Type inference with simple subtypes

John C. Mitchell

Department of Computer Science
Stanford Unversity
Stanford, CA 94305

Tuesday 15 JAnuary 1991
Abstract

Subtyping appears in anety of programming languages, in the form of the
"automatic coercion" of integers to realgisPal subranges, and subtypes aris-
ing from class hierarchies in languages with inheritacgeneral frameork
based on untyped lambda calculusvites a simple semantic model of sub-
typing and is used to demonstrate that seresion of Currys type inference
rules are semantically completén algorithm G for computing the most gen-
eral typing associated with yamiven expression, and a restricted, optimized
algorithm GA using only atomic subtyping hypotheses aresloeed. Both
algorithms may be extended to insert typevemion functions at compile time

or allow polymorphic function declarations as in ML.

1. Introduction

Type inference is a form of type checking. In programming languages where all
identifiers are gien types as the are introduced, it is often a simple matter to check
whether the types of operators, functions and procedures agree with the types of operands
and actual parameter&or some programming applications, it is @enient to be able to
omit type declarations from programs, leaving the programming language processor (edi-
tor, interpreter or compiler) with the task of inferring the missing type information.
Automatic type inference may malkt easier to write experimental programs quickly or
allow a sngle untyped program to represent maxplicitly typed programs. In addition,
type inference sometimes pides more useful debugging information. If we expect a
function to hae me type, and the programming language processor infers grbtber
may suggest aug in the function declarationType inference seems toveaaiginated

-2

with [Curry and Feys 58, Hindje69] and, independentlyMilner 78]. A general discus-

sion of the use of type inference in programming languages may be found in [Milner 78];
for further information on type inference, see, e.g., [Barendregt, Coppo and Dezani 83,
Coppo, Dezani and Venneri, Coppo 83, Kanellakis, Mairson and Mitchell 9+, MacQueen,
Plotkin and Sethi 86, Mitchell 90, Wand 87].

Many programming languages use some form of subtyping. The most common uses
are in "coercions," as in the automatic wasion of integers to real (floating point) num-
bers, and in the subclassing mechanisms of object-oriented languages suth as C
[Stroustrop 86]. In this papewhich extends the conference abstract [Mitchell 84a], we
will investigate the semantics and algorithmic aspects of type inference for pure lambda
terms in the presence of various forms of subtypiygptheses. Thenain results are a
semantic completeness theorem and type inference algorithmsThe semantic study
uses a model of subtyping based on set containment: ifatiga subtype of, then we
will think of the set of values associated with typas a subset of thealues associated
with type 7. Mathematicallythe integers may begarded as a subset of the reals, and so
our model applies. Some "subtyping"” relationships, such as simplérstrs of Bscal
subranges, may also be interpreted in this manflee basic results in this paper may
also hae me application to languages with subtyping \cetifrom class hierarchies
(cf. [Cardelli 88, vand 87]). However, we do rot consider subtyping based on structural
similarities between distinct record typelSor discussion of this related topic, see, e.g.,
[Cardelli 88, Cardelli and Mitchell 89, Jg@nkar and Mitchell 88, \hd 87, Remy 88].

Even without subtyping, type inference allows a single untyped functionvi® ha
infinitely mary types. Br example, the body f(x) of the function
Apply(f,x) = f(x)

has type t whemner f has functional type st and x has type s. (The type operator
means "function space,” so- is the type of functions with domain s and range t.)
Thus Apply has type

Apply: ((s - t) xs) > t
for every pair of types s and t(The type operatox means "product space.” Fotaenple,

int x bool is the type of pairs <a,b> where a is an integer and b is a boolean.) In particu-
lar, Apply has eery type that is a substitution instance of thev&bexpression, for

example

Apply: ((int — bool) xint) — bool

Apply: ((real — int) x real) — int.

In typed programming languages similar to Algol as€al, we would he& © declare a
different Apply function for each type of application function that we ne¢alvever,
since application functions of trent types are defined the samaywexcept for type
declarations, this seems an unfortunate restriction; it would be simpler to declare Apply
only once. One way for a typed language to allthis flexibility is to use a type infer
ence algorithm. Since an inference algorithm could infer that an untyped Apply function
has type ((s»t)xs)—t for every s and t, an inference algorithm could @llcalls of the
form Apply(g,y) wheneer the type of the pair (g,y) is a substitution instance ef (5xs.
By this means, type inference algorithms may be used to support an implicit form of
polymorphism.

