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Abstract

Subtyping appears in a variety of programming languages, in the form of the

"automatic coercion" of integers to reals, Pascal subranges, and subtypes aris-

ing from class hierarchies in languages with inheritance.A general framework

based on untyped lambda calculus provides a simple semantic model of sub-

typing and is used to demonstrate that an extension of Curry’s type inference

rules are semantically complete.An algorithm G for computing the most gen-

eral typing associated with any giv en expression, and a restricted, optimized

algorithm GA using only atomic subtyping hypotheses are developed. Both

algorithms may be extended to insert type conversion functions at compile time

or allow polymorphic function declarations as in ML.

1. Introduction

Type inference is a form of type checking. In programming languages where all

identifiers are given types as they are introduced, it is often a simple matter to check

whether the types of operators, functions and procedures agree with the types of operands

and actual parameters.For some programming applications, it is convenient to be able to

omit type declarations from programs, leaving the programming language processor (edi-

tor, interpreter or compiler) with the task of inferring the missing type information.

Automatic type inference may make it easier to write experimental programs quickly or

allow a single untyped program to represent many explicitly typed programs. In addition,

type inference sometimes provides more useful debugging information. If we expect a

function to have one type, and the programming language processor infers another, this

may suggest a bug in the function declaration.Type inference seems to have originated
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with [Curry and Feys 58, Hindley 69] and, independently, [Milner 78]. A general discus-

sion of the use of type inference in programming languages may be found in [Milner 78];

for further information on type inference, see, e.g., [Barendregt, Coppo and Dezani 83,

Coppo, Dezani and Venneri, Coppo 83, Kanellakis, Mairson and Mitchell 9+, MacQueen,

Plotkin and Sethi 86, Mitchell 90, Wand 87].

Many programming languages use some form of subtyping. The most common uses

are in "coercions," as in the automatic conversion of integers to real (floating point) num-

bers, and in the subclassing mechanisms of object-oriented languages such as C++

[Stroustrop 86]. In this paper, which extends the conference abstract [Mitchell 84a], we

will investigate the semantics and algorithmic aspects of type inference for pure lambda

terms in the presence of various forms of subtyping hypotheses. Themain results are a

semantic completeness theorem and two type inference algorithms.The semantic study

uses a model of subtyping based on set containment: if typeσ is a subtype ofτ, then we

will think of the set of values associated with typeσ as a subset of the values associated

with typeτ. Mathematically, the integers may be regarded as a subset of the reals, and so

our model applies. Some "subtyping" relationships, such as simplified versions of Pascal

subranges, may also be interpreted in this manner. The basic results in this paper may

also have some application to languages with subtyping derived from class hierarchies

(cf. [Cardelli 88, Wand 87]). However, we do not consider subtyping based on structural

similarities between distinct record types.For discussion of this related topic, see, e.g.,

[Cardelli 88, Cardelli and Mitchell 89, Jategaonkar and Mitchell 88, Wand 87, Remy 88].

Even without subtyping, type inference allows a single untyped function to have

infinitely many types. For example, the body f(x) of the function

Apply(f,x) = f(x)

has type t whenever f has functional type s→t and x has type s. (The type operator→
means "function space," so s→t is the type of functions with domain s and range t.)

Thus Apply has type

Apply: ((s→ t) × s)→ t

for every pair of types s and t.(The type operator× means "product space." For example,

int × bool is the type of pairs <a,b> where a is an integer and b is a boolean.) In particu-

lar, Apply has every type that is a substitution instance of the above expression, for
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example

Apply: ((int → bool) × int) → bool

Apply: ((real→ int) × real)→ int.

In typed programming languages similar to Algol or Pascal, we would have to declare a

different Apply function for each type of application function that we need.However,

since application functions of different types are defined the same way, except for type

declarations, this seems an unfortunate restriction; it would be simpler to declare Apply

only once. One way for a typed language to allow this flexibility is to use a type infer-

ence algorithm. Since an inference algorithm could infer that an untyped Apply function

has type ((s→t)×s)→t for every s and t, an inference algorithm could allow calls of the

form Apply(g,y) whenever the type of the pair (g,y) is a substitution instance of (s→t)×s.

By this means, type inference algorithms may be used to support an implicit form of

polymorphism.

ML is a popular and well-known programming language incorporating implicit

polymorphism [Gordon, et. al. 79].In the ML type system, every typable expression M

has amost general typing, consisting of an association A of types to free variables of M

and a type expressionσ. The efficiency of the ML type checker seems to be a direct con-

sequence of the fact that every type of an ML expression may be constructed from the

most general typing by substitution. In this paper, we will add subtyping to a subset of

ML and obtain similar results.For every typable M, there will be a set of subtyping con-

ditions C, an association A of type expressions to variables, and type expressionσ such

that every legal typing of M can be constructed from C, A andσ. With subtyping, alter-

native typings are constructed from the principal typing using substitution and a proof

system for subtypes.

The typing algorithms developed in this paper provides a means for combining

implicit ML-style polymorphism with user-specified subtyping or coercions.There are a

number of programming language design issues surrounding user-defined coercions

which will not be addressed in any detail. Asfar as type inference goes, it may be possi-

ble to allow arbitrary coercions to be declared at any point in a program. However, if

user-supplied conversion functions are used, then the meaning of a program may not be

uniquely determined (see [Reynolds 80]).For this reason, most practical programming
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languages are likely to allow only a restricted form of user-defined subtypes, such as

those associated with class and subclass declarations.One reasonable and algorithmi-

cally interesting kind of subtyping is coercion between atomic types. Since the most rea-

sonable place to declare new subtyping relationships seems to be when new types are

declared, and type declarations generally introduce new atomic type names, this may be

the most useful case in practice. In addition, atomic subtyping restricts the type inference

problem in a way that allows optimization of the typing algorithm.Finally, if added to

ML, atomic subtyping would preserve the character of the language in that precisely the

same set of pure expressions would be typable. One implication is that programmers

would receive approximately the same kind of error messages in ML with atomic subtyp-

ing as in ML without. Since the ML type checker has proven useful for detecting errors

over many years, the restrictions imposed by atomic coercions might be useful in prac-

tice.

Some basic facts about lambda calculus will be reviewed in Section 2, followed by a

discussion of type expressions, coercions sets and typing statements in Section 3.The

typing rules and soundness and completeness theorems are appear in Section 4.A gen-

eral typing algorithm is presented in Section 5, and a restricted, optimized version devel-

oped in Section 6. Some extensions and variations of the algorithms are discussed in

Section 7, with Section 8 concluding.Unification and some variants, which are used in

the typing algorithms, are discussed in the appendix.

Preliminary versions of some of the results presented here were summarized in

[Mitchell 84a]. Later studies (based on [Mitchell 84a]) include [Jategaonkar and Mitchell

88, Fuh and Mishra 88, Wand and O’Keefe 89].

2. Lambda Calculus and its Semantics

Lambda calculus will be used to demonstrate type inference with subtyping.The

terms of untyped lambda calculus are defined by the grammar

M ::= x | MN |λx.M,

where x may be any variable. Intuitively, MN is the application of function M to argu-

ment N, andλx.M is the function we obtain by treating M as a function of x.Although

programs also contain constants like 0, 1, 2, + and "if ...then...else...", it will be notation-

ally simpler to only consider pure lambda terms without constants.The main results of
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this paper may be extended to expressions with constants without difficulty.

A lambda model<D, •, ε> is a set D together with binary operation•, "choice ele-

ment" ε ∈ D, and elements K, S∈ D satisfying certain algebraic conditions.This is the

combinatory model definition of [Meyer 82]; see also [Barendregt 84].We will not be

concerned with the specific properties of K and S, but it is worth pointing out that (ε•d)•e

= d•e for all d, e∈D, and if d1•e = d2•e for all e∈D, thenε•d1=ε•d2. Intuitively, these con-

ditions mean thatε•d represents the same function (on D) as d, and that if d1 and d2 repre-

sent the same function, thenε•d1= ε•d2. This means that for every function f which is rep-

resented by some d∈D, we can useε to choose "canonical" elementε•d representing f.

The fact that d andε•d represent the same function will be important for understanding

some properties of functional types.

Given a lambda model <D,•, ε> and environmentη mapping variables to elements

of D, the meaning of a lambda term M is defined inductively by

[[ x ]]η = η(x)

[[ MN ]]η = [[ M ]]η • [[ N ]]η

[[ λx.M ]]η = ε•d, where d•e = [[ M ]]η[e/x]

The existence of K and S ensure that there always exists a d as required in the definition

of [[λx.M]] . The elementε makes the meaning ofλx.M independent of the specific

choice of d.Again, the reader is referred to [Barendregt 84, Meyer 82] for more informa-

tion. Onespecific fact relevant to functional types is that if x is not free in M, then[[
λx.Mx ]]η = ε•[[ M ]]η

A few facts about the reduction rules (operational semantics) of lambda calculus

will be used.The reader is referred to [Barendregt 84] for a comprehensive presentation.

We consider lambda terms moduloα-conversion

(α) λx.M = λy.[y/x]M if y is not free in M

so that we can rename bound variables. Thereduction rules are
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(β) (λx.M)N →β [N/x]M,

(η) λx.Mx →η M if x is not free in M,

where substitution of N for x in M, written [N/x]M, is defined with renaming of bound

variables to avoid capture. If a term M is of the form of the left-hand side of rule (β) or

(η), then M is aβ- or η-redex. We say that Mβ-reduces to N in one stepif there is a sub-

term P of M which is aβ-redex and N is the result of contracting this redex in M. The

term M β-reducesto N, written M→→β N, if there is a sequence ofβ-reductions leading

from M to N. The η-reduction relation is defined similarly. The combination ofβ- and

η-reduction is calledβ,η-reduction and written M→→β,η N. A term which cannot be

reduced is innormal form.

The equational proof system for lambda calculus is obtained by taking all instances

of (α) and an equational version of (β) as axioms, along with inference rules to make = a

congruence with respect to application and lambda abstraction. Alambda theoryis any

set of equations containing (α) and (β) and closed under the inference rules. A theory is

extensionalif it contains all instances of an equational version of (η). Conversionis the

least congruence relation containing reducibility; =β denotesβ-conversion and =β,η
denotesβ,η-conversion. ThusM=βN iff every theory contains M=N, and M=β,ηN iff

ev ery extensional theory contains M=N.

One important model is the term model.Given any lambda theoryTh, we let [M]Th

be the set of terms N with M=N∈Th. The term model <D,•, ε> for Th has equivalence

classes of terms as elements,

D = { [ M]Th | M an untyped term}.

Application,•, in term models is defined by

[M] •[N] = [MN]

and choice element defined by

ε = [λx.λy.xy],

where we omit the subscriptTh when it seems to be clear from context. See[Barendregt

84, Meyer 82] for further discussion of term models.
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3. Type Expressions, Coercions and Type Assignments

Although product types, lists, and other kinds of types are useful in programming

languages, function spaces seem to raise most of the significant typing issues related to

subtyping, short of the more involved problems that arise with record types (see [Jate-

gaonkar and Mitchell 88, Cardelli and Mitchell 89]).Therefore,→ will be the only type

connective. We will adopt the notational conventions that

r, s, t, ... denote type variables

ρ, σ, τ, ... denote type expressions.

To be precise, the type expressions are defined by the grammar

τ ::= t | σ → τ.

Intuitively, the functional typeσ → τ consists of the set of functions which take argu-

ments of typeσ to results of typeτ. We hav eomitted type constants as a matter of nota-

tional convenience, and to eliminate routine cases in inductive proofs. Constantsdo not

alter the inference rules, and require only minor modifications to the supporting algo-

rithms given in the appendix. The necessary modifications will be discussed briefly there.

