent epistemic logics 9

Lemma 7. Consider any agent α and propositions P,Q. Define R1 and R3

as in Lemma 6, let R2 = P ∨Q, and let Si = C(Ri) for i = 1, 2, 3. Then
{S1, S2, S3} ` C(Q).

Proof. Let R′
2 = ¬Q⇒P and consider the following derivation:

1. {S1, S2, S3} ` S1 [Reflex]
2. {S1, S2, S3} ` S2 [Reflex]
3. {S1, S2, S3} ` S3 [Reflex]
4. ∅ ` (P ∨Q)⇒ (¬Q⇒P) Lemma 4a
5. {S1, S2, S3} ` C((P ∨Q)⇒ (¬Q⇒P)) 4, [C-I]
6. {S1, S2, S3} ` C(P ∨Q)⇒C(¬Q⇒P) 5, [CK], [⇒-E]
7. {S1, S2, S3} ` C(¬Q⇒P) 6, 2, [⇒-E]
8. {S1, S2, S3} ` C(¬Q⇒P)⇒C(Kα(¬Q⇒P)) [R]
9. {S1, S2, S3} ` C(Kα(¬Q⇒P)) 8, 7, [⇒-E]
10. {R1 ∧Kα(¬Q⇒P) ∧R3} `Q Lemma 6
11. ∅ ` (R1 ∧Kα(¬Q⇒P) ∧R3)⇒Q 10, [⇒-I]
12. {S1, S2, S3} ` C((R1 ∧Kα(¬Q⇒P) ∧R3)⇒Q) 11, [C-I]
13. {S1, S2, S3} ` C(R1 ∧Kα(¬Q⇒P) ∧R3)⇒C(Q) 12, [CK], [⇒-E]
14. {S1, S2, S3} ` C(R1 ∧Kα(¬Q⇒P) ∧R3) 1, 3, 9, Lemma 5, [∧-I]
15. {S1, S2, S3} ` C(Q) 13, 14, [⇒-E]

ut

Our method can now be expressed as follows:

Φ← {S1
1 , S1

2 , S1
3};

Σ← Φ ` S2
2 ;

Use Lemma 7 to derive Σ;

If n = 1 halt

else

For i = 2 to n do

begin

Φ← Φ ∪ {Si
1, S

i
3};

Σ′← {Si
1, S

i
2, S

i
3} ` Si+1

2 ;

Use Lemma 7 to derive Σ′;

Σ′′← Φ ` Si+1
2 ;

Use the cut on Σ and Σ′ to derive Σ′′;

Σ← Σ′′

end

The loop variable i ranges over the interval 2, . . . , n. For any i in that interval,
we write Φi and Σi for the values of Φ and Σ upon conclusion of the ith iteration
of the loop. A straightforward induction on i will establish:

Lemma 8 (Algorithm correctness). For any i ∈ {2, . . . , n},

Φi = {C(M1 ∨ · · · ∨Mn+1)}
i⋃

j=1

{Sj
1, S

j
3}

while Σi = Φi ` Si+1
2 .

10 Arkoudas, Bringsjord

Hence, Φn = Ωn+1, and Σn = Φn ` Sn+1
2 = Ωn+1 ` Sn+1

2 = Ωn+1 ` C(Mn+1),
which is our goal.

It is noteworthy that no such correctness argument is necessary in the for-
mulation of the algorithm as an Athena method, as methods are guaranteed to
be sound. Their results are always logically entailed by the assumption base,
assuming that our primitive methods are sound (see Chapter 8 of [3]).

4 Athena implementation

In this section we present the Athena encoding of the epistemic logic and our
method for solving the generalized version of the wise men puzzle (refer to the
Appendix for a brief review of Athena). We begin by introducing an uninter-
preted domain of epistemic agents: (domain Agent). Next we represent the ab-
stract syntax of the propositions of the logic. The following Athena datatype
mirrors the abstract grammar for propositions that was given in the beginning
of Section 2:

(datatype Prop

True

False

(Atom Boolean)

(Not Prop)

(And Prop Prop)

(Or Prop Prop)

(If Prop Prop)

(Knows Agent Prop)

(Common Prop))

We proceed to introduce a binary relation sequent that may obtain between
a finite set of propositions and a single proposition:

(declare sequent (-> ((FSet-Of Prop) Prop) Boolean))

Here FSet-Of is a unary sort constructor: for any sort T, (FSet-Of T) is a new
sort representing the set of all finite sets of elements of T. Finite sets are built
with two polymorphic constructors: the constant null, representing the empty
set; and the binary constructor insert, which takes an element x of sort T and
a finite set S (of sort (FSet-Of T)) and returns the set {x} ∪S. We also have all
the usual set-theoretic operations available (union, intersection, etc.).