ML is a popular and well-known programming language incorporating implicit
polymorphism [Gordon, et. al. 79]n the ML type system,very typable expression M
has amost g¢nerl typing consisting of an association A of types to free variables of M
and a typex@ressiono. The eficiengy of the ML type checir seems to be a direct con-
sequence of the fact thateey type of an ML expression may be constructed from the
most general typing by substitution. In this pape will add subtyping to a subset of
ML and obtain similar resultsi-or every typable M, there will be a set of subtyping con-
ditions C, an association A of type expressions to variables, andXygpEssiono such
that every legd typing of M can be constructed from C, A amd With subtyping, alter
natve typings are constructed from the principal typing using substitution and a proof
system for subtypes.

The typing algorithms deloped in this paper provides a means for combining
implicit ML-style polymorphism with user-specified subtyping or coercidigere are a
number of programming language design issues surrounding user-defined coercions
which will not be addressed inyadetail. Asfar as fpe inference goes, it may be possi-
ble to allav arbitrary coercions to be declared atygwint in a program. Heever, if
usersupplied cowmersion functions are used, then the meaning of a program may not be
uniquely determined (see [Reynolds 80For this reason, most practical programming

-4 -

languages are likely to alloonly a restricted form of usetefined subtypes, such as
those associated with class and subclass declarations.reasonable and algorithmi-
cally interesting kind of subtyping is coercion between atomic types. Since the most rea-
sonable place to declarewaubtyping relationships seems to be whew rigpes are
declared, and type declarations generally introdueea@mic type names, this may be

the most useful case in practice. In addition, atomic subtyping restricts the type inference
problem in a way that allows optimization of the typing algoritiamally, if added to

ML, atomic subtyping would presexthe character of the language in that precisely the
same set of pure expressions would be typable. One implication is that programmers
would receve gproximately the same kind of error messages in ML with atomic subtyp-
ing as in ML without. Since the ML type chexkhas preen useful for detecting errors

ove mary years, the restrictions imposed by atomic coercions might be useful in prac-
tice.

Some basic facts about lambda calculus will éeveed in Section 2, follwed by a
discussion of type expressions, coercions sets and typing statements in Sedtien 3.
typing rules and soundness and completeness theorems are appear in Sektyan4.
eral typing algorithm is presented in Section 5, and a restricted, optingrsadrvdeel-
oped in Section 6. Some extensions and variations of the algorithms are discussed in
Section 7, with Section 8 concludinglnification and some variants, which are used in
the typing algorithms, are discussed in the appendix.

Preliminary versions of some of the results presented here were summarized in
[Mitchell 84a]. Later studies (based on [Mitchell 84a]) include gamtekar and Mitchell
88, Fuh and Mishra 88, Wand and O’Keefe 89].

2. Lambda Calculus and its Semantics

Lambda calculus will be used to demonstrate type inference with subtypirey.

terms of untyped lambda calculus are defined by the grammar
M ::=x | MN |Ax.M,

where x may be anvariable. Intuitvely, MN is the application of function M to gu-
ment N, andix.M is the function we obtain by treating M as a function o&though
programs also contain constantli 1, 2, + ad "if...then...else..”, it will be notation-
ally simpler to only consider pure lambda terms without constartise. main results of

-5-

this paper may be extended to expressions with constants without difficulty.

A lambda modekD, ., & is a ®t D together with binary operation”choice ele-
ment" ¢ [0 D, and elements K, & D satisfying certain algebraic condition3his is the
combinatory model definition of [Mer 82]; see also [Barendregt 84Me will not be
concerned with the specific properties of K and S, but it is worth pointing outtijed (
= dee for all d, €1D, and if d-e = d,-e for all elID, then&d;=&d,. Intuitively, these con-
ditions mean that-d represents the same function (on D) as d, and thatifid d, repre-
sent the same function, thed,= &d,. This means that forvery function f which is rep-
resented by someldD, we can use to choose "canonical" elemeat representing f.
The fact that d and-d represent the same function will be important for understanding

some properties of functional types.
Given a lambda model <D., & and ervironment; mapping variables to elements

of D, the meaning of a lambda term M is defined indeistiby
[x17 = nx

[MN]7=[M]n-[N]n

[xM]7n = &d, where & =[M] ne/x]