For grammatical reasons, we will often use "coercion" as a synonym for subtyping.

We will useσ⊆τ to denote the fact (or assumption) thatσ is a subtype ofτ or, equivalently

from our point of view, values of typeσ may be coerced to values of typeτ. If we think

of subtyping as an ordering, then→ is monotonic in its second argument:

if σ ⊆ ρ then τ → σ ⊆ τ → ρ.

However, → is antimonotonicin its first argument, i.e.

if σ ⊆ ρ then ρ → τ ⊆ σ → τ

rather than the reverse inclusion. If every value of typeσ can be treated as a value of type

ρ, then every function which mapsρ to τ also mapsσ to τ. For example, if f is a function

of one real argument, and integers are coercible to reals, then f should be applicable to all

integer values. Some"domain-theoretic" semantics of→ are carefully constructed so

that→ is monotonic in both arguments, since this is helpful in solving domain equations

[Scott 76, Smyth and Plotkin 82].However, antimonotonicity in the first argument is the

standard, categorical view of function spaces [Lambek and Scott 86, Mac Lane 71], and
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seems most natural when we think of containment as either substitutivity or the ability to

coerce.

Types will be interpreted as arbitrary sets of elements of lambda models, as in previ-

ous studies such as [Barendregt, Coppo and Dezani 83, Hindley 83a]. A type environ-

mentη for a model <D,•, ε> is amapping from type variables to subsets of D. The mean-

ing of a type expressionσ in a type environmentη is defined inductively by

[[ t ]]η = η(t)

[[ σ → τ ]]η = {d | ∀ e ∈ [[ σ ]]η, d•e ∈ [[ τ ]]η}.

This is the "simple semantics" for→. Note that membership inσ→τ is determined only

by the applicative behavior of an element d, so that

d∈[[σ→τ]]η iff ε•d∈[[σ→τ]]η.

The simple semantics will be used because this seems to be a natural and representative

interpretation of→; other semantics for→ are discussed in [Hindley 83a, Hindley 83b,

MacQueen and Sethi 82, Mitchell 88, Scott 76].

A coercion setC is a set of subtype assertionsσ⊆τ between types.A model <D,•,

ε> and type environmentη satisfy a coercion set C if

[[ σ ]]η ⊆ [[ τ ]]η for all σ⊆τ ∈ C.

Generally speaking, coercion sets may include statements like (t→t)⊆t, which are closer

to "domain equations" than the simple containments like int⊆real which are often given

as typical examples of coercions. In fact, some coercion sets allow us to type every pure

lambda term. For example, the two coercions

(t → t) ⊆ t and t⊆ (t → t),

imply that t=t→t. Since every solution of this equation forms a model of untyped lambda

calculus [Barendregt 84, Scott 76, Scott 80, Smyth and Plotkin 82], we would expect to

type every term with these two coercions. Thisis borne out in Lemma 2. In later sec-

tions of the paper, we will develop a typing algorithm which only allows coercions

between atomic types, and therefore only types expressions which are typable without

coercions.



- 9 -

A type assignmentA is a finite set of basic typing statements of the form x:σ. An

environmentη mapping type variables to subsets of D and ordinary variables to elements

of D satisfies a type assignment A if

η(x) ∈ [[ σ ]]η for all x:σ ∈ A.

If x is a variable,σ a type expression and A a type assignment, then A[x:σ] is the type

assignment given by A[x:σ] = (A -- {x: τ}) ∪ {x: σ} if we hav ex:τ∈A, and A[x:σ] = A ∪

{x: σ} otherwise.

A typing statementdescribes the type of an expression, given coercions between

types and the types of variables. Informally, the statement

C,A ⊃ M:σ

means that if types may be coerced according to C, and free variables have the types

assigned by A, then the term M has typeσ. More formally, a model <D,•, ε> and envi-

ronmentη mapping term variables to elements of D and type variables to subsets of D

satisfya typing M:σ if

[[ M ]]η ∈ [[ σ ]]η.

A statement C,A⊃ M:σ holds (or, is satisfied) in a model if every environment which sat-

isfies C and A also satisfies M:σ. A statement isvalid if it holds in every model.

4. Rules for Type Inference

4.1. Overview of the rules

We will consider six type inference rules.The first three are essentially Curry’s

rules for functional types [Curry and Feys 58]. The next rule, (coerce), formalizes the

property that if a term M has typeσ, and the typeσ is coercible to the typeτ, then M also

has typeτ. These four rules will be called theCurry rules with coercions, or CC for

short, and will provide the basis for the typing algorithm G in Section 6. As in [Gordon,

et. al. 79, Milner 78], rules for other applicative programming language constructs may

be added.However, the main issues involved in treating coercions seem adequately illus-

trated by the system we will consider.
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The Curry rules with coercions are not semantically complete.If we want semantic

completeness, then untyped terms that have the same meaning must be given the same

types. Thesimplest way to achieve this is to add a fifth rule (equal) based on equality of

untyped terms.However, we will see that with the "simple semantics" of→, rule (equal)

still does not give us semantic completeness with respect to certain equational theories.

Therefore, we will also consider a sixth rule allowing us toη-reduce terms of functional

types. Thesix typing rules defineCurry typing with containment and equality, or CCeq.

Although (equal) is not a recursive inference rule, since no nontrivial lambda theory is

decidable, we could replace (equal) by a set of recursive, schematic rules based on the

usual axioms and inference rules for lambda theories.However, there does not seem to

be any advantage of doing so. As we will see later on, the set of valid typings is undecid-

able.

4.2. Rules for deducing coercions

The rule (coerce) for coercing terms from one type to another will use two sub-

sidiary rules for deducing consequences of coercion sets. The axiom and rules for deriv-

ing coercions are

(ref) σ ⊆ σ,

(arrow) σ → τ ⊆ σ1 → τ1

σ1 ⊆ σ, τ ⊆ τ1

(trans) σ ⊆ ρσ ⊆ τ, τ ⊆ ρ

It is easy to verify the soundness of these rules.A coercionσ ⊆ ρ is provable from C,

written

C − σ ⊆ ρ,

if σ ⊆ ρ can be derived from formulas in C using (ref), (arrow) and (trans).We will write

C − C’ if C − σ⊆τ for every σ⊆τ∈C’. It is easy to show that − is a transitive relation on

sets.

LEMMA 1. If C − C’ and C’ − C’’, then C− C’’.
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4.3. Curry typing with coercions

Three well-known rules for assigning types to lambda terms [Curry and Feys 58,

Damas and Milner 82, Hindley 83a, Hindley 83b] are

(var) C,A⊃ x:σ whenever x:σ∈A,

(app) C,A ⊃ MN: τC,A ⊃ M:σ → τ, C,A ⊃ N:σ

(abs) C,A⊃ λ x.M:σ→τC, A[x:σ] ⊃ M:τ

These three rules are called the Curry typing rules (except that they are usually written

without coercion sets).The coercion rule for typing lambda terms, based on the rules for

deducing coercions, is

(coerce) C,A− M:τC,A ⊃ M:σ, C − σ⊆τ

The four rules (var), (app), (abs) and (coerce) are called the Curry rules with coercions, or

CC for short. We will write − C,A ⊃ M:σ if this typing statement is provable from the

CC rules. Thesoundness of the rules is left to the reader.

It is easy to show that theCC rules are conservative over the Curry rules in the sense

that if − ∅,A ⊃ M:σ, then this typing statement may be proved without using rule

(coerce). For this reason, we will call a typing statement of the form∅,A ⊃ M:σ a Curry

typing. Whenever a  term M has a Curry typing, M must bestrongly normalizing, which

means that there is no infinite sequence of reductions starting from M (cf. [Hindley 83a]).

In contrast, every untyped lambda term may be assigned a type using coercions.

LEMMA 2. Let M be any untyped lambda term and let A be a type assignment

with x:t∈A for every variable x free in M. Let C be the coercion set C =

{t⊆(t→t), (t→t)⊆t}. Then− C,A⊃ M:t.

The proof is a straightforward induction on the structure of terms, using t⊆(t→t) in the

application case, and (t→t)⊆t for an abstraction.A related translation of untyped terms

into typed terms with t=t→t is giv en in [Scott 80].
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A useful fact about the typing rules is that all free variables must be given types, and

types given to variables that do not appear free are irrelevant.

LEMMA 3. If − C,A ⊃ M:σ, and x occurs free in M, then x:τ∈A for someτ.

Furthermore, if x:τ∈B for every x:τ∈A with x free in M, then− C,B⊃M:σ.

The lemma is proved by an easy induction on typing derivations.

An interesting property of the Curry and coercion rules is the following generaliza-

tion of the Subject Reduction Theorem of [Curry and Feys 58]. The lemma shows that

types, as defined byCC, are closed underβ,η-reduction (but not conversion). Thelemma

is interesting in itself, and will be used to derive some useful corollaries to the complete-

ness theorem.

LEMMA 4. (Subject Reduction Lemma) If− C,A ⊃ M:σ and M β,η-reduces to

N, then − C,A⊃ N:σ.

PROOF . Let us assume for the moment that the lemma holds in the special case that

M is a redex and N is obtained by contracting M.We will first argue that the lemma as

stated follows from this special case, and then justify the assumption. Suppose M is a

term with a subterm P which is aβ- or η-redex. We can write M =C[P] for some context

C[] with a single "hole".Let N be the result of contracting the redex P in M. It is easy to

show by induction on the structure of the context C[] that if C,A ⊃ M:σ is provable, then

so is C,A⊃ N:σ. Thus whenever M reduces to N by a single reduction step, the lemma

holds. In general, M may reduce to N by more than one reduction step. By induction on

the length of the reduction path, we can prove the lemma. It now suffices to prove the

lemma in the special case that M is a redex.

We considerη-reduction first. Assume that the statement C,A⊃ λx.Mx : σ is prov-

able for x not free in M. We wish to show that C,A⊃ M:σ is provable. For some typeτ,

there is a proof of C,A⊃ λx.Mx:τ which ends in a use of rule (abs) and such that C− τ ⊆

σ. Since the proof of C,A⊃ λx.Mx:τ ends in a use of rule (abs), the typeτ must be of the

form τ1 → τ2. Furthermore, we must have a proof of the antecedent of (abs),

C, A[x:τ1] ⊃ Mx:τ2.

It follows that for some typeρ with C − ρ ⊆ τ2, there is a proof of

C, A[x:τ1] ⊃ Mx:ρ
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that ends in a use of rule (app). Hence, for some typeυ, the statements

C, A[x:τ1] ⊃ M:υ→ρ

and

C, A[x:τ1] ⊃ x:υ

are both provable.

Since the typing C, A[x:τ1] ⊃ x:υ is provable, it is easy to argue that C− τ1 ⊆ υ.

Thus, by (arrow),

C − υ → ρ ⊆ τ1 → τ2

and so by rule (trans)

C − υ → ρ ⊆ σ.

From this, we may use Lemma 3 to conclude that there is a proof of C,A⊃ M:σ.

The remaining case isβ-reduction. Assumethat C,A⊃ (λx.M) N: σ is provable, for

some terms M and N. We wish to conclude that C,A⊃ [N/x]M: σ is provable. Thereis

some typeτ with C − τ ⊆ ρ such that C,A⊃ (λx.M) N: τ has a proof that ends in a use of

rule (app). Thus for some typeρ, we hav eproofs of

C,A ⊃ λx.M: ρ → τ

and

C,A ⊃ N: ρ.

A straightforward induction on the structure of M shows that if C,A[x:ρ] ⊃ M:υ and C,A

⊃ N: ρ are provable then so is C,A⊃ [N/x]M: υ. This implies that C,A⊃ [N/x] M: σ is

derivable, and finishes the proof of the lemma.