The intended interpretation is that if (sequent S P) holds for a set of propo-
sitions S and a proposition P , then the sequent S ` P is derivable in the epis-
temic logic via the rules presented in Section 2. Accordingly, we introduce axioms
capturing those rules. For instance, the conjunction introduction rule is repre-
sented by the following axiom:

(define And-I

(forall ?S ?P ?Q

(if (and (sequent ?S ?P)

(sequent ?S ?Q))

(sequent ?S (And ?P ?Q)))))

Metareasoning for multi-agent epistemic logics 11

Note that the lowercase and above is Athena’s built-in conjunction operator, and
hence represents conjunction at the metalanguage level, whereas And represents
the object-level conjunction operator of the epistemic logic.

The cut rule and the common knowledge introduction (necessitation) rule
become:

(define cut

(forall ?S1 ?S2 ?P ?Q

(if (and (sequent ?S1 ?P)

(sequent (insert ?P ?S2) ?Q))

(sequent (union ?S1 ?S2) ?Q))))

(define common-intro-axiom

(forall ?P ?S

(if (sequent null ?P)

(sequent ?S (Common ?P)))))

The remaining rules are encoded by similar first-order axioms.
We next proceed to derive several lemmas that are useful for the proof.

Some of these lemmas are derived completely automatically via the ATPs that
are integrated with Athena. For instance, the cut rule is proved automatically
(in about 10 seconds). As another example, the following result—part (b) of
Lemma 4—is proved automatically:

(forall ?S ?P1 ?P2

(if (and (sequent null (If ?P1 ?P2))

(sequent ?S (Common ?P1)))

(sequent ?S (Common ?P2))))

Other lemmas are established by giving natural deduction proofs. For instance,
the proof of Lemma 6 in Section 3 is transcribed virtually verbatim in Athena,
and validated in a fraction of a second. (The fact that the proof is abridged—
i.e., multiple steps are compressed into single steps—is readily handled by in-
voking ATPs that automatically fill in the details.) Finally, we are able to prove
Lemma 7, which is the key technical lemma. Utilizing the higher-order charac-
ter of our encoding, we then define a method main-lemma that takes an arbi-
trary list of agents [a1 · · · an], n ≥ 1, and specializes Lemma 7 with P 7→ Ma1 ,
Q 7→ Ma2 ∨ · · · ∨Man

, and α 7→ a1 (recall that for any agent α, Mα signi-
fies that α is marked). So, for instance, the application of main-lemma to the
list [a1, a2, a3] would derive the conclusion {S1, S2, S3} ` C(Ma2 ∨Ma3), where
S1 = C(¬Ka1(Ma1)), S2 = C(Ma1 ∨Ma2 ∨Ma3), and

S3 = C(¬(Ma2 ∨Ma3)⇒Ka1(¬(Ma2 ∨Ma3)))

We also need a simple result shuffle asserting the equality Γ, P1, P2 = Γ, P2, P1

(i.e., Γ ∪ {P1} ∪ {P2} = Γ ∪ {P2} ∪ {P1}).
Using these building blocks, we express the tactic for solving the generalized

wise men problem as the Athena method solve below. It takes as input a list of
agents representing wise men, with at least two elements. Note that the for loop
in the pseudocode algorithm has been replaced by recursion.

12 Arkoudas, Bringsjord

(define (solve wise-men)

(dletrec

((loop (method (wise-men th)

(dmatch wise-men

([_] (!claim th))

((list-of _ rest)

(dlet ((new-th (!main-lemma wise-men)))

(dmatch [th new-th]

([(sequent context Q2)

(sequent (insert Q1

(insert Q2 (insert Q3 null))) P)]

(dlet ((cut-th

(!derive (sequent

(union

context

(insert Q1 (insert Q3 null)))

P)

[th new-th shuffle cut])))

(!loop rest cut-th))))))))))

(dlet ((init (!prove-goal-2 wise-men)))

(!loop (tail wise-men) init))))

Assuming that w1, w2, w3 are agents representing wise men, invoking the method
solve with the list [w1 w2 w3]) as the argument will derive the appropriate result:
Ω3 ` (Common (isMarked w3)), where Ω3 is the set of premises for the three-men
case, as defined in the previous section.