The existence of K and S ensure that thenaya exists a d as required in the definition
of [/\x.M]. The elements makes the meaning ofx.M independent of the specific
choice of d.Again, the reader is referred to [Barendregt 84, Meyer 82] for more informa-
tion. Onespecific fact releant to functional types is that if x is not free in M, then
/\X.MX]/]Z&[M]/7

A few facts about the reduction rules (operational semantics) of lambda calculus
will be used. The reader is referred to [Barendregt 84] for a comprebeipssentation.
We mnsider lambda terms modutecorversion

() XM = Ay.Jy/xX]M if yis not free in M

so that we can rename bouratiables. Thaeeduction rules are

(B (XMN - JINIXIM,

(M MMx - M ifxisnotfreein M,

where substitution of N for x in M, written [N/x]M, is defined with renaming of bound
variables to moid capture.If a term M is of the form of the left-hand side of ru@ ¢r

(n), then M is g3 or p-redex We say that MBreduces to N in one stepthere is a sub-
term P of M which is g#redex and N is the result of contracting this r&da M. The

term M preducesto N, written M —— _ N, if there is a sequence gfreductions leading

B
from M to N. The p-reduction relation is defined similarlyffhe combination of# and

n-reduction is callegB n-reductionand written M —— 0 N. A term which cannot be

ﬁ!
reduced is imormal form

The equational proof system for lambda calculus is obtained by taking all instances
of (a) and an equationalersion of f) as aioms, along with inference rules to neak a
congruence with respect to application and lambda abstracti@midda theoryis ary
set of equations containing)(and (8 and closed under the inference rules. A theory is
exensionalif it contains all instances of an equationatsion of 7). Conversionis the
least congruence relation containing reducibility[; denotess-corversion and F
denotesp n-corversion. ThusM:pj\l iff every theory contains M=N, and I\%N iff

evay extensional theory contains M=N.

One important model is the term mod@iven any lambda theoryrh, we let [M],
be the set of terms N with M=NTh. The term model <D., & for Th has equialence
classes of terms as elements,

D ={[M],| M an ntyped termy.
Application,., in term models is defined by
[M]-[N] = [MN]
and choice element defined by
£=[AX.Ay.xy],

where we omit the subscriph when it seems to be clear from cotiteSee[Barendregt
84, Meyer 82] for further discussion of term models.

-7-

3. Type Expressions, Coercions and Type Assignments

Although product types, lists, and other kinds of types are useful in programming
languages, function spaces seem to raise most of the significant typing issues related to
subtyping, short of the moreviolved problems that arise with record types (see [Jate-
gaonkar and Mitchell 88, Cardelli and Mitchell 89]yherefore,— will be the only type
connectve. We will adopt the notational caentions that

r, s t, ... denote type variables

p, g, 1, ... denote type expressions.
To be precise, the type expressions are defined by the grammar
= t|lo-rt

Intuitively, the functional types — r consists of the set of functions which ea&gu-

ments of typesto results of typa. We haveomitted type constants as a matter of nota-
tional corvenience, and to eliminate routine cases in indectroofs. Constantgdo not

alter the inference rules, and require only minor modifications to the supporting algo-
rithms gven in the appendix. The necessary modifications will be discussed briefly there.

For grammatical reasons, we will often use "coercion" as a synonym for subtyping.
We will use o7 to denote thedtct (or assumption) thatis a subtype of or, equivalently
from our point of viey, values of typeo may be coerced toalues of typer. If we think
of subtyping as an ordering, thes is monotonic in its second argument:

fodp then 1 - o0 17 - p.
However, — is antimonotonidn its first argument, i.e.
foOpthen p> 1001

rather than the werse inclusion. If eery value of typeo can be treated as a value of type

o, then @ery function which mapg to ralso mapssto r. For example, if f is a function

of one real argument, and integers are coercible to reals, then f should be applicable to all
integer \alues. Someédomain-theoretic" semantics of are carefully constructed so

that — is monotonic in both arguments, since this is helpful in solving domain equations
[Scott 76, Smyth and Plotkin 82However, antimonotonicity in the first argument is the

standard, categorical wieof function spaces [Lambek and Scott 86, Mac Lane 71], and

-8-

seems most natural when we think of containment as either substitutivity or the ability to

coerce.