4.4. Curry typing with coercions and equality

As mentioned earlier, the CC rules are not semantically complete.This follows

from the fact that without coercion hypotheses, only the Curry typing rules apply, and

these are not semantically complete.More specifically, a term M can have a Curry typing

only if there is no infinite sequence of reductions from M (cf. [Hindley 83a]). Therefore,

although the expression
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(λx.λy.y) ((λx.xx) (λx.xx)),

is semantically equally toλy.y, we cannot type this term since the subterm (λx.xx)(λx.xx)

may be reduced infinitely many times. Moreprecisely, the typing statement

∅,∅ ⊃ (λx.λy.y) ((λx.xx) (λx.xx)):t→t

is semantically valid, but cannot be proved using theCC typing rules. Another way to

show that theCC rules are not semantically complete is to compare Theorem 5, which

shows that the valid typing statements are undecidable, against Theorems 13 and 14,

which imply that the consequences of theCC rules are decidable.

We will give equal terms the same types by adopting the rule

(equal) C,A⊃ N:σC,A ⊃ M:σ, M=N

If we are interested in deducing typings that hold in all models, then we useβ-conversion

for = in (equal). To consider only extensional models, we would useβ,η-conversion

instead. Inboth of these cases, theCC rules together with (equal) are semantically com-

plete. If we wish to consider the typing statements that hold in all models of some lambda

theoryTh, then we would useTh for equality in (equal).

For certain lambda theories, even CC+(equal) may not be semantically complete.

The reason is that in the "simple semantics" of→, a term M has a functional typeσ→τ

iff λx.Mx has typeσ→τ. This implies that the rule

(eta) C,A⊃ M:σ→τC,A ⊃ λx.Mx:σ→τ x not free in M

is sound.However, the set of typing statements derivable usingCC+(equal) fromTh may

not be closed under rule (eta).For example, if we assume that kx=x for some constant k,

then we can prove λx.kx:t→t. However, we cannot prove k:t→t without rule (eta), as

explained at the end of this paragraph.Therefore, we will adopt (eta) as an additional

inference rule. It is worth remarking that the need for rule (eta) stems only from the

choice of simple semantics for→, and is not related to the presence of coercions.The

reason we cannot prove k:t→t without (eta) is thatCC+(equal) are sound for the F-

semantics of→, discussed in [Hindley 83a, Hindley 83b], while kx=x does not imply

k:t→t in the F-semantics. It is worth pointing out that although this example is stated
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using a constant symbol k, this is for notational simplicity only. The same reasoning

applies if we replace the constant k with the closed term (λx.xx)(λx.xx).

The CC rules with (equal) and (eta) will be called theCurry rules with coercions

and equality, and abbreviatedCCeq. We will write −eq C,A ⊃ M:σ if the typing state-

ment is provable using theCCeq rules, withβ-conversion in rule (equal).Similarly, if

C,A ⊃ M:σ is provable from CCeq using an equational theoryTh, we will write Th −eq

C,A ⊃ M:σ. It is clear that ifTh is closed underη-conversion, then rule (eta) is not

needed. We will also see that ifTh is the theory ofβ-conversion, then (eta) is superflu-

ous.

Since we have introduced undecidable equational reasoning into the typing rules, it

seems worthwhile to point out that the set of semantically valid typing statements is

undecidable.

THEOREM 5. The set of valid typing statements of the form C,A⊃ M:t, with

C=∅ and A={x:t}, is not recursive.

PROOF . This theorem follows from the classical undecidability results in lambda

calculus, which imply that for any variable x, the set of terms M such that M =β x is

undecidable [Barendregt 84].Specifically, if ∅,{x:t} ⊃M:t is valid, then this typing state-

ment must hold in the term model forβ-conversion, with type t assigned to the singleton

set containing only the equivalence class [x] of x. Therefore, the typing statement

∅,{x:t} ⊃M:t is valid iff M =β x.

If we replace (eta) by a more general proof step, then we can generalize the Equality

Postponement Lemma for Curry typing [Hindley 83a] to show that in any typing

derivation, all uses of (equal) and (eta) may be "postponed" until the end of the proof.

One application of this will be to show that rule (eta) is unnecessary ifTh is β-conversion;

some other applications will be discussed at the end of this section.An unsound "infer-

ence rule" that will facilitate proof-theoretic analysis is

(eta)trick C,A ⊃ N:σ→τC,A ⊃ M:σ→τ M →→η N

which includes (eta) as a special case.We will say thatη-reduction passes through Thif

M →→η N and Th − N=P imply that there exists a term Q withTh − M=Q and Q→→η
P. It follows from Corollary 15.1.6 of [Barendregt 84] thatη-reduction passes through

the theory ofβ-conversion. We now hav e the following useful but rather elaborate
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lemma.

LEMMA 6. (Equality and Eta Postponement) SupposeTh −eq C,A ⊃ M:σ and

∆1 is a derivation of this typing statement using Th. Then there is a derivation

∆2 of the same typing statement, possibly using (eta)trick, with the following

properties.

(i) ∆2 has the same number of occurrences of each typing rule as∆1, provided we

consider (eta)trick an acceptable replacement for (eta)

(ii) All CC rules appear before any occurrences of (equal) or (eta) in∆2.

If η-reduction passes throughTh, then wemay choose∆2 so that, in addition,

(iii) all occurrences of (equal) appear before any uses of (eta)trick.

If (eta) does not occur in the derivation ∆1, then from (ii) and the transitivity of equality,

we may coalesce all uses of (equal) in∆2 into one. Similarly, when (iii) applies, we may

assume∆2 contains at most one occurrence of (equal) followed by at most one use of

(eta)trick.

It is important to emphasize that (eta)trick is merely a technical device for analyzing

typing derivations, and isnot a sound typing rule with respect to arbitrary equational the-

ories. Therefore,care must be taken in applying this lemma.

PROOF . The proof is a straightforward induction on the derivation of C,A ⊃ M:σ,

and some details will be left to the reader. If we hav ea use of (equal) preceding any CC

rule, then it is easy to produce an valid derivation with the order of the two rules reversed.

For example, if∆1 proves the following sequence of typings

C,A ⊃M:σ→τ

C,A ⊃ N:σ→τ by (equal) using M=N

C,A ⊃ NP:τ by (app) using C,A⊃ P:σ,

then we can replace this sequence by
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C,A ⊃M:σ→τ

C,A ⊃ MP:τ by (app) using C,A⊃ P:σ

C,A ⊃ NP:τ by (equal) using MP=NP

The other cases are similar.

If we have a use of rule (eta) followed by any CC rule, then we may also switch the

order of rules, provided we allow (eta)trick in place of (eta). The argument is similar to

that for (equal). This shows that we may transform∆1 into a derivation ∆2 satisfying con-

ditions (i) and (ii) of the lemma.

If η-reduction passes throughTh, then we may further simplify the sequence of

(eta)trick and (equal) rules following theCC rules in∆2. More specifically, if (eta)trick is

followed by (equal) to prove a sequence of typing statements of the form

C,A ⊃M:σ→τ

C,A ⊃ N:σ→τ by (eta) using M→→η N

C,A ⊃ P:σ→τ by (equal)Th − N=P

then the assumption thatη-reduction passes throughTh is precisely what we need to

reverse the order of the two rules.

An interesting corollary of Lemma 4 and Lemma 6 is that for typing with respect to

the theory ofβ-conversion, rule (eta) is unnecessary.

COROLLARY 7. If −eq C,A ⊃ M:σ, then this typing statement may be proved

from the theory ofβ-conversion without using rule (eta).

A similar corollary is proved in [Hindley 83a], following the Subject Reduction

Theorem, using similar facts about reduction.

PROOF . Suppose−eq C,A ⊃ M:σ. Since η-reduction passes throughβ-conversion,

Lemma 6 implies that there exist terms N and P such that− C,A ⊃ N:σ by theCC rules

only, N =β P and P→→η M. Usingwell-known properties ofβ- and η-reduction we will

show that there is a term V such that N→→β,η V and V =β M. This will allow us to
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apply the subject reduction lemma.

By the Chruch-Rosser property ofβ-conversion, there is some term U with N→→β
U and P→→β U. ThusP may be reduced to M by (η), or to U by (β). Since(β) and (η)

commute (Lemma 3.3.8 of [Barendregt 84]), there is some term V with M→→β V and U

→→η V. Putting the reduction paths together, we obtain N→→β,η V and M →→β V, as

desired.

By the subject reduction lemma for theCC rules, we may conclude− C,A ⊃ V:σ.

Therefore, from M =β V, we hav e−eqC,A ⊃ M:σ without using (eta).

4.5. Semantic completeness

We will now prove the semantic completeness theorem forCCeq. Since (coerce) is

unnecessary for proving Curry typings, our theorem implies that Curry’s rules, aug-

mented with (equal) and (eta), are complete for Curry typing with respect to any equa-

tional theory. In addition, by Corollary 7, Hindley’s completeness theorem for Curry typ-

ing with β- or β,η-conversion as equality, but without rule (eta), also follows.

THEOREM 8. Let Th be any lambda theory. There is a lambda modelD for Th

such that Th− C,A ⊃ M:σ iff the typing statement C,A⊃ M:σ holds in every

environment forD.

In contrast to the theorem stated earlier in [Mitchell 84a], this completeness theorem

applies to typing with unrestricted coercions. However, the proof is quite similar.

PROOF . The first step is to construct a modelD for Th. Let <D, •, ε> be the term

model forTh, so that D is the collection of all equivalence classes [M]Th of terms modulo

Th. As mentioned earlier, we will write [M] for the equivalence class [M]Th. A standard

property of term models [Barendregt 84, Meyer 82] is that ifη is any environment, and S

is a substitution such thatη(x) = [Sx] for every term variable x, then

[[ M ]]η = [SM].

It turns out that we will only need to consider one environment in the proof, namely an

environment mapping each term variable x to its equivalence class.

Let C0,A0 ⊃ M0:σ0 be any typing statement. It is easy to verify that the typing rules

are sound, so that ifTh −eq C0,A0 ⊃ M0:σ0, then this statement must hold in every envi-

ronment for <D,•, ε>. Therefore,we will assume that C0,A0 ⊃ M0:σ0 is not provable.
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The rest of the proof will be devoted to showing that there is some environmentη satisfy-

ing C0 and A0 but with [[ M0 ]]η ∈/ [[ σ0 ]]η. We will do this by choosing an infinite type

assignment A containing A0 and using the proof system to define an environmentη from

A.

Let A be any set of basic typing statements x:σ, with no x appearing twice in A,

such that

(i) A0 ⊆ A

(ii) for every typeσ, there are infinitely many variables x with x:σ∈A.

The reason for having infinitely many variables of each type is so that given any term M

and typeσ, we can find some x:σ∈A with x not free in M. We will extend our notation

slightly and writeTh−C,A ⊃ M:σ if Th−eqC,A1⊃M:σ for some finite subset A1 of A. Let

η be an environment which maps each term variable x to its equivalence class [x], and

each type variable t to the subset of D given by

η(t) = { [M] | Th −eqC,A ⊃ M:t}.

We will see thatη satisfies A0 and C0, and that the rules are complete, by showing that

(*) [M] ∈ [[σ]]η iff Th −eqC,A ⊃ M:σ.

The argument will proceed by induction on the structure of type expressions.

For a type variable t, the equivalence is a trivial consequence of the definition.For

any functional typeσ→τ, suppose that the statement

C,A ⊃ M: σ→τ

is provable from Th. We must show that [M] belongs to[[σ→τ]]η. For any term N, if

[N] ∈[[σ]]η, then by the inductive hypothesis there is a proof of C,A⊃ N:σ, and so we can

prove C,A ⊃ MN:τ by rule (app). Therefore, by the inductive hypothesis, [MN]∈[[ τ]]η.