5 Related work

The wise men problem became a staple of epistemic AI literature after being
introduced by McCarthy [31]. Formalizations and solutions of the two-wise-men
problem are found in a number of sources [27, 40, 20], most of them in simple
multi-agent epistemic logics (without common knowledge). Several variations
have been given; e.g., Konolige has a version in which the third wise man states
that he does not know whether he is marked, but that he would know if only the
second wise man were wiser [29]. Ballim and Wilks [9] solve the three-men ver-
sion of the puzzle using the “nested viewpoints” framework. Vincenzo Pallotta’s
solution [34] is similar but his ViewGen framework facilitates agent simulation.
Kim and Kowalski [28] use a Prolog-based implementation of metareasoning to
solve the same version of the problem using common knowledge. A more natural
proof was given by Aiello et al. [1] in a rewriting framework.

The importance of metareasoning and metaknowledge for intelligent agents is
extensively discussed in “Logical foundations of Artifical Intelligence” by Gene-
sereth and Nillson [20] (it is the subject of an entire chapter). They stress that the
main advantage of an explicit encoding of the reasoning process is that it makes

Metareasoning for multi-agent epistemic logics 13

it possible to “create agents capable of reasoning in detail about the inferential
abilities of and beliefs of other agents,” as well as enabling introspection.3

The only work we are aware of that has an explicit encoding of an epistemic
logic in a rich metalanguage is a recent project [30] that uses the Calculus of
Constructions (Coq [12]). However, there are important differences. First, they
encode a Hilbert proof system, which has an adverse impact on the readabil-
ity and writability of proofs. The second and most important difference is our
emphasis on reasoning efficiency. The seamless integration of Athena with state-
of-the-art provers such as Vampire and Spass is crucial for automation, as it
enables the user to skip tedious steps and keep the reasoning at a high level
of detail. Another distinguishing aspect of our work is our heavy use of tac-
tics. Athena uses a block-structured natural-deduction style not only for writing
proofs but also for writing proof tactics (“methods”). Proof methods are much
easier to write in this style, and play a key role in proof automation. Our empha-
sis on automation also differentiates our work from that of Basin et al. [10] using
Isabelle, which only addresses proof presentation in modal logics, not automatic
proof discovery.

References

1. L. C. Aiello, D. Nardi, and M. Schaerf. Yet another solution to the three wisemen
puzzle. In Proceedings of the 3rd International Symposium on Methodologies for
Intelligent Systems, pages 398–407, 1988.

2. K. Arkoudas. Athena. http://www.cag.csail.mit.edu/~kostas/dpls/athena.
3. K. Arkoudas. Denotational Proof Languages. PhD dissertation, MIT, 2000.
4. K. Arkoudas. Specification, abduction, and proof. In Second International Sym-

posium on Automated Technology for Verification and Analysis, Taiwan, October
2004.

5. K. Arkoudas, S. Khurshid, D. Marinov, and M. Rinard. Integrating model checking
and theorem proving for relational reasoning. In Proceedings of the 7th Interna-
tional Seminar on Relational Methods in Computer Science (RelMiCS 7), Malente,
Germany, May 2003.

6. K. Arkoudas and M. Rinard. Deductive runtime certification. In Proceedings of
the 2004 Workshop on Runtime Verification, Barcelona, Spain, April 2004.

7. K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. Verifying a file system implemen-
tation. In Proceedings of the 2004 International Conference on Formal Engineering
Methods (ICFEM), Seattle, USA, November 2004.

8. T. Arvizo. A virtual machine for a type-ω denotational proof language. Masters
thesis, MIT, June 2002.

9. A. Ballim and Y. Wilks. Artificial Believers. Lawrence Erlbaum Associates, Hills-
dale, New Jersey, 1991.

10. David Basin, Seán Matthews, and Luca Viganò. A modular presentation of modal
logics in a logical framework. In Jonathan Ginzburg, Zurab Khasidashvili, Carl

3 In addition, Bringsjord and Yang [?] have claimed that the best of human reasoning
is distinguished by a capacity for meta-reasoning, and have proposed a theory—
mental metalogic—of human and machine reasoning that emphasizes this type of
reasoning.