Types will be interpreted as arbitrary sets of elements of lambda models, asg-in pre
ous studies such as [BaremgireCoppo and Dezani 83, Hingll&3a]. A type ewiron-
mentn for a model <D;, &> is amapping from type variables to subsets of D. The mean-
ing of a type expressiamin a type environmen is defined inductely by

[t]n = n@

[o- r]n ={d|0eO] o]n deO| 7]}

This is the "simple semantics” fes . Note that membership in— ris determined only

by the applicatie behavior of an element d, so that
difo-1n iff ed0fo- 7.

The simple semantics will be used because this seems to be a natural and repeesentati
interpretation of— ; other semantics for» are discussed in [Hindje83a, Hindley 83b,
MacQueen and Sethi 82, Mitchell 88, Scott 76].

A coerion setC is a ®t of subtype assertiorglr between typesA model <D,.,

£ and type environment satisfy a coercion set C if
[o170]#n foralloOrOC.

Generally speaking, coercion sets may include statemeatg likt)Jt, which are closer
to "domain equations" than the simple containmentsifikreal which are often gen
as typical examples of coercions. In fact, some coercion seis lto ype every pure
lambda term. For example, theawoercions

imply that t=t— t. Since gery solution of this equation forms a model of untyped lambda
calculus [Barendregt 84, Scott 76, Scott 80, Smyth and Plotkin 82],oukel v@xpect to
type every term with these tw coercions. Thidgs borne out in Lemma 2. In later sec-
tions of the paperwe will develop a typing algorithm which only allows coercions
between atomic types, and therefore only typgwessions which are typable without

coercions.

-9-

A type assignmerh is a finite set of basic typing statements of the form XAn
environmenty mapping type variables to subsets of D and ordinarigbles to elements
of D satisfies a type assignment A if

nx) O a]n forall x:ocOA.

If x is a variable,o a type expression and A a type assignment, thendpjg:the type
assignment gen by Alx:ad] = (A -- {x: i}) O {x: g} if we havex:r[JA, and A[xia = A [
{x: g} otherwise.

A typing statementlescribes the type of axmression, gien coercions between
types and the types oéwuables. Informallythe statement

CAUOM:o

means that if types may be coerced according to C, and dreables hee the types
assigned by A, then the term M has typeMore formally a nodel <D,., & and ewi-
ronmentn mapping term variables to elements of D and tygeables to subsets of D
satisfya typing M:o if

[MInO[o]n
A statement C,Ad M: g holds (or is satisfied) in a model ifveery environment which sat-
isfies C and A also satisfies &: A statement izalid if it holds in ezery model.

4. Rules for Type Inference

4.1. Overview of the rules

We will consider six type inference ruleslhe first three are essentially Cugy’
rules for functional types [Curry and Feys 58]. Thatnele, (coerce), formalizes the
property that if a term M has type and the typeois coercible to the type then M also
has typer. These four rules will be called ti@urry rules with coezions or CC for
short, and will provide the basis for the typing algorithm G in Section 6. As in [Gordon,
et. al. 79, Milner 78], rules for other applic&tigogramming language constructs may
be added.However, the main issues wolved in treating coercions seem adequately illus-

trated by the system we will consider.

-10 -

The Curry rules with coercions are not semantically complétee want semantic
completeness, then untyped terms thaiehhe same meaning must bevayi the same
types. Thesimplest way to achve tis is to add a fifth rule (equal) based on equality of
untyped terms However, we will see that with the "simple semantics" of, rule (equal)
still does not gie Lis €mantic completeness with respect to certain equational theories.
Therefore, we will also consider a sixth rule allowing ug-teduce terms of functional
types. Thesix typing rules defin€urry typing with containment and equality CCeq
Although (equal) is not a recuvsi inference rule, since no nontrivial lambda theory is
decidable, we could replace (equal) by a set of re@irsthematic rules based on the
usual axioms and inference rules for lambda theot&svever, there does not seem to
be aly advantage of doing so. As we will see later on, the sealid ¥ypings is undecid-

able.