Thus, by definition of[[ σ→τ ]]η, we hav e[M] ∈ [[ σ→τ ]]η.

For the converse, assume that [M]∈ [[ σ→τ ]]η. For any term N, if C,A⊃ N:σ is

provable, then [N]∈[[σ]]η by the inductive hypothesis, and so

[M] •[N] = [MN] ∈ [[ τ ]]η.

Thus Th − C,A ⊃ MN:τ, again by the induction hypothesis. Inparticular, if x is any
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variable with x:σ∈A, we can use this argument to show that

C,A ⊃ Mx:τ.

and so, by rule (abs),

Th −eqC,A ⊃ λx.Mx :σ → τ.

By the construction of A, we may choose x to be a variable not free in M. Therefore, we

may use rule (eta) to deriveTh −eqC,A ⊃ M:σ → τ, which finishes the proof of (*).

It is now easy to see thatη satisfies A0 and C0. If x:σ∈A0, then x:σ∈A and so

[[ x ]]η = [x] ∈ [[ σ ]]η

by (*). If σ⊆τ ∈ C0, then for every [M] ∈[[σ]]η, we hav e Th −eq C0,A⊃M:σ by (*).

Therefore, by rule (coerce), we have Th −eq C0,A⊃M:τ and so [M]∈[[ τ]]η. Thusη satis-

fies C0. Finally, using (*) again, we have [M0] ∈/ [[σ0]]η, and so the unprovable typing

statement C0,A0 ⊃ M0:σ0 does not hold in environmentη. This proves the theorem.

The completeness theorem has two important implications forCC typing: CC is

semantically complete for terms in normal form, and the three containment rules are com-

plete for deducing consequences of coercion sets.

COROLLARY 9. If M is in β-normal form and C,A⊃ M:σ holds in all lambda

models, then− C,A⊃ M:σ.

PROOF . Suppose C,A⊃ M:σ holds in all models.Then by Corollary 7,−eq C,A ⊃

M:σ without using rule (eta).By the equality postponement lemma, there is some N

which isβ-equivalent to M with− C,A ⊃ N:σ. But since M is inβ-normal form, N must

reduce to M. Therefore, by the subject reduction lemma, it follows that− C,A ⊃ M:σ.

COROLLARY 10. If σ ⊆ t holds in every model and environment satisfying coer-

cion set C, then C− σ ⊆ τ.

PROOF . Note that if C semantically impliesσ ⊆ τ, then C,{x:σ} ⊃ x:τ must be valid

for any variable x. Since x is in normal form, this typing statement is provable using rule

(var), (app), (abs) and (coerce). But then it is easy to see that the only applicable rules are

(var) and (coerce). Thus C− σ ⊆ τ.

The proofs of both corollaries rely on equality postponement and the subject reduc-

tion lemma. Although rule (arrow) is not used in the proof of Theorem 8, it is used
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critically in the proof of subject reduction.

5. Typing Algorithm with Unrestricted Coercions

5.1. Introduction

Since semantic typing characterized byCCeq and any nontrivial lambda theory is

undecidable, it is impossible to build a practical type checker based onCCeq. Howev er,

CC forms a natural subset of theCCeq system, and we will see that there is an efficient

algorithm forCC typing. While it might seem thatCC+(eta) would also provide a rea-

sonable basis for practical type checking, recall that by Lemma 4, the consequences of

theCC rules are closed under rule (eta). Therefore, we will study algorithmic properties

of CC typing in the remainder of the paper. Section 5 will be concerned with unrestricted

CC typing. InSection 6 we will consider a restriction ofCC typing in which only atomic

containment hypotheses are allowed.

One plausible approach to type inference with subtyping might be to provide a term

M and coercion set C as input to a typing algorithm, and then compute a description of

the set of all A andσ such that−C,A⊃M:σ. Howev er, this approach does not seem fruit-

ful. The main problem is that there does not seem to be any succinct, understandable

description of all suitable types and type assignments.If every term had a semantically

minimal type, in each context, then this would be a natural way of characterizing all other

types. However, typable terms do not have hav eminimal types in each context. To giv e a

simple example, let us suppose we have expression and type constants; the same phe-

nomenon occurs without this assumption, but slightly less obviously. Now suppose the

only coercion isint⊆real, and that function constant f has typereal→bool. In this con-

text, the expression

λx.K x (fx),

where K=λu.λv.u returns its first argument and discards its second, has typesint→int,

int→real, and real→real. It is easy to see thatint→int is contained inint→real, but

from Corollary 10 we can see that, neitherint→int ⊆ real→real, nor the reverse con-

tainment, is semantically valid. Therefore,there is no semantically minimal type to use
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as a representation of all other types.This suggests that the seemingly natural approach

of leaving the set of coercions fixed is impractical. Instead, our type inference algorithm

will compute a minimal set of coercions necessary to type a given term. Althoughthere

is a certain computational cost associated with this, since sets of coercions must be

manipulated, there is an added generality which provides some insight into typing.

The general typing algorithm presented in this section is a straightforward general-

ization of the special case presented in [Mitchell 84a] to arbitrary coercion sets.Algo-

rithm GA of this paper, which only allows a restricted form of coercion set, corresponds

to the original Algorithm TYPE of [Mitchell 84a].

5.2. Substitutions, instances and most general typings

A useful property of Curry typing is that the provable typings are closed under sub-

stitution. CC typings are not only closed under substitution, but also a more general rela-

tion involving entailment of coercion sets. After a brief discussion of substitution, we

will define "instance" and show that every instance of a provable typing is provable. The

correctness proof for algorithm G will later establish that every term has a "most general

typing" with all alternative typings as instances.

A substitution is a function from type variables to type expressions. We write

[σ1,...,σn/t1,...,tn] for the substitution mapping ti to σi, for 1 ≤ i ≤ n, and mapping every

other type variable to itself.If σ is a type expression and S is a substitution, then Sσ is

the type expression obtained by replacing each variable t inσ with S(t). The composition

S°T of substitutions S and T is defined by (S°T)σ = S(Tσ).

A substitution S applied to a type assignment A is the assignment SA with

SA = {x:Sσ | x:σ∈A } .

Similarly, the application SC of substitution S to coercion set C is defined to be the fol-

lowing set of subtype assertions.

SC = {Sσ ⊆ Sτ | σ⊆τ ∈C }.

An instance of a typing statement may be obtained by applying a substitution to all

of its type expressions, and possibly choosing a "stronger" coercion hypothesis or type

assignment. Moreprecisely, a typing statement C’,A’ ⊃ M:σ’ is an instance ofC,A ⊃

M:σ if there exists a substitution S such that
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C’ − SC, A’ ⊇ SA, and σ’ =  Sσ.

In this case we say C’,A’ ⊃ M:σ’ is an instance ofC,A ⊃ M:σ by substitutionS. Note

that coercion sets are compared using the entailment relation, rather than syntactically.

One important fact about instances is that every instance of a provable typing statement is

provable.

LEMMA 11. Suppose C’,A’ ⊃ M:σ’ is an instance of C,A⊃ M:σ. If − C,A ⊃

M:σ, then the instance C’,A’⊃ M:σ’ is pro vable also.

PROOF . By Lemmas 1 and 3, it suffices to show that if − C,A ⊃ M:σ, then− SC,SA

⊃ M:Sσ for any substitution S. An easy induction on coercion proofs shows that if C−

σ⊆τ, then SC− Sσ⊆Sτ. Using this fact for the (coerce) case, a straightforward induction

on the derivation of C,A⊃ M:σ proves the lemma. The details are left to the reader.

A most general typing for termM is a provable typing statement which has every

other provable typing for M as an instance.More specifically, C,A ⊃ M:σ is a most gen-

eral typing for M if− C,A ⊃ M:σ and, whenever − C’,A’ ⊃ M:σ’, the latter typing is an

instance of C,A⊃ M:σ. Consequently, if C,A ⊃ M:σ is a most general typing for M, then

− C’,A’ ⊃ M:σ’ i ff C’,A’ ⊃ M:σ’ is an instance of C,A⊃ M:σ. Since the instance relation

is easily seen to be decidable, the decision problem forCC-typing is effectively reducible

to the problem of computing most general typings.

Without coercions, a most general Curry typing is unique except for the names of

type variables. Inaddition, since substitutions cannot decrease the size of expressions,

ev ery most general Curry typing is a Curry typing of minimal length (when written out

symbolically). However, because coercion sets are compared using entailment, there may

be most generalCC typings of differing lengths.For example, both

{s⊆t, u⊆v}, ∅ ⊃ λx.x:u→v and {u⊆v}, ∅ ⊃ λx.x:u→v

are most generalCC typings for the identity function. The first is easily seen to be an

instance of the second (by the identity substitution), since

{s⊆t, u⊆v} − u⊆v.

Conversely, the second may be obtained as an instance of the first by substituting s for t.

This reduces s⊆t to an instance of the reflexivity axiom s⊆s.
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5.3. Unification

A unifier is substitution which makes two expressions syntactically equal.More

generally, if E  is a set of pairs of expressions, then substitution SunifiesE if Sσ=Sτ for

ev ery pair <σ,τ> ∈E. Sincesuch a set of pairs may be regarded as set of equations to be

solved, we often write the pairs <σ,τ> ∈E in the formσ=τ. As in ML typing [Milner 78],

we will use unification to combine typing statements about subexpressions. Althoughwe

will see that the unification problems involved in Algorithm G have very simple solu-

tions, more difficult unification problems will occur in the specialized versions of the

algorithm considered in later sections of the paper. Since we will need a general unifica-

tion algorithm eventually, it makes sense to start right off with one here.

The unification algorithm computes most general unifying substitutions, where we

say substitution Sis more general than R, and write S≤ R, if there is a substitution T

with R = T°S.

LEMMA 12.

[Robinson 65] Let E be any set of equations between type expressions. There

is an algorithmUNIFY such that if E is unifiable, then UNIFY(E) computes a

most general unifier. Furthermore, if E is not unifiable, thenUNIFY(E) fails.

If A 1 and A2 are type assignments, then unification can be used to find a most gen-

eral substitution S such that SA1∪SA2 is a well-formed type assignment.Generally

speaking, the union of two type assignments is a type assignment precisely when both

give each variable in common the same type. Therefore, to find a most general S with

SA1∪SA2 well-formed, we simply unify the set of all equationsσ=τ such that x:σ∈A and

x:τ∈B.

To facilitate comparisons between various containment theories, a proof of Lemma

12 is sketched in the Appendix. There are efficient, even linear, implementations of unifi-

cation [Paterson and Wegman 78]. A parallel lower bound is given in [Dwork, Kanellakis

and Mitchell 84].

5.4. Algorithm G for most general typings

Given any term M, the algorithm G(M) produces a provable typing C,A⊃M:σ for

M. The algorithm is written below in an applicative, pattern-matching style. There are

three mutually recursive clauses, one for each possible form of lambda term.In the
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abstraction clause, we use A -- {x:σ} to denote the set difference, i.e., the type assign-

ment defined by removing x:σ from A.

G(x) = { s⊆t }, { x:s} ⊃ x:t

G(MN) =

let C1, A1 ⊃ M:σ = G(M)

C2, A2 ⊃ N:τ = G(N),

with type variables renamed to be disjoint from those in G(M)

S = UNIFY({ α=β | x:α∈A1 and x:β∈A2} ∪ { σ=τ→t})

where t is a fresh type variable

in

SC1∪SC2∪{St⊆u}, SA1∪SA2 ⊃ MN:u

where u is a fresh type variable

G(λx.M) =

let C, A ⊃ M:τ = G(M)

in if x:σ∈A for someσ

then C∪{ σ→τ⊆u}, (A -- {x: σ}) ⊃ λx.M:u

else C∪{s→τ⊆u}, A ⊃ λx.M:u,

where s, u are fresh type variables

The algorithm could conceivably fail in the application case if the call toUNIFY

fails. Howev er, we will see that this does not happen.It is not to hard to prove that if

G(M) succeeds, then it produces a provable typing for M.