14 Arkoudas, Bringsjord

Vogel, Jean-Jacques Lévy, and Enric Vallduv́ı, editors, The Tbilisi Symposium on
Logic, Language and Computation: Selected Papers, pages 293–307. CSLI Publica-
tions, Stanford, CA, 1998.

11. K. Claessen and N. Sorensson. New techniques that improve Mace-style finite
model building. In Model Computation—principles, algorithms, applications, Mi-
ami, Florida, USA, 2003.

12. T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-
putation, 76:95–120, 1988.

13. D. Cyrluk, S. Rajan, N. Shankar, , and M.K. Srivas. Effective theorem proving
for hardware verification. In Theorem Provers in Circuit Design (TPCD ’94),
volume 901 of Lecture Notes in Computer Science, pages 203–222, Bad Herrenalb,
Germany, September 1994. Springer-Verlag.

14. E. Davis and L. Morgenstern. Epistemic Logics and its Applications: Tutorial
Notes. www-formal.stanford.edu/leora/krcourse/ijcaitxt.ps.

15. Giunchiglia E., Giunchiglia F., Sebastiani R., and Tacchella A. More evaluation of
decision procedures for modal logics. In Cohn A. G., Schubert L., and Shapiro S.
C., editors, 6th international conference on principles of knowledge representation
and reasoning (KR’98), Trento, 2-5 June 1998.

16. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag,
2nd edition, 1994.

17. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about knowledge. MIT
Press, Cambridge, Massachusetts, 1995.

18. M. Fitting. Basic modal logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson,
editors, Logical foundations, volume 4 of Handbook of Logic in Artificial Intelligence
and Logic Programming. Oxford Science Publications, 1994.

19. D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional
modal logics: theory and applications. volume 4 of Studies in Logic and the Foun-
dations of Mathematics. Elsevier, 1994.

20. M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, 1987.

21. M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving envi-
ronment for higher-order logic. Cambridge University Press, Cambridge, England,
1993.

22. J. Halpern and Y. Moses. A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

23. M. Hao. Using a denotational proof language to verify dataflow analyses. Masters
thesis, MIT, September 2002.

24. A. Heuerding. LWBtheory: information about some propositional logics via the
WWW. Logic Journal of the IGPL, 4(4):169–174, 1996.

25. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Sixth In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pages 636–647, 1998.

26. U. Hustadt and R. A. Schmidt. On evaluating decision procedures for modal logic.
In Fifteenth International Joint Conference on Artificial Intelligence, pages 202–
209, 1997.

27. M. Huth and M. Ryan. Logic in Computer Science: modelling and reasoning about
systems. Cambridge University Press, Cambridge, UK, 2000.

28. J. Kim and R. Kowalski. An application of amalgamated logic to multi-agent
belief. In M. Bruynooghe, editor, Second Workshop on Meta-Programming in Logic
META90, pages 272–283. 1990.

Metareasoning for multi-agent epistemic logics 15

29. K. Konolige. A deduction model of belief. Research Notes in Artificial Intelligence.
Pitman, London, UK, 1986.

30. Pierre Lescanne. Epistemic logic in higher order logic: an experiment with COQ.
Technical Report RR2001-12, LIP-ENS de Lyon, 2001.

31. J. McCarthy. Formalization of two puzzles involving knowledge. In Vladimir
Lifschitz, editor, Formalizing Common Sense: Papers by John McCarthy. Ablex
Publishing Corporation, Norwood, New Jersey, 1990.

32. J.J. Meyer and W. Van Der Hoek. Epistemic Logic for Computer Science and
Artificial Intelligence. volume 41 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1995.

33. D. Musser. Generic Software Design. http://www.cs.rpi.edu/~musser/gsd.

34. V. Pallotta. Computational dialogue Models. In 10th Conference of the European
Chapter of the Association for Computational Linguistics EACL03, 2003.