4.2. Rules for deducing coercions

The rule (coerce) for coercing terms from one type to another will usestio+
sidiary rules for deducing consequences of coercion sets. The axiom and rules/for deri

ing coercions are

(ref) ol g,
o Ug 01
(arrow) o 7 [a; 3y

1

(trans) Z5F07 P

It is easy to verify the soundness of these rulesoerciono [p is provable fom C,
written
Crolp,

if o0 pcan be devied from formulas in C using (ref), (arrow) and (trangYe will write
Cl-C'if C | oldrfor every ol170C'. It is easy to shwe that|- is a transitre relation on

sets.

Lemma 1. If CC’ and C'F C”, then C- C”.

-11 -

4.3. Curry typing with coercions

Three well-knavn rules for assigning types to lambda terms [Curry and Feys 58,
Damas and Milner 82, Hind}e83a, Hindlg 83b] are

(var) C,A0x:c wheneer x:ollA,

@app) A UM e U N0

(abs) _EnS AN

These three rules are called the Curry typing rules (except tlyatrtheisually written
without coercion sets)The coercion rule for typing lambda terms, based on the rules for
deducing coercions, is

(coerce) CA Dé"[ﬂ‘g’l\ﬁ:}‘ otz

The four rules (ar), (app), (abs) and (coerce) are called the Curry rules with coercions, or
CC for short. We will write - C,A O M: o if this typing statement is pvable from the
CC rules. Thesoundness of the rules is left to the reader.

It is easy to shw that theCC rules are conseative ove the Curry rules in the sense
that if - O,A O M:g, then this typing statement may be y®® without using rule
(coerce). Br this reason, we will call a typing statement of the farA 00 M:oa Curry
typing Whenerer a term M has a Curry typing, M must B&ongly normalizingwhich
means that there is no infinite sequence of reductions starting from M (cf. H83@p.

In contrast, eery untyped lambda term may be assigned a type using coercions.

LEmmA 2. Let M be any untyped lambda term and let A be a type assignment

with x:t[JA for every variable x free in M. Let C be the aoen set C =

{tOt 1), (t—1t)0t}. Then- C, A0 M:t.
The proof is a straightforavd induction on the structure of terms, usint t t) in the
application case, and{t)[Jt for an abstractionA related translation of untyped terms
into typed terms with t=t> t is given in [Scott 80].

-12 -

A useful fact about the typing rules is that all free variables mustJea gipes, and
types gven to variables that do not appear free are inaiée

Lemma 3. If - C,AD0 M:g, and x occus free in M, then xrUA for somer.
Furthermoe, if x:700B for every xr[JA with x free in M, the- C,BIM: a.
The lemma is pneed by an sy induction on typing destions.

An interesting property of the Curry and coercion rules is the following generaliza-
tion of the Subject Reduction Theorem of [Curry angisFe8]. The lemma shows that
types, as defined yC, are closed undes,n-reduction (lit not cowversior). Thelemma
is interesting in itself, and will be used to dersome useful corollaries to the complete-
ness theorem.

LEMMA 4. (Subject Reduction Lemma)HC,A] M:o and M g,n-reduces to
N, then|- C,AO N:o

ProoF . Let us assume for the moment that the lemma holds in the special case that
M is a rede< and N is obtained by contracting MMe will first argue that the lemma as
stated follows from this special case, and then justify the assumption. Suppose M is a
term with a subterm P which isg@or n-redex. We can write M =C[P] for some conte
C[] with a single "hole".Let N be the result of contracting the red®in M. It is easy to
shav by induction on the structure of the coxit€[] that if C,A [0 M:ois provable, then
so is C,Al0 N:o. Thus wheneer M reduces to N by a single reduction step, the lemma
holds. In general, M may reduce to N by more than one reduction step. By induction on
the length of the reduction path, we canverdne lemma. It nev suffices to pree the
lemma in the special case that M is a redex.

We onsidern-reduction first. Assume that the statement C,AX.Mx : gis prov-
able for x not free in M. Wwish to shav that C,AJ M:ois provable. For some type,
there is a proof of C,Al Ax.Mx:7which ends in a use of rule (abs) and such thatrCl
o. Since the proof of C,AJ Ax.Mx:rends in a use of rule (abs), the typaust be of the

formz;, — 7,. Furthermore, we must kia a poof of the antecedent of (abs),

C, Alxir)] O Mx: 7,
It follows that for some type with C- p U r.,, there is a proof of

C, Alxir;] O Mx:p

-13-

that ends in a use of rule (app). Hence, for somedyfie statements
C, Axig] UMiv—p
and

C, Alxir,] Oxiv

are both preable.
Since the typing C, ADx;] U Xiv is proveble, it is easy to gue that G- 7, U v.
Thus, by (arrow),
Crv-plUrn -1,
and so by rule (trans)
Cruv-plo
From this, we may use Lemma 3 to conclude that there is a proof af ®1As.