THEOREM 13. If G(M) = C,A ⊃ M:σ, then− C,A⊃ M:σ.

It follows, by Lemma 11, that every instance of G(M) is a provable typing for M. Con-

versely, every provable typing for M is an instance of G(M).

THEOREM 14. Suppose− C,A ⊃ M:σ. Then G(M) succeeds and produces a

typing with C,A⊃ M:σ as an instance.

Both theorems are proved below.

From Lemma 2, we know that every term has a provable CC typing. Therefore,

Theorem 14 implies G(M) always succeeds.
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COROLLARY 15. For every untyped lambda term M, Algorithm G(M) succeeds

in finding a most general typing for M.

In contrast to the typing algorithm given in [Milner 78], Algorithm G takes a term,

but no type assignment, as input.This style of typing algorithm for lambda terms seems

to have originated with [Leivant 83a]. The advantage of Algorithm G over Milner’s

Algorithm W is that the algorithm and the correctness condition are simpler to state.In

addition, since the type of a lambda term is determined without regard to context, this

style of algorithm facilitates the extension to MLlet declarations, as presented in Section

7. The disadvantage is that in practice, Algorithm G may compute rather large type

assignments which must be unified. In contrast, Milner’s Algorithm W may be imple-

mented so that entire type assignments need not be unified or returned as results of func-

tion calls. However, it is not very difficult to use Algorithm G to develop an algorithm

for CC typing in the style of Milner’s Algorithm W.

PROOF OFTHEOREM 13. Theproof is by induction on the structure of terms. It is

easy to see that G(x) is always a well-typing, so we move on to application and abstrac-

tion.

Consider G(MN). By the inductive assumption, both

G(M) = C1, A1 ⊃ M:σ

G(N) = C2, A2 ⊃ N:τ

are provable. (We will assume that the type variables in G(N) have been renamed to avoid

duplicating type variables in G(M), as specified in Algorithm G.)Since S unifies {α=β |

x:α∈A1 and x:β∈A2}, the set SA1∪SA2 is a well-formed type assignment. By Lemma

11, it follows that the two typings

SC1∪SC2∪{St⊆u}, SA1∪SA2 ⊃ M:Sσ

SC1∪SC2∪{St⊆u}, SA1∪SA2 ⊃ N:Sτ

are both provable. SinceS unifiesσ andτ→t, we have

SC1∪SC2∪{St⊆u}, SA1∪SA2 ⊃ MN:St

by rule (app), and hence G(MN) is provable using (coerce).
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The third case is an abstractionλx.M. By the inductive assumption,

G(M) = C, A ⊃ M:τ

is provable. If x:σ∈A for some typeσ, then A = (A -- {x:σ})[x: σ] and so by rule (abs) we

may derive

C, (A -- {x:σ}) ⊃ λx.M:σ→τ.

If x does not occur in A, then by Lemma 3, the typing C, A[x:t]⊃ M:τ is provable, for

any type variable t, and so

C, A ⊃ λx.M:t→τ

follows by rule (abs).In either case, augmenting the coercion set withσ→t⊆u or

s→t⊆u preserves provability (by Lemma 11), and so by rule (coerce) we may prove that

λx.M has type u, as desired. This proves the theorem.

PROOF OFTHEOREM 14. An easy induction on the structure of terms shows that if

G(M) succeeds, then it produces a typing C,A⊃ M:σ in which A assigns a type to x iff x

occurs free in M. This will be useful later in the proof. The main argument now proceeds

by induction on the structure of terms.

For a variable x, suppose− C,A ⊃ x:τ. Without loss of generality, we may assume

the proof uses axiom (var) followed by rule (coerce).Since x must appear in A, we letσ

be the type with x:σ∈A, and note that C must prove σ⊆τ. Algorithm G returns the typing

G(x) = {s⊆t}, {x:s} ⊃ x:t.

To show that C,A⊃ x:τ is an instance of G(x), let T be the substitution [σ,τ/s,t]. It is easy

to check that

A ⊇ T{x:s} and Tt = τ.

Furthermore, since C− T{s⊆t}, it follows that C,A⊃ x:τ is an instance of G(x).

Suppose− C, A ⊃ MN:ρ. This typing must follow from provable typings

C, A ⊃ M:µ→ν

C, A ⊃ N:µ

by rules (app) and (coerce), where C− ν⊆ρ. By the inductive hypothesis, G(M) and G(N)

are most general typings for M and N. This means that there exist substitutions T1 and
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T2 such that

C − T1C1, A ⊇ T1A1, T1σ = µ→ν,

C − T2C2, A ⊇ T2A2, T2τ = µ,

where C1, C2, etc., are as in the application case of Algorithm G. Because G renames

variables, no type variables in C2,A2 ⊃ N:τ appear in C1,A1 ⊃ M:σ. This allows us to

combine substitutions T1 and T2. Anticipating the need for a substitution that behaves

properly on the fresh variables t and u introduced in Algorithm G, we let T be any substi-

tution such that

Ts = T1s if s appears in the typing of M,

Ts = T2s if s appears in the typing of N,

Tt = ν,

Tu = ρ.

Without considering the effect of T on t or u, it is easy to see that

C − TC1, A ⊇ TA1, Tσ = µ→ν,

C − TC2, A ⊇ TA2, Tτ = µ,

so that both instances are by the single substitution T. By Lemma 3, the assignment A

must give types to all free variables of M and N and, as noted earlier, an assignment pro-

duced by G always contains exactly the variables that occur free. Therefore, T must

unify {α=β | x:α∈A1 and x:β∈A2}. In addition, since Tσ = µ→ν = Tτ→Tt, the substitu-

tion T unifiesσ=τ→t. SinceS is a most general unifier for these equations, there is a

substitution V with

T = V°S.

This implies that C,A⊃ MN:ν is an instance of SC1∪SC2, SA1∪SA2 ⊃ MN:St by V. It

remains to consider the fresh type variable u and coercionν⊆ρ.
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Since S is a most general unifier for a set of equations not containing u, we know Su

= u. Since we chose Tu = ρ, it follows that Vu=ρ. We hav ealready seen that V(St) =ν,

and so putting the pieces together gives us C− V(St → u). This shows that

C − V[SC1 ∪ SC2 ∪ {St→u}],

which completes the proof that C,A⊃MN:ρ is an instance of G(MN) by substitution V.

The final case to consider is an abstractionλx.M. Suppose− C’,A’ ⊃ λx.M:ρ. This

must follow from a provable typing C’,A’[x: µ] ⊃ M:ν by (abs) and (coerce), where C’−

µ→ν⊆ρ. By the inductive hypothesis, C’,A’[x:µ] ⊃ M:ν is an instance of

G(M) = C,A ⊃ M:τ.

This means that there is a substitution S such that

C’ − SC, A’[x: µ] ⊇ SA and ν = Sτ.

Without loss of generality we may assume Su=ρ. If x:σ occurs in A, then Sσ must beµ,

and so C’,A’ ⊃ λx.M:µ→ν is an instance of C,A--{x:σ} ⊃ λx.M:σ→τ by substitution S.

In addition, since C’− µ→ν⊆ρ and Su =ρ, the typing C’,A’ ⊃ λx.M:ρ is an instance of

G(λx.M) by S.

If x does not occur in A, then we may further assume without loss of generality that

Ss =µ, where s is the fresh type variable introduced in Algorithm G. It is easy to check

the definition and verify that C’,A’ ⊃ λx.M:µ→ν must be an instance of C,A⊃

λx.M:s→τ by substitution S. Furthermore, reasoning about coercions as above, we again

conclude C’,A’ ⊃ λx.M:ρ is an instance of G(λx.M) by substitution S. This proves the

theorem.

6. Typing with Atomic Coercions

6.1. Introduction

In this section, we will studyCC typing with atomic coercions and give an algo-

rithm GA for finding the corresponding form of most general typing.An atomic coercion

is a containment s⊆t between type variables, or atomic type names if we were to extend

the syntax of type expressions to include constants. This class of containments is practi-

cally interesting, since many common coercions like int⊆real are atomic. It also seems
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that, in light of Wand’s treatment of labeled record types [Wand 87], the kind of subtyp-

ing that arises in "object-oriented" languages with class hierarchies may be characterized

by subtyping axioms about atomic type names.The reader may wish to consult [Jate-

gaonkar and Mitchell 88], which is based on the present paper.

By concentrating on atomic types, we will eliminate coercions like

(r → s) ⊆ t,

which allow terms without Curry typings to be given types. Infact, with atomic coer-

cions, we will see that every pure term that is typable with coercions is also typable with-

out. Thismeans that when we extend Algorithm GA to MLlet declarations, we will have

an algorithm for typing with subtypes that rejects precisely the same pure terms (terms

without constants) as the ML type checker. Of course, this does not mean that atomic

coercions have no effect; most typable terms will have more typings when coercions are

considered. For example, the application fx of f to x has typing

{ int⊆real}, {f: real→real, x:int} ⊃ fx:real,

while the application of a real function to an integer argument would not be typable with-

out coercions.

Another interest in atomic coercions stems from the normalization theorem for typ-

ing derivations given in Section 6.2. This theorem (Lemma 20) shows that whenever a

typing statement C,A⊃ M:σ with only atomic coercions is provable, there is a typing

derivation in which (coerce) is only applied to variables. Thismeans that coercions only

enter into the base case of the typing algorithm, and so we may optimize the remaining

cases. Inaddition, the restriction to atomic coercions allows various optimizations in the

representation of coercion sets, and related algorithms (which we will not go into in much

detail). Beforeanalyzing the structure of typing derivations with atomic coercions, we

will discuss some useful properties of entailment with atomic coercions.

6.2. Atomic coercions and "matching"

An atomic coercion setC is a set of coercions s⊆t between type variables. Although

the phrase is slightly inaccurate, we will call a typing statement C,A⊃ M:σ with C

atomic anatomic typing statement.
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When coercion sets only contain atomic coercions, it is easy to see that C− σ⊆τ

only if these two expressions have essentially the same "shape," or pattern of type con-

structors (in our case,→’s). To be more precise, we define thematchingrelation on type

expressions by

(i) if σ is a type variable, thenσ matchesτ iff τ is a type variable

(ii) if σ=σ1→σ2, thenσ matchesτ iff τ=τ1→τ2 and σi matchesτi (i=1, 2).

It is easy to verify that matching is an equivalence relation on types. In addition we have

LEMMA 16. If C − σ ⊆ τ, where C is an atomic coercion set, thenσ matchesτ.

This is easily proved by induction on the derivation of σ ⊆ τ from C.

The following lemma about the structure of proofs from atomic coercion sets will be

useful for analyzing derivations of typing statements.

LEMMA 17. Let σ and τ be type expressions withσ = σ1 → σ2 and τ = τ1 →
τ2. Then C− σ ⊆ τ iff C − τ1 ⊆ σ1 and C− σ2 ⊆ τ2.

PROOF . One direction is a direct consequence of rule (arrow): if C − τ1 ⊆ σ1 and C

− σ2 ⊆ τ2, then C− σ ⊆ τ. It remains to prove the converse.

We show that if C− σ ⊆ τ for any σ andτ of the formσ = σ1 → σ2 andτ = τ1 → τ2,

then there is a proof ofσ ⊆ τ from C that ends with an application of rule (arrow). We

argue by induction on the length of the proof ofσ ⊆ τ from C. If the proof is one step,

then this is either an application of rule (arrow), in which case the lemma obviously

holds, or an instance of (ref).If σ andτ are identical, then we can also prove both σ1 ⊆ τ1

andσ2 ⊆ τ2 by (ref). This lets us prove σ ⊆ τ by (arrow).