35. L. Paulson. Isabelle, A Generic Theorem Prover. Lecture Notes in Computer
Science. Springer-Verlag, 1994.

36. F. J. Pelletier. A Brief History of Natural Deduction. History and Philosophy of
Logic, 20:1–31, 1999.

37. M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of
the 1999 Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

38. R. A. Schmidt. MSPASS. http://www.cs.man.ac.uk/~schmidt/mspass/, 1999.

39. R. A. Schmidt and U. Hustadt. Mechanised reasoning and model generation for
extended modal logics. In H. C. M. de Swart, E. Orlowska, G. Schmidt, and
M. Roubens, editors, Theory and Applications of Relational Structures as Knowl-
edge Instruments, volume 2929 of Lecture Notes in Computer Science, pages 38–67.
Springer, 2003.

40. D. Snyers and A. Thayse. Languages and logics. In A. Thayse, editor, From modal
logic to deductive databases, pages 1–54. John Wiley & Sons, 1989.

41. A. Voronkov. The anatomy of Vampire: implementing bottom-up procedures with
code trees. Journal of Automated Reasoning, 15(2), 1995.

42. C. Weidenbach. Combining superposition, sorts, and splitting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 2. North-Holland,
2001.

A Athena Overview

Athena is a new interactive theorem proving system that incorporates facilities
for model generation, automated theorem proving, and structured proof repre-
sentation and checking. It also provides a higher-order functional programming
language, and a proof abstraction mechanism for expressing arbitrarily compli-
cated inference methods in a way that guarantees soundness, akin to the tactics
and tacticals of LCF-style systems such as HOL [21] and Isabelle [35]. Proof au-
tomation is achieved in two ways: first, through user-formulated proof methods;
and second, through the seamless integration of state-of-the-art ATPs such as
Vampire [41] and Spass [42] as primitive black boxes for general reasoning. For
model generation, Athena integrates Paradox [11], a new highly efficient model
finder. For proof representation and checking, Athena uses a block-structured
Fitch-style natural deduction calculus [36] with novel syntactic constructs and a

16 Arkoudas, Bringsjord

formal semantics based on the abstraction of assumption bases [3]. Most inter-
estingly, a block-structured natural deduction format is used not only for writing
proofs, but also for writing tactics (methods). This is a novel feature of Athena;
all other tactic languages we are aware of are based on sequent calculi. Tactics
in this style are considerably easier to write and remarkably useful in making
proofs more modular and abstract.

Athena [2, 4] has been used to implement parts of a proof-emitting optimiz-
ing compiler [37]; to integrate model checking and theorem proving for relational
reasoning [5]; to implement various “certifying” algorithms [6]; to verify the core
operations of a Unix-like file system [7]; to prove the correctness of dataflow
analyses [23]; and to reason about generic software [33]. This section presents
parts of Athena relevant to understanding the code in this paper. A comprehen-
sive tutorial for the language can be found on the Athena web site [2], while a
succinct presentation of its syntax and semantics can be found elsewhere [8].

In Athena, an arbitrary universe of discourse (sort) is introduced with a
domain declaration, for example:

(domain Real)

Function symbols and constants can then be declared on the domains, e.g.:

(declare + (-> (Real Real) Real))

Relations are functions whose range is the predefined sort Boolean, e.g.,

(declare < (-> (Real Real) Boolean))

Inductively generated domains are introduced as datatypes, e.g.,

(datatype Nat

zero

(succ Nat))

Here Nat is freely generated by the constructors zero and succ. When the
datatype is defined, a number of axioms and a structural induction principle
are automatically generated, constraining Nat to freely generated by zero and
succ.

The user interacts with Athena via a read-eval-print loop. Athena displays
a prompt >, the user enters some input (either a phrase to be evaluated or a
top-level directive such as define, assert, declare, etc.), Athena processes the
user’s input, displays the result, and the loop starts anew.

An Athena deduction D is always evaluated in a given assumption base β—
a finite set of propositions that are assumed to hold for the purposes of D.
Evaluating D in β will either produce a proposition P (the “conclusion” of
D in β), or else it will generate an error or will diverge. If D does produce
a conclusion P , Athena’s semantics guarantee β |= P , i.e., that P is a logical
consequence of β. Athena starts out with the empty assumption base, which
then gets incrementally augmented with the conclusions of the deductions that
the user successfully evaluates at the top level of the read-eval-print loop. A
proposition can also be explicitly added into the global assumption base with
the top-level directive assert.