The remaining case fgreduction. Assum#éhat C,Al0 (AX.M) N: ois provable, for
some terms M and N. Mish to conclude that C,Al [N/X]M: ois provable. Theres
some typer with C|- 7 0 p such that C,AJ (Ax.M) N: r has a proof that ends in a use of
rule (app). Thus for some typewe haveproofs of

CAOMXM:p -1
and
C,AON: p.

A straightforward induction on the structure of M st®that if C,A[xp] 0 M:vand C,A
[0 N: p are pre@able then so is C,Al [N/x]M: v. This implies that C,A0 [N/x] M: g is
derivable, and finishes the proof of the lemma.

4.4. Curry typing with coercions and equality

As mentioned earliethe CC rules are not semantically complet&his follows
from the fact that without coercioryjpotheses, only the Curry typing rules apaiyd
these are not semantically complekéore specificallya tterm M can hae a Qirry typing
only if there is no infinite sequence of reductions from M (cf. [Hyn@®@a]). Therefore,
although the expression

-14 -

(AXAYY) ((AX.XX) (AX.XX)),

is semantically equally tay.y, we cannot type this term since the subtemx.Xx)(AX.xx)
may be reduced infinitely mgtimes. Moreprecisely the typing statement

0,0 O (AXAyy) (AX.XX) (AX.xX)):t—t

is semantically valid, but cannot be ped using theCC typing rules. Another way to
shav that theCC rules are not semantically complete is to compare Theorem 5, which
shavs that the valid typing statements are undecidable, against Theorems 13 and 14,

which imply that the consequences of @€ rules are decidable.

We will give equal terms the same types by adopting the rule

(equal) CA EMon:M=N

If we are interested in deducing typings that hold in all models, then wgagseersion

for = in (equal). ® consider only extensional models, we would yBe-cornversion
instead. Inboth of these cases, tRE rules together with (equal) are semantically com-
plete. If we wish to consider the typing statements that hold in all models of some lambda
theoryTh, then we would us&h for equality in (equal).

For certain lambda theoriesyen CC+(equal) may not be semantically complete.
The reason is that in the "simple semantics“of a ttrm M has a functional type— r
iff AX.Mx has typeo — 1. This implies that the rule

(eta) SOAMMWMETZ T x not free in M

is sound.However, the set of typing statements dable usingCC+(equal) fromTh may

not be closed under rule (etdjor example, if we assume that kx=x for some constant k,
then we can pre Ax.kx:t»t. However, we cannot pree kt -t without rule (eta), as
explained at the end of this paragraphherefore, we will adopt (eta) as an additional
inference rule. It is worth remarking that the need for rule (eta) stems only from the
choice of simple semantics fes , and is not related to the presence of coerciorise
reason we cannot pre kt -t without (eta) is thaCC+(equal) are sound for the F-
semantics of—, discussed in [Hindle 83a, Hindlg 83b], while kx=x does not imply

kit -t in the F-semantics. It is worth pointing out that although tkesrele is stated

-15 -

using a constant symbol k, this is for notational simplicity .ofilye same reasoning

applies if we replace the constant k with the closed t@rmx)(Ax.xx).

The CC rules with (equal) and (eta) will be called tGerry rules with coerions

and equality and abbreiated CC_ . We will write \—eq C,A O M: o if the typing state-

ment is preable using theCCeq rgles, with g-corversion in rule (equal).Similarly, if
C,A 0 M:cois provable from CCeq using an equational theofiyh, we will write Th \—eq
C,A O M:o. It is dear that ifTh is closed unden-corversion, then rule (eta) is not
needed. W will also see that ifTh is the theory of3-corversion, then (eta) is superflu-

ous.

Since we hee introduced undecidable equational reasoning into the typing rules, it
seems wrthwhile to point out that the set of semantically valid typing statements is
undecidable.

