Notes on CTL

DPL Seminar, Spring 2002
Handout 12

Konstantine Arkoudas

November 27, 2003
CTL syntax

We assume that we are given a set of atomic propositions (or simply “atoms”). We will use the letter
A to denote a typical atom. The propositions of CTL have the following abstract syntax:

\[P ::= A | \text{true} | \text{false} | \neg P | P_1 \land P_2 | P_1 \lor P_2 | P_1 \rightarrow P_2 | \mathbf{AX}(P) | \mathbf{EX}(P) | \mathbf{AG}(P) | \mathbf{EG}(P) \]

\[\mathbf{AF}(P) | \mathbf{EF}(P) | \mathbf{AU}(P_1; P_2) | \mathbf{EU}(P_1; P_2) \]

The letter \(\mathbf{A} \) stands for “All”, \(\mathbf{E} \) for “Exists”, \(\mathbf{X} \) for “Next”, \(\mathbf{F} \) for “Future”, \(\mathbf{G} \) for “Global”, and \(\mathbf{U} \) for “Until”.

CTL semantics

A Kripke structure (or model) is a triple \(M = (S, \rightarrow, L) \) consisting of a set of states \(S \), a total binary
relation \(\rightarrow \) on \(S \), which we will call the successor relation, and a labelling \(L \), which is a total function
on \(S \) that maps every state \(s \in S \) to a set of atomic propositions. Intuitively, \(A \in L(s) \) iff \(A \) holds in
state \(s \). In addition, some states in \(S \) may be designated as initial states, though this is not reflected
in the formal definition of \(M \). By a path starting at a state \(s \) we will mean a non-empty sequence
of states \(s_1, s_2, \ldots \) such that \(s_i = s \) and \(s_i \rightarrow s_{i+1} \) for all \(i \). We will write \(\pi_s \) for an arbitrary path
starting at \(s \). Occasionally we will treat such a path as a set, writing \(s' \in \pi_s \) to mean that \(s' = s_i \) for
some \(i \).

Given a model \(M = (S, \rightarrow, L) \), a state \(s \in S \), and a CTL proposition \(P \), we write \(M \models_s P \) to
mean that \(M \) satisfies \(P \) in state \(s \), or simply that \(P \) holds in state \(s \) when \(M \) is understood. This
relation is defined by induction on the structure of \(P \) as follows:

\begin{itemize}
 \item \(M \models_s \text{true} \); \(M \not\models_s \text{false} \); while \(M \models_s A \) iff \(A \in L(s) \).
 \item \(M \models_s \neg P \) iff \(M \not\models_s P \).
 \item \(M \models_s P_1 \land P_2 \) iff \(M \models_s P_1 \) and \(M \models_s P_2 \).
 \item \(M \models_s P_1 \lor P_2 \) iff \(M \models_s P_1 \) or \(M \models_s P_2 \).
 \item \(M \models_s P_1 \rightarrow P_2 \) iff \(M \models_s P_2 \) whenever \(M \models_s P_1 \).
 \item \(M \models_s \mathbf{AX}(P) \) iff \(M \models_{s'} P \) for all \(s' \) such that \(s \rightarrow s' \).
 \item \(M \models_s \mathbf{EX}(P) \) iff \(M \models_{s'} P \) for some \(s' \) such that \(s \rightarrow s' \).
 \item \(M \models_s \mathbf{AG}(P) \) iff for every path \(\pi_s \) we have \(M \models_{s'} P \) for all \(s' \in \pi_s \).
 \item \(M \models_s \mathbf{EG}(P) \) iff there is a path \(\pi_s \) such that \(M \models_{s'} P \) for all \(s' \in \pi_s \).
 \item \(M \models_s \mathbf{AF}(P) \) iff for every path \(\pi_s \) we have \(M \models_{s'} P \) for some \(s' \in \pi_s \).
 \item \(M \models_s \mathbf{EF}(P) \) iff there is a path \(\pi_s \) such that \(M \models_{s'} P \) for some \(s' \in \pi_s \).
 \item \(M \models_s \mathbf{AU}(P_1; P_2) \) iff every path \(\pi_s \) satisfies \(P_1 \) until \(P_2 \), which is to say, there is some \(s' \in \pi_s \) such that \(M \models_{s'} P_2 \) and \(M \models_{s''} P_1 \) for every predecessor \(s'' \) of \(s \) in \(\pi_s \).
 \item \(M \models_s \mathbf{EU}(P_1; P_2) \) iff there is a path \(\pi_s \) that satisfies \(P_1 \) until \(P_2 \).
\end{itemize}
For a set of propositions Φ, we say that Φ entails Q, written $\Phi \models Q$, to mean that for every model \mathcal{M} and every state s of \mathcal{M}, we have $\mathcal{M} \models s P$ whenever $\mathcal{M} \models s P$ for all $P \in \Phi$. When Φ is a singleton $\{P\}$ we simply write $P \models Q$ rather than $\{P\} \models Q$. We say that P and Q are logically equivalent (or just “equivalent”), written $P \equiv Q$, iff each entails the other, i.e., iff $P \models Q$ and $Q \models P$.