For the inductive step, assume that we have a proof whose final step is a use of rule

(trans) from antecedentsσ ⊆ ρ andρ ⊆ τ. By Lemma 16, we know thatρ has the formρ

= ρ1 → ρ2. Since the proofs ofσ ⊆ ρ and ρ ⊆ τ are shorter, we may assume we have

proofs of these inclusions ending in applications of rule (arrow). Thus

C − ρ1 ⊆ σ1, σ2 ⊆ ρ2, τ1 ⊆ ρ1, ρ2 ⊆ τ2.

By rule (trans), we have C− τ1 ⊆ σ1 and C− σ2 ⊆ τ2, which proves the lemma.

Given any coercionσ⊆τ between matching type expressionsσ and τ, there is a min-

imal atomic coercion set that impliesσ⊆τ.
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LEMMA 18. Let σ and τ be matching type expressions. There is an atomic

coercion set C =AT OMIC(σ⊆τ) with C − σ⊆τ and such that if C’ is any atomic

coercion set with C’− σ⊆τ, then C’ − C. Furthermore, C may be calculated

from a graph representation ofσ andτ in linear time.

PROOF . It follows from Lemma 17 that we can computeAT OMIC(σ⊆τ) recursively

by

AT OMIC(s⊆t) = { s⊆t }

AT OMIC(σ1→σ2⊆τ1→τ2) = AT OMIC(τ1⊆σ1) ∪ AT OMIC(σ2⊆τ2)

This can be implemented efficiently using a graph representation of type expressions sim-

ply by marking "positive" and "negative" occurrences of variables inσ andτ. Since com-

paring corresponding positive and negative positions is entirely straightforward, this can

be programmed to run in linear time. (The notion of positive and negative occurrences is

commonly used in logic. Putting an expression on the right of an→ preserves sign,

while putting an expression on the left reverses the signs of all subexpressions.)

Using much the same idea, it is also easy to decide whether an atomic coercion set C

impliesσ⊆τ.

LEMMA 19. The predicate C− τ ⊆ σ is decidable in linear time, given a sub-

routine for the transitive closure of C.

The proof is straightforward using Lemma 17. Since entailment from atomic coercion

sets is easily reduced to transitive closure, a reasonable representation for atomic coercion

sets might be directed graphs or adjacency matrices. Thiswould allow transitive closure,

and hence entailment, to be computed by standard means [Aho, Hopcroft and Ullman].

6.3. A normalization theorem for typing derivations

In general, a typing derivation may apply rule (coerce) to a term of any form. For

this reason, Algorithm G for unrestrictedCC typing, includes coercions in every case.

However, with atomic coercions, we can show that every provable typing can be trans-

formed into a typing derivation in which coercions are only applied to variables. This

will be used to simplify Algorithm GA.
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LEMMA 20. For every provable atomic typing statement, C, A⊃ M:σ , there is

a proof in which rule (coerce) is only used immediately after the typing axiom

(var).

The proof of this lemma appears below.

A simple example shows that Lemma 20 fails for unrestricted coercions.Consider

any derivation of the typing

{(s→s)⊆t}, ∅ ⊃ λx.x : t.

Since we must use (abs) to give a type toλx.x, the typing derivation must use a statement

of the form

{(s→s)⊆t}, ∅ ⊃ λx.x : σ→τ,

possibly followed by (coerce). Since (coerce) is needed to remove the→ from the type

of λx.x, we must use (coerce) after (abs). Thus the lemma fails.

Another class of counterexamples to Lemma 20 is illustrated by the typing state-

ment

{(s→s)⊆(t→t)}, y:s ⊃ λx.y : t→t,

where although the coercion set is not atomic, the only coercions assumed are between

matching type expressions. Thistyping statement may be derived by first proving

λx.y:s→s, and then using (coerce).We cannot apply (coerce) to the variable y earlier in

the derivation since s⊆t is not provable from the coercion hypothesis. However, for typ-

ing with coercions between matching type expressions, we can strengthen the coercion

inference rules so that Lemma 20 holds. Specifically, it suffices to add the inference rule

(arrow-inverse) σ1 ⊆ σ, τ ⊆ τ1

σ → τ ⊆ σ1 → τ1

Although this rule is not sound without further restrictions on our semantics, it does seem

fairly plausible. In addition, the algorithmic aspects of typing with coercions between

matching type expressions and rule (arrow-inverse) seem quite similar to typing with

atomic coercions.

PROOF OFLEMMA 20. Notethat (var) is the only axiom scheme and so every proof is

essentially a tree with an instance of (var) at each leaf.We think of each node as labeled

by both the statement proved at that node and the final rule used in that proof.Given a
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proof of a statement C,A⊃ M:σ, define thedegreeof the proof to be the number of pairs

of internal tree nodes <α, β> such that there is a path from a leaf throughα to β, nodeα is

labeled with a rule different from (coerce), and nodeβ is labeled with rule (coerce).Note

thatα andβ do not need to be adjacent.Intuitively, the degree gives us a measure of how

far the occurrences of (coerce) are from the leaves. We show by induction on the degree

of a proof that every provable statement has a proof of degree zero.

We need a preliminary fact about proofs for the case in which a node labeled

(coerce) follows a node labeled (abs). Suppose we are given a proof of C,A[x:σ] ⊃ M:τ

and that C− ρ ⊆ σ. Then we can produce a proof of C,A[x:ρ] ⊃ M:τ by replacing every

leaf labeled with the statement C,A[x:σ] ⊃ x:σ by a short proof of this statement begin-

ning with C,A[x:ρ] ⊃ x:ρ and then using (coerce).Note that the proof we produce has the

same degree as the proof we start with.

It is now a simple matter to prove by induction on the degree of proofs that every

provable statement has a proof of degree zero. The three possibilities to consider are that

rule (coerce) may follow a use of rule (app), (abs) or another use of rule (coerce).If we

have a node labeled (coerce) following another node labeled (coerce), then we can col-

lapse these two proof steps into one using rule (trans) for inclusions.So it remains to

consider (abs) and (app).

For the (app) case, suppose C,A⊃ MN:τ follows from C,A⊃ M: σ → τ and C,A⊃

N:σ by rule (app) and then C,A⊃ MN:ρ follows by (coerce). We hav eC − τ⊆ρ. There-

fore, by rule (arrow),

C − (σ → τ) ⊆ (σ → ρ).

So we can derive C,A ⊃ M:σ → ρ from C,A ⊃ M:σ → τ by rule (coerce) and then pro-

ceed to use rule (app) to derive C,A ⊃ MN: ρ. This reduces the degree of the proof by

one.

The final case is a node labeled (coerce) following a node labeled (abs). Suppose the

proof has a path with nodes labeled
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C,A[x:σ1] ⊃ M:σ2

C,A ⊃ λx.M:σ1 → σ2 (by rule abs)

C,A ⊃ λx.M:ρ1 → ρ2 (by rule coerce),

where we have used Lemma 16 to assume without loss of generality that the final type

has the formρ1→ρ2.

We would like to move rule (coerce) above (abs). Notethat since

C − σ1 → σ2 ⊆ ρ1 → ρ2,

we have C − ρ1 ⊆ σ1 and C− σ2 ⊆ ρ1 by Lemma 17. By the preliminary fact noted

above, there is a proof of C, A[x:ρ1] ⊃ M:σ2 with the same degree as the proof of

C,A[x:σ1] ⊃ M:σ2. Now, applying rule coerce, we can prove C,A[x:ρ1] ⊃ M:ρ2 and so

by rule (abs) we have C,A ⊃ λx.M:ρ1 → ρ2. This reduces the degree of the proof by

one and finishes the proof of the lemma.

6.4. Substitutions, instances and most general atomic typings

We will apply substitutions to atomic coercion sets by computing the least atomic

coercion set that implies the substitution instance.A substitution Srespectscoercion set

C if, for every σ⊆τ in C, the substitution instances Sσ and Sτ match. IfS respects C, then

we define the action of S on C by

S•C = ∪σ⊆τ∈C AT OMIC(Sσ⊆Sτ).

The instance relation on typings with atomic coercions is defined just as with unre-

stricted coercions, except that we interpret the application SC of substitution S to coer-

cion set C usingAT OMIC as above. More precisely, a typing statement C’,A’ ⊃ M:σ’ is an

atomic instance ofC,A ⊃ M:σ if there exists a substitution S respecting C such that

C’ − S•C, A’ ⊇ SA, and σ’ =  Sσ.

Note that by Lemma 18, S•C − SC, and so by Lemma 1 any C’ with C’ − S•C also satis-

fies C’ − SC. Therefore,it follows from Lemma 11 that every atomic instance of a prov-

able atomic typing is also a provable atomic typing.
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LEMMA 21. Suppose C’,A’ ⊃ M:σ’ is an atomic instance of C,A⊃ M:σ. If −

C,A⊃ M:σ, then− C’,A’ ⊃ M:σ’.

An interesting corollary is that every pure lambda term with an atomic typing also

has a Curry typing.

COROLLARY 22. Suppose C is atomic and M is a pure lambda term without

constants. If− C,A⊃ M:σ, then M has a Curry typing.

This follows from the fact that if we instantiate C,A⊃ M:σ using a substitution that maps

all type variables to a single variable t, then we have a typing for M with all coercions fol-

lowing from reflexivity of containment. Therefore, this typing may be proved without

using rule (coerce). The details of are left to the reader. For the reader interested in type

constants, it is worth pointing out that if M has aCC typing with type constants, the con-

stants may be replaced by type variables to yield a provable typing without type con-

stants. Then,by applying a substitution as above, we can produce a Curry typing.

6.5. Matching substitutions for atomic coercion sets

In the typing algorithm for atomic coercions, we will use an algorithm similar to

unification to maintain the "atomicity" constraint. The need for this arises when we have

typings C1,A1 ⊃ M:σ and C2,A2 ⊃ N:τ for terms M and N, and wish to find a typing for

MN. Usingunification, we can find common substitution instances of the typing assump-

tions in A1 and A2 which could make MN well-typed (if, in fact MN is typable). How-

ev er, the substitution giving us a typing of MN may not respect the coercion sets C1 and

C2. Therefore, given a set C derived from C1 and C2, we will need to find the most gen-

eral substitution S which, for every σ⊆τ∈C, produces matching type expressions Sσ and

Sτ. We will say that Sis a matching substitution forC if, for every σ⊆τ∈C, the substitu-

tion instances Sσ and Sτ match.

LEMMA 23. Let C be a set of containment expressions of the formσ⊆τ, whereσ

and τ may not necessarily match. There is an algorithm MATCH such that

whenever there is a matching substitution for C, thenMATCH(C) produces a

most general matching substitution. If C has no matching substitution, then

MATCH(C) fails.

Algorithm MATCH, which is similar to unification, is discussed in the Appendix.
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6.6. Algorithm GA for most general atomic typings

Given any term M, the algorithm GA(M) below produces an atomic typing C,A

⊃M:σ for M, or fails. The algorithm is written below in the same applicative, pattern-

matching style as algorithm G, using similar notation.