THEOREM 5. The set of valid typing statements of the form C,M:t, with

C=0 and A={x:t}, is not recursive.

ProoF . This theorem follows from the classical undecidability results in lambda
calculus, which imply that for gnvariable x, the set of terms M such that I>§J><=is
undecidable [Barendregt 84Fpecifically if [1,{x:t} OM:t is valid, then this typing state-
ment must hold in the term model fBicorversion, with type t assigned to the singleton
set containing only the eqaience class [x] of x. Therefore, the typing statement
O {x:t} OM:t is valid iff M = pX.

If we replace (eta) by a more general proof step, then we can generalize the Equality
Postponement Lemma for Curry typing [Hingl&3a] to shev that in ary typing
derivation, all uses of (equal) and (eta) may be "postponed” until the end of the proof.
One application of this will be to siwdhat rule (eta) is unnecessaryliis g-corversion;
some other applications will be discussed at the end of this seétionnsound "infer

ence rule" that will facilitate proof-theoretic analysis is

(eta) eABME=F ™ — N

which includes (eta) as a special cagée will say thatn-reduction passes through Th
M —— " N and Th~ N=P imply that there exists a term Q with|- M=Q and Q —— 0
P. It follows from Corollary 15.1.6 of [Barendregt 84] thateduction passes through
the theory ofgacorversion. We mow have the following useful but rather elaborate

-16 -

lemma.

LeEmmA 6. (Equality and Eta Postponement) Suppm\—eq C,A0M:gand
A, is a derivation of this typing statement using Th. Theretisea cerivation
A, of the same typing statement, possibly using (etamith the following
properties.

(i) A, has the same number of occurrences of each typing rdle, asovided we
consider (etg) ., an acceptable replacement for (eta)

(if) All CC rules appear before yoaccurrences of (equal) or (eta)Ay.
If n-reduction passes through, then wemay choos@,, so that, in addition,

(iii) all occurrences of (equal) appear beforg ases of (etg), ., .
If (eta) does not occur in the degtion A;, then from (i) and the transitivity of equality
we may coalesce all uses of (equalpininto one. Similarly, when (iii) applies, we may
assume), contains at most one occurrence of (equal) followed by at most one use of
(eta)(rick'

It is important to emphasize that (gfa) is merely a technical device for analyzing
typing dervations, and isiota sound typing rule with respect to arbitrary equational the-
ories. Thereforegare must be taken in applying this lemma.

Proor . The proof is a straightforavrd induction on the destion of C,A] M:g,
and some details will be left to the readdrwe havea use of (equal) precedingaeC
rule, then it is easy to produce an valid datiron with the order of the tavrules reersed.
For example, ifA1 proves the following sequence of typings

CAOM:o-r
CAON:g-T1 by (equal) using M=N
C,AONP:r by (app) using C,A1P.g,

then we can replace this sequence by

-17 -

CAOM:o-Tr
CAOMP:r by (app) using C,Al P:o
C,AONP:r by (equal) using MP=NP

The other cases are similar.

If we have a se of rule (eta) followed by srCC rule, then we may also switch the
order of rules, provided we alo(eta) ., in place of (eta). The argument is similar to
that for (equal). This shows that we may transféininto a dewation A, satisfying con-
ditions (i) and (ii) of the lemma.

If n-reduction passes throughh, then we may further simplify the sequence of
(eta);, and (equal) rules following th€C rules inA,. More specificallyif (eta) ., is
followed by (equal) to pnee a quence of typing statements of the form

CAOM:io—r
CAON:o-T by (eta) using M—— . N
CAOPo-T by (equal)Thi- N=P

then the assumption thatreduction passes througfh is precisely what we need to
reverse the order of the twules.

An interesting corollary of Lemma 4 and Lemma 6 is that for typing with respect to
the theory of3-corversion, rule (eta) is unnecessary.

COROLLARY 7. If \—eq C,A 0 M:g, then this typing statement may beved
from the theory oB-conversion without using rule (eta).

A similar corollary is preed in [Hindley 83a], following the Subject Reduction
Theorem, using similar facts about reduction.