Theorem 1.1 \mathbf{AF}, \mathbf{EU}, and \mathbf{EX} form an adequate set of temporal connectives for CTL. More precisely, every CTL proposition P is equivalent to a proposition Q that has no occurrences of \mathbf{AX}, \mathbf{AU}, \mathbf{EF}, \mathbf{AG}, or \mathbf{EG}. Moreover, Q can be obtained from P mechanically.

Proof: By repeated application of the following equivalences:

1. $\mathbf{AX}(P) \equiv \neg \mathbf{EX}(-P)$
2. $\mathbf{AG}(P) \equiv \neg \mathbf{EF}(-P)$ \hspace{1em} (use 4 to eliminate \mathbf{EF})
3. $\mathbf{EG}(P) \equiv \neg \mathbf{AF}(-P)$
4. $\mathbf{EF}(P) \equiv \mathbf{EU}(\text{true}, P)$
5. $\mathbf{AU}(P_1, P_2) \equiv \neg [\mathbf{EU}(-P_2, -P_1 \land -P_2) \lor \mathbf{EG}(-P_2)]$ \hspace{1em} (use 3 to eliminate \mathbf{EG})

The first four of the above are readily derivable from the definition of satisfaction. We will demonstrate the fifth in the sequel. \hfill \blacksquare

Theorem 1.2 (Fixed-point characterization of CTL) We have:

- $\mathbf{AF}(P) \equiv P \lor \mathbf{AX}(\mathbf{AF}(P))$
- $\mathbf{EU}(P_1, P_2) \equiv P_2 \lor [P_1 \land \mathbf{EX}(\mathbf{EU}(P_1, P_2))]$

Both of the above can be proved directly from the given semantics of CTL. Note that these equivalences can be viewed as recursive equations. Specifically, if we write $[P]$ for the set of all states that satisfy a proposition P (for a fixed model \mathcal{M}), then the above equivalences entail

$$[\mathbf{AF}(P)] = [P] \cup \{s \mid s' \in [\mathbf{AF}(P)] \text{ for all } s' \text{ such that } s \rightarrow s' \}$$

and

$$[\mathbf{EU}(P_1, P_2)] = [P_2] \cup \{[P_1] \cap \{s \mid s' \in [\mathbf{EU}(P_1, P_2)] \text{ for some } s' \text{ such that } s \rightarrow s' \} \}$$

respectively, which means that $[\mathbf{AF}(P)]$ and $[\mathbf{EU}(P_1, P_2)]$ must be fixed points of the recursive equations

$$S = [P] \cup \{s \mid s' \in S \text{ for all } s' \text{ such that } s \rightarrow s' \}$$

and

$$S = [P_2] \cup \{[P_1] \cap \{s \mid s' \in S \text{ for some } s' \text{ such that } s \rightarrow s' \} \}$$

respectively. Indeed, the expressions on the right-hand sides are monotonic functions on bounded cpos, and hence the existence of fixed-point solutions is guaranteed by Tarski’s fixed-point theorem. The Athena implementation of the model checker will use the customary bottom-up iteration algorithm to compute $[\mathbf{AF}(P)]$ and $[\mathbf{EU}(P_1, P_2)]$ as the least fixed points of the above equations.
Implementation

The following Athena structure models the abstract syntax of CTL:

(structure (CTL-Prop T)
 TRUE
 FALSE
 (atom T)
 (neg (CTL-Prop T))
 (con (CTL-Prop T) (CTL-Prop T))
 (dis (CTL-Prop T) (CTL-Prop T))
 (imp (CTL-Prop T) (CTL-Prop T))
 (AX (CTL-Prop T))
 (AX (CTL-Prop T))
 (AF (CTL-Prop T))
 (EF (CTL-Prop T))
 (AG (CTL-Prop T))
 (EG (CTL-Prop T))
 (AU (CTL-Prop T) (CTL-Prop T))
 (EU (CTL-Prop T) (CTL-Prop T)))