GA(x) = { s⊆t }, { x:s} ⊃ x:t

GA(MN) =

let C1, A1 ⊃ M:σ = GA(M)

C2, A2 ⊃ N:τ = GA(N),

with type variables renamed to be disjoint from those in GA(M)

R = UNIFY({ α=β | x:α∈A1 and x:β∈A2} ∪ { σ=τ→t})

where t is a fresh type variable

S = MATCH(RC1∪RC2) ° R

in

S•(C1∪C2), SA1∪SA2 ⊃ MN:St

GA(λx.M) =

let C, A ⊃ M:τ = GA(M)

in if x:σ ∈ A for someσ

then C,(A -- {x: σ}) ⊃ λx.M:σ→τ

else C,A ⊃ λx.M:t→τ,

where t is a new type variable

While Algorithm G always succeeds, Algorithm GA mayfail in the application case

if the call toUNIFY or MATCH fails. This is to be expected since, by Corollary 22, Algo-

rithm GA must fail on every term that does not have a Curry type. In particular, GA(M)

must fail if any subterm of M has no normal form.We can prove that if GA(M) succeeds,

then it produces a provable typing for M.

THEOREM 24. If GA(M) = C,A ⊃ M:σ, then C,A⊃ M:σ is a provable atomic

typing statement.

It follows, by Lemma 21, that every atomic instance of GA(M) is a provable typing for

M. Conversely, every provable atomic typing for M is an atomic instance of GA(M).
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THEOREM 25. Suppose− C,A⊃ M:σ is a provable atomic typing. Then GA(M)

succeeds and produces an atomic typing with C,A⊃ M:σ as an atomic

instance.

Both theorems are proved at the end of this section.One consequence of Theorem 25 is

that if GA(M) succeeds, then we may compute a most general Curry typing from GA(M).

In stating and discussing this corollary, it is useful to introduce some notation. If C is an

atomic coercion set, let EC be the set of equations

EC = {s=t | s⊆t∈C},

and for t appearing in C, let [t]C be the set of all s with s=t in the reflexive, symmetric and

transitive closure of EC. In other words, we write [t]C for the equivalence class of t with

respect to the least equivalence relation containing EC.

COROLLARY 26. Let GA(M) = C,A⊃ M:σ be a most general atomic typing for

M. LetS be a substitution that is a choice function on equivalence classes [t]C

of type variables appearing in C, so that whenever t1, t2∈[t] C, we have St1 =

St2∈[t] C. Then∅,SA⊃ M:Sσ is a most general Curry typing for M.

PROOF . It should be clear from the definition of S that∅,SA ⊃ M:Sσ is an atomic

instance of GA(M). By Theorem 25, every Curry typing is an atomic instance of GA(M),

so it suffices to show that every Curry instance of GA(M) is an instance of∅,SA ⊃

M:Sσ.

If ∅,A’ ⊃ M:σ’ is an instance of GA(M) =C,A ⊃ M:σ by substitution T, then∅

must prove Ts = Tt for every s⊆t∈C. Consequently, T must unify EC. But since S is a

most general unifier for EC, as is easily verified, there is some substitution R with T =

R°S. It follows that∅,A’ ⊃ M:σ’ is an instance of∅,SA ⊃ M:Sσ by R, proving the

corollary.

Further discussion of the relationship between coercion sets and unification is given

in the appendix.The remainder of this section is devoted to proving Theorems 24 and 25.

PROOF OF THEOREM 24. It is easy to see that G(x) is always a well-typing, so we

move on to application and abstraction.

Consider GA(MN). By the inductive assumption, both
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GA(M) = C1, A1 ⊃ M:σ

GA(N) = C2, A2 ⊃ N:τ

are provable. (As in the proof of Theorem 13, we assume that the type variables in GA(N)

have been renamed.) Since S is defined from the unifier R by composition, S must unify

{ α=β | x:α∈A1 and x:β∈A2}, and σ=τ→t. This implies that SA1∪SA2 is a well-formed

type assignment.Since S is a matching substitution for C1∪C2, we know that S•(C1∪C2)

is a well-defined atomic coercion set. Therefore, arguing as in the proof of Theorem 13,

Lemma 11, implies that the two typings

S•(C1∪C2)SA1∪SA2 ⊃ M:Sσ

S•(C1∪C2)SA1∪SA2 ⊃ N:Sτ

are both provable and so

S•(C1∪C2)SA1∪SA2 ⊃ MN:St

follows by rule (app). Therefore GA(MN) is a provable atomic typing statement.

The abstraction case is similar to the case considered in the proof of Theorem 13,

except that no additional coercions are introduced.Since the details are may be checked

quite easily, we leave this task to the reader. This proves the theorem.

PROOF OFTHEOREM 25. Asin the proof of Theorem 14, an easy induction shows that

when GA(M) succeeds, it produces a typing which A assigns a type to x iff x occurs free

in M. The main argument proceeds by induction on the structure of terms, and is essen-

tially similar to the proof of Theorem 14 in the variable and lambda abstraction cases.

For this reason, we will only check the application case.

Suppose− C, A ⊃ MN:ν is a provable atomic typing statement.By Lemma 20, this

must follow from provable atomic typings

C, A ⊃ M:µ→ν

C, A ⊃ N:µ

by rules (app). By the inductive hypothesis, GA(M) and GA(N) are most general atomic

typings for M and N. This means that there exist substitutions T1 and T2 such that
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C − T1•C1 A ⊇ T1A1 T1σ = µ→ν

C − T2•C2 A ⊇ T2A2 T2τ = µ,

where C1, C2, etc., are as in the application case of Algorithm GA.Because GA renames

type variables, no type variables in C2,A2 ⊃ N:τ appear in C1,A1 ⊃ M:σ. This allows us

to combine substitutions T1 and T2. Anticipating the need for a substitution that behaves

properly on the fresh variable t introduced in the algorithm, we let T be any substitution

such that

Ts = T1s if s appears in the typing of M,

Ts = T2s if s appears in the typing of N,

Tt = ν

Without considering the effect of T on t, it is easy to see that

C − TC1 A ⊇ TA1 Tσ = µ→ν

C − TC2 A ⊇ TA2 Tτ = µ

so that both instances are by the single substitution T. By Lemma 3, the assignment A

must give types to all free variables of M and N and, as noted earlier, an assignment pro-

duced by G always contains exactly the variables that occur free. Therefore, T must

unify {α=β | x:α∈A1 and x:β∈A2}. In addition, since Tσ = µ→ν = Tτ→Tt, the substitu-

tion T unifiesσ=τ→t. SinceR is a most general unifier for these equations, there is a

substitution V with

T = V°R.

Since C is atomic, V must be a matching substitution for RC1∪RC2. But sinceMATCH

computes most general matching substitutions, this implies that

V = W ° MATCH(RC1∪RC2)

for some W. It follows that C,A⊃ MN:ν is an instance of S•(C1∪C2), SA1∪SA2 ⊃

MN:St by W. This proves the theorem.
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7. Variations and extensions of the typing algorithms

7.1. Inserting Conversion Functions

Algorithm G and GA calculate the set of subtyping assumptions needed to type a

given term, but do not insert any type conversion functions. This is consistent with the

view that whenever σ is a subtype ofτ, every values of typeσ is also a value of typeτ. In

practice, however, it may be useful to represent elements ofσ is some way that takes

advantage of the particular features that distinguishσ from τ. For example, even though

the subrange of integers from 1 to 12 is most naturally regarded as a subset of the inte-

gers, it may be useful to save space by allocating fewer bytes to the representation of each

element of the subtype. Then, when an element of the subtype is used as an element of

the supertype, it may be desirable to convert from one representation to another. (Other-

wise, it would be necessary to discriminate between representations at run-time.)This

may be accomplished by making relatively minor changes in either typing algorithm, as

sketched briefly below. To simplify the discussion, we will only consider Algorithm GA.

The modifications to Algorithm G are similar and left to the interested reader.

We assume that whenever σ⊆τ, we are given a conversion function hσ, τ mapping

values of typeσ into typeτ. Giv en conversion functions for each subtyping assertion in

C, we may construct conversion functions for every σ⊆τ provable from C. Unfortunately,

the only way to do this seems to depend on the way we prove σ⊆τ from C. This illus-

trates a general problem with user-supplied type conversion functions.

If C − σ⊆τ, then we define the untyped lambda term hσ, τ by induction on the proof

of σ⊆τ from C, as follows. We use the standard abbreviation M° N for the term

λx.M(Nx).

(i) If σ⊆τ follows fromσ⊆ρ andρ⊆τ, then hσ, τ ::= hρ, τ ° hσ, ρ

(ii) If ( σ1→σ2)⊆(τ1→τ2) follows from

τ1⊆σ1 andσ2⊆τ2, then hσ, τ ::= λx. hσ2, τ2
° x ° hτ1, σ1

.

The conditions in [Reynolds 80] may viewed as a natural way of guaranteeing that the

function hσ,τ is determined by the coercions associated with the hypotheses C, and inde-

pendent the proof used to construct hσ,τ.
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Tw o modifications to Algorithm GA are needed. The first is in the variable case,

where coercions are used. Instead of returning

GA(x) = {s⊆t}, {x:s} ⊃ x:t

the algorithm inserts a coercion

GA(x) = {s⊆t}, {x:s} ⊃ hs, t(x):t

The second modification is in the use of substitutions in the application case.

While substitutions are only applied to types in Algorithm GA, we must now apply

substitutions to terms as well. The reason is that when the type of a variable is changed,

we must also change the conversion function associated with it. Therefore, we replace the

last line of the application case of Algorithm GA by

S•(C1∪C2), SA1∪SA2 ⊃ S(MN):St,

with S now applied to the term MN, and define the application of a type substitution to an

untyped term with conversion functions as follows.

The effect of applying a type substitution S to an untyped lambda term M with con-

version functions is to replace each conversion function hσ,τ with hSσ,Sτ. Recall that the

definition of hσ,τ depends on the proof ofσ⊆τ from C. We will produce a conversion

function hSσ,Sτ corresponding to a proof of Sσ⊆Sτ from S•C. Specifically, we will use

the proof of Sσ⊆Sτ obtained by replacing each nonlogical axiom a⊆b∈C in the proof of

σ⊆τ with a proof of Sa⊆Sb from S•C. (Lemma 18 and the definition of S•C guarantee that

there is a proof of Sa⊆Sb from S•C.) Now that we have fixed hSσ,Sτ, it is easy to see from

the inductive definition of hσ,τ that hSσ,Sτ may be obtained by substituting an untyped

lambda term hSa,Sbfor each basic conversion function ha,b in hσ,τ.

The inductive proof of Theorem 13 may be modified to show that if the modified

version of GA(M) succeeds, it produces a typing C, A⊃ N:σ such that A⊃ N:σ is a

Curry typing (i.e., provable from rules (var), (app) and (abs) only), provided we assume

hσ, τ:σ→τ. Furthermore, if each hσ,τ in N is replaced by the identity function, then N

reduces to M. The proof of Theorem 14 may also be modified to show that the new algo-

rithm is also guaranteed to find a typing whenever there is a method for inserting conver-

sion functions.
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7.2. ML Polymorphism

Algorithms G and GA can also be extended to lambda calculus with a polymorphic

let construct as in ML [Gordon, et. al. 79, Milner 78].For notational simplicity, we dis-

cuss only Algorithm G below. From a theoretical point of view, the simplest way to

extend the algorithm is to considerlet an abbreviation in lambda terms. If we definelet

by

let x=M in N ::= [M/x]N,

then it follows immediately that our typing algorithms may be used to find most general

typings for terms withlet. From a practical point of view, it is more useful to extend G to

type terms withlet directly. Howev er, we can use this fact that G(let x=M in N) should

be equivalent to G([M/x]N) to provide some intuition for the extension of G tolet.