A finite Kripke structure will be represented as a list of triples of the form

\[[s, [s_1, \ldots, s_k], f] \]

where \(s \) is a state, \(s_1, \ldots, s_k \) are its successors, and \(f \) is a total predicate on atoms. The atoms that hold in \(s \) will be all and only those atoms \(A \) for which \(f(A) \) returns \texttt{true}. The following functions return a list of all the states of a given model, and a list of all the successors of a given state in a given model, respectively:

(define (states model)
 (letrec ((loop (function (model results))
 (match model
 ([] results)
 ((list-of [s _] rest) (loop rest (add s results)))))
 (loop model [])))

(define (succ s model)
 (match model
 (([split _ (list-of [(val-of s) succ-list _] _)] succ-list))))

The following function determines whether an atom holds in a given state of a given model:

(define (sat-atom? A s model)
 (match model
 (([split _ (list-of [(val-of s) _] _)]) (f A)))))

The following are classic list functions that we will need:

(define (member? x L)
 (match L
 (([split _ (list-of (val-of x _))] true)
 (_ false))))

(define (select L f)
 (letrec ((loop (function (L results)
 (match L
 ([] results)
 ((list-of x more)
 (check ((f x) (loop more (add x results)))))))))

3
(define (negate x)
 (match x
 (true true) (false false)))

(define (filter-out L f)
 (select L (function (x) (negate (f x))))))

(define (for-every L f)
 (match L
 ([] true)
 ((list-of x rest) (&& (f x) (for-every rest f))))))

(define (for-some L f)
 (negate (for-every L (function (x) (negate (f x)))))))

(define (subset? L1 L2)
 (for-every L1 (function (x) (member? x L2))))

(define (equal-state-sets L1 L2)
 (&& (subset? L1 L2)
 (subset? L2 L1)))

The last auxiliary function we will need is a least-fixed-point finder:

(define (fix init-states step)
 (letrec ((loop (function (states)
 (let ((new-states (step states)))
 (check ((equal-state-sets? new-states states) states)
 (else (loop new-states)))))
 (loop init-states)))

Finally, the code for the model checker is given in Figure ?? on the next page.
(define (sat P model)
 (let ((all-states (states model)))
 (match P
 [(TRUE all-states)
 (FALSE [])
 [(atom A) (select all-states (function (s) (sat-atom? A s model)))]
 [(neg Q) (let ((Q-states (sat Q model)))
 (filter-out all-states (function (s) (member? s Q-states))))]
 [(conj P1 P2) (let ((P1-states (sat P1 model))
 (P2-states (sat P2 model)))
 (select all-states (function (s) (and (member? s P1-states)
 (member? s P2-states)))))
 [(disj P1 P2) (let ((P1-states (sat P1 model))
 (P2-states (sat P2 model)))
 (select all-states (function (s) (or (member? s P1-states)
 (member? s P2-states)))))
 [(imp P1 P2) (let ((P1-states (sat (neg P1) model)))
 (select all-states (function (s) (for-some (s' (member? s' states))))))]
 [(EX Q) (let ((Q-states (sat Q model)))
 (select all-states (function (s) (for-every (s' (member? s' states))))))]
 [(AF Q) (let ((init-states (sat Q model)))
 (step (function (states)
 (join states
 (select all-states (function (s) (for-some (succ s) (member? s' states))))))]
 (fix (fix init-states step))))]
 [(EF Q) (let ((init-states (sat Q model)))
 (step (function (states)
 (join states
 (select all-states (function (s) (for-some (succ s) (member? s' states))))))]
 (fix (fix init-states step))))]
 [(AG Q) (let ((init-states (sat (neg Q) model)))
 (step (function (states)
 (join states
 (select all-states (function (s) (for-some (succ s) (member? s' states))))))]
 (fix (fix init-states step))))]
 [(EU P1 P2) (let ((P1-states (sat P1 model)))
 (step (function (states)
 (join states
 (select all-states (function (s) (for-some (succ s) (member? s' states))))))]
 (fix (fix init-states step))))]
 [(AU P1 P2) (let ((P1-states (sat (neg (disj (EU (neg P1) (conj (neg P1) (neg P2))) (EG (neg P2))) model)))
 (step (function (states)
 (join states
 (select all-states (function (s) (for-some (succ s) (member? s' states))))))]
 (fix (fix init-states step))))])])])])]))])])])]

Figure 1.1: A model checker for CTL.