Since Algorithm G deduces a typing for each subterm independently, the algorithm

will type every occurrence of M in [M/x]N by precisely the same process.If we wish to

type an expression of the form

let x=M in N

without substituting M for x in N, then we may compute G(M) once and begin to type N

as usual. When we see an x inside N, we then substitute the typing for M.More specifi-

cally, if G(M) = C,A ⊃ M:σ is the typing for M, then we would like to use C,A⊃ x:σ as

the typing for x inside N.However, since substitution [M/x]N involves some renaming of

bound variables in N to avoid capture of free variables in M, there are some minor com-

plications regarding variables that occur free in M. These details are easily resolved, as

described in detail in [Kanellakis and Mitchell 89, Kanellakis, Mairson and Mitchell 9+,

Mitchell 90]; see especially the appendix of [Kanellakis, Mairson and Mitchell 9+].

8. Conclusion and Future Directions

As with Curry typing without coercions, a relatively simple set of inference rules is

sufficient to deduce all semantically valid typing statements.However, semantic com-

pleteness is achieved at the cost of making the set of types of a term undecidable.Tw o

type inference algorithms for the decidable set of inference rules (without term equality)

are presented, one using arbitrary subtyping assumptions, and the other restricted to sub-

typing assumptions between atomic types. These algorithms could be used to extend the
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programming language ML with simple forms of subtyping.We hav ealso addressed the

algorithminc problem of inserting calls to type conversion functions at compile time, but

not the semantics of type conversion.

We hav e only considered one semantic interpretation for the type connective →.

Tw o additional possibilities are the quotient-set semantics [Hindley 83a] and the F-

semantics [Hindley 83b]. It seems likely that the techniques of [Hindley 83a, Hindley

83b] will suffice to prove completeness theorems for typing with coercions for both of

these semantics.Some discussion of the relationships between these semantics, and fur-

ther references, are given in [Mitchell 88].

Acknowledgements:Thanks to Ravi Sethi for originally suggesting the study of type

inference with coercions and to Lalita Jategaonkar for many helpful suggestions.
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Appendix. Algorithms UNIFY and MATCH

8.1. Unification

Since matching is an extension of unification, we begin with a short review of a uni-

fication algorithm. Unification may be programmed in the same functional, pattern-

matching style as the typing algorithms.In the clauses below, we assume that any non-

empty set matches a pattern consisting of the union of two sets. Although the matching of

a set to a pattern is nondeterministic, this does not affect the correctness of the algorithm.

We also assume a form of pattern-matching for equations which takes commutativity into

account. For example, we assume that an equationσ1→σ2 = s matches the pattern t=τ.

Given a set of equations E and a substitution S, the algorithmUNIFY(E,S) attempts

to find the most general substitution T≥S unifying E. While we are generally interested

in calling UNIFY with the identity substitution to begin with, the substitution parameter is

useful on recursive calls.

UNIFY(∅, S) = S;

UNIFY(E∪{t= τ}, S) =

if τ is the variable tthen UNIFY(E, S)

else if t does not occur inτ then UNIFY([τ/t]E, [τ/t]°S) else fail

UNIFY(E∪{ σ1→σ2 = τ1→τ2}, S) = UNIFY(E∪{ σ1=τ1, σ2=τ2}, S}

Intuitively, if UNIFY(E, S) is computed using a recursive call UNIFY(E1, S1°S), then

S1 is a partial solution to E, with E1 the "simpler" problem remaining.To prove more

rigorously thatUNIFY is correct, we first show that the algorithm always terminates.

LEMMA 27. For every finite set of equations E and substitution S, the algorithm

UNIFY(E, S) terminates.

PROOF . Termination is proved by associating a "degree" with each set E of equa-

tions, and showing that the degree decreases with each recursive call. Althoughseveral

other definitions will do equally well, we will say that thedegreeof set E of equations is

the pair of natural numbers
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degree(E) = <# of occurrences of→, # of equations in E>.

We order degrees lexicographically, so that <m,n> is less than <i,j> if either m<i or m=i

and n<j. It is easy to check that each recursive call involves a set E of lower degree.

Since there is no infinite decreasing sequence of pairs of natural numbers, it follows that

UNIFY(E,S) always terminates.

LEMMA 28. Let E be a finite set of equations and S be any substitution.If any

T ≥ S unifies E, thenUNIFY(E, S) computes a unifier R for E with T≥ R ≥ S.

Otherwise,UNIFY(E, S) fails.

PROOF . We use induction on the degree of E, using the same degree function as in

the proof of Lemma 27. If E is a set with degree <0, 0>, then E must be empty and so it

is easy to verify that the lemma holds.

Now suppose that E has degree <m, n> with at least one of these numbers greater

than 0. Since E cannot be empty, E must be of the form E1∪{ σ=τ} f or some equation

σ=τ. If one of these, sayσ, is a variable t, then the second clause of the algorithm applies.

It is easy to see that any unifier must map t to some substitution instance ofτ (since the

equation t=τ must be satisfied), and must satisfy the remaining equations [τ/t]E. The

remaining case, with E = E1∪{ σ1→σ2 = τ1→τ2}, is straightforward.

8.2. Most general matching substitutions

Let C be a set of coercion expressionsσ⊆τ, whereσ andτ may not match. Then S is

a matching substitution forC if, for every σ⊆τ in C, the expressions Sσ and Sτ match. A

matching substitution S is amost general matching substitutionif every other matching

substitution R may be obtained as the composition of S with some substitution T. Match-

ing substitutions are related to unification by the following lemma.A substitution isvari-

able-to-variableif it is a function from variables to variables.

LEMMA 29. Let C be a set of possibly non-matching containment expressions

σ⊆τ and let E be the set of equations

E = {σ=τ | σ⊆τ ∈ C}.

Then S is a matching substitution for C iff there is a variable-to-variable sub-

stitution T such that T°S unifies E.
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PROOF . Suppose T is variable-to-variable and T°S unifies E. Since T is variable-to-

variable, Sσ matches T(Sσ) and Sτ matches T(Sτ) for every σ⊆τ in C. But since

T(Sσ)=T(Sτ), S must be a matching substitution for C.

To prove the converse, suppose S is a matching substitution for C, and let T be the

substitution which maps all variables to some arbitrarily chosen variable t. Then, for

ev ery σ=τ in E, we know that Sσ and Sτ differ only in the names of variables, and so

T(Sσ)=T(Sτ). Thus T°S unifies E.

We will use this lemma to design a matching algorithm.Essentially, algorithm

MATCH will first unify a set of equations, and then extract a most general matching substi-

tution from the most general unifier. While this may seem an unnecessarily indirect way

of computing a most general matching substitution, it is actually quite efficient when we

implement unification using the usual graph representation of terms [Paterson and

We gman 78, Aho, Sethi and Ullman 86].

It is worth mentioning that Lemma 29 fails when constants are added to type expres-

sions. For example, C={s⊆a, s⊆b} has a matching substitution (namely, the identity sub-

stitution), but E={s=a, s=b} cannot be unified since a and b are different constants. How-

ev er, by treating constants as variables, we may still use Lemma 29 to reduce matching

with constants to unification with constants.

The reduction of matching to unification requires a few preliminary definitions and

lemmas. Ifσ is any type expression, it is easy to construct a most general type expression

τ matchingσ simply by replacing each variable occurrence inσ by a distinct fresh vari-

able. Bya similar process, we can "factor" any substitution S into the composition of a

substitution S1 which produces a most general type matching St for each t we choose, and

a substitution S2 that replaces variables to make (S2°S1)t=St.

Let V be a set of type variables. Asubstitution Schooses variables freely onV if (i)

for each v∈V, no type variable appears twice in Sv

(ii) for distinct u, v∈V, no type variable in Su appears in Sv. Essentially, this means that

if v1, v2, ... is an enumeration ofV, then no type variable appears twice in the list Sv1,

Sv2, ... Thefollowing lemma is easy to prove.

LEMMA 30. Suppose substitution S chooses variables freely onV and that T

chooses variables freely on the set of all type variables occurring in Sv, for
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v∈V. Then S°T chooses variables freely onV.

The proof is straightforward and is omitted.

We will now show how to factor any substitution into the composition of one that

chooses variables freely and one that replaces the freely-chosen variables to produce the

original substitution. It will be useful to write S=VT if substitutions S and T agree on all

variables fromV.

LEMMA 31. Let S be any substitution and letV be a set of type variables such

that there are infinitely many type variables not inV. There are substitutions

S1 and S2, computable from a symbolic representation of S in linear time, such

that S1 chooses variables freely onV, substitution S2 is variable-to-variable,

and S =V S2°S1. Furthermore, if S =V T2°T1 for some variable-to-variable

substitution T2, then there exists a variable-to-variable substitution R with

T1=VR°S1.

PROOF . To define S1 and S2, let v1, v2, ... be an enumerationV and let us partition

the complement ofV into disjoint infinite setsV1, V2, ... This is a technical device for

associating a different set of type variables with each element ofV. It will also be con-

venient to choose some enumeration of eachVi, sayVi = {vi,1, vi,2, ...}.

For each vi ∈V, let S1vi be the type expression derived from Svi by replacing the j-th

variable occurrence in Svi (reading the expression from left-to-right, say), with the j-th

variable vi,j from Vi. Let S2 map vi,j back to the variable occurring in the j-th position in

Svi. Since theVi’s are disjoint, and each variable occurrence in S1vi contains a different

vi,j, substitution S1 chooses variables freely onV. It should be clear from the definition

that S2 is variable-to-variable and S =V S2°S1. Since S1 and S2 may be constructed using

a single left-to-right scan of a symbolic representation of S, both may be computed in lin-

ear time.

For the second part of the lemma, suppose S =V T2°T1, with T2 variable-to-variable.

Since S2 and T2 are both variable-to-variable substitutions, the three type expressions Sv,

S1v and T1v must match, for each v∈V. Therefore, since S1 chooses variables freely on

V, there is a function (substitution) R mapping the variable occurring in the j-th position

of S1v to the variable occurring in the j-th position of T1v. Since T1 =V R°S1, this proves

the lemma.
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We may now combine Lemmas 31 and 29 to reduce matching to unification.

LEMMA 32. There is an algorithm MATCH which, given a finite set of coercion

expressions C, produces a most general matching substitution for C if any

matching substitution exists, and fails otherwise.

It will be clear from the proof thatMATCH has the same complexity as unification,

provided that unification produces a representation of the most general unifier S that

allows us to read off St for each type variable t. This is actually a nontrivial assumption,

since many implementations of unification will produce a composition S1°S2°...°Sk of

several substitutions, and the number of operations involved in simplifying such a result

may be quadratic in the length of the input.However, when terms are represented using

graphs, the unifying substitution is generally represented as an equivalence relation.

Algorithm MATCH may then be implemented efficiently as an algorithm for accessing the

graph data structure.

PROOF . Let E = {σ=τ | σ⊆τ ∈ C} be the set of equations determined by C and letV

be the set of type variables occurring in C.Given C, algorithm MATCH first computes a

most general unifier S for E. If there is no unifier, thenMATCH fails. Otherwise, the algo-

rithm computes a substitution S1 choosing variables freely onV such that S=VS2°S1 for

some variable-to-variable substitution S2, and returns S1 as the result. By Lemma 29 and

the properties of unification, we know that MATCH succeeds with S1 if f there is a match-

ing substitution. It remains to be shown that whenMATCH succeeds, S1 is in fact a most

general matching substitution for C.

Let R be any matching substitution for C. By Lemma 29, there exists a variable-to-

variable substitution T with T°R unifying E. Therefore, since S is a most general unifier,

there is a substitution U with

U°S = U°S2°S1 = T°R.

By Lemma 31 we can "factor" U°S2 into U1 choosing variables freely, and a variable-to-

variable substitution U2. This gives us

U2°U1°S1 = T°R.

But by Lemma 30, we know that U1°S1 chooses variables freely onV. Therefore, by the

second part of Lemma 31, we may conclude V°U1°S1 = R for some variable-to-variable

substitution V. This shows that S1 is a most general matching for C.
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