PROOF . Supposq—eq C,A 00 M:o. Since p-reduction passes throughconversion,
Lemma 6 implies that thereist terms N and P such thaiC,A O N:o by theCC rules

only, N =5 Paxd P - 0 M. Usingwell-known properties o3 and n-reduction we will

shav that there is a term V such that N—»M V and V :/3’ M. This will allow us D

-18 -

apply the subject reduction lemma.

By the Chruch-Rosser property gorversion, there is some term U with N—>ﬁ

Uand P 5 U. ThusP may be reduced to M byj), or to U by). Since(p) and (7)
commute (Lemma 3.3.8 of [Barendregt 84]), there is some term V with%v and U

-, V. Putting the reduction paths togethee dotain N —— 7 Vand M — .V, as

B, B

desired.

By the subject reduction lemma for t@&€ rules, we may concludge C,A U V.o

Therefore, from M f;\/, we rave\—eqC,A [0 M: owithout using (eta).

4.5. Semantic completeness

We will now prove the semantic completeness theoremG@r, . Since (coerce) is

q
unnecessary for pving Curry typings, our theorem implies that Cusryules, aug-
mented with (equal) and (eta), are complete for Curry typing with respecy teaa-
tional theory In addition, by Corollary 7, Hind§gs completeness theorem for Curry typ-

ing with £ or B,n-corversion as equalifybut without rule (eta), also follows.

THEOREM 8. Let Th be any lambda theoryhere is a kmbda modeD for Th
sud that Th- C,A 0 M: o iff the typing statement C,B M: o holds in eery
environment foD.
In contrast to the theorem stated earlier in [Mitchell 84a], this completeness theorem
applies to typing with unrestricted coercions. Hevethe proof is quite similar.

Proor . The first step is to construct a modefor Th. Let <D,., & be he term
model forTh, so hat D is the collection of all equalence classes [M], of terms modulo
Th. As mentioned earligiwe will write [M] for the equialence class [M},. A standard
property of term models [Barendregt 84, Meyer 82] is thatisfary environment, and S
is a substitution such tha{x) = [Sx] for every term variable x, then

[M]n=[sMmI.
It turns out that we will only need to consider ongimment in the proof, namely an
environment mapping each term variable x to its\eggmce class.

Let Gy, Ag L Mg, be ary typing statement. It is easy to verify that the typing rules

are sound, so that ith \—eq CoAg U Ma,, then this statement must hold ivesy envi-

ronment for <D, &>. Thereforewe will assume that GAj U Mg, is not pravable.

-19-

The rest of the proof will be geted to showing that there is somevieonments satisfy-
ing Cyand A but with [My 17 B[o,] 7. We will do this by choosing an infinite type
assignment A containing fand using the proof system to define avirenments; from
A.

Let A be ay set of basic typing statementsoxwith no x appearing twice in A,
such that

(i) Ag DA

(ii) for every type g, there are infinitely manvariables x with xo{IA.

The reason for having infinitely mawariables of each type is so thatey any term M
and typeos, we @an find some xTJA with x not free in M. We will extend our notation
slightly and writeThH-C,A O M: g'if Th—eqC,AlDM:afor some finite subset fof A. Let
n be an environment which maps each term variable x to itvaepte class [x], and
each type variable t to the subset of Zegiby

n(®) = {M]| Th-,,CADM:}.

We will see thaty satisfies 4 and G, and that the rules are complete, by showing that
* M O[d]n iff ThiqCAOM: 0.

The argument will proceed by induction on the structure of type expressions.

For a type variable t, the equalence is a trivial consequence of the definitiéior
ary functional types— 1, suppose that the statement

CAOM:o-r1

is provable from Th. We nust shev that [M] belongs td o— 7] n. For ary term N, if
[N] D[o] n, then by the induocte hypothesis there is a proof of C[AN:g, and so we can
prove GA O MN:r by rule (app). Therefore, by the indwetihypothesis, [MNTJ[7] .
Thus, by definition of o— r] 7, we have[M] O[o— 7] 7.

For the converse, assume that [MJI[o—] 5. For ary term N, if C AO N:gis
provable, then [N[J[o] 1 by the inductie hypothesis, and so

[M]-[N] = [MN] Of]~

Thus Th - C,A O MN:r, agan by the induction ypothesis. Inparticular if x is any

-20-

variable with xol{1A, we can use this argument to shibat
CAOMX: .

and so, by rule (abs),
Th\—eqC,A O AX.MX 0 - T

By the construction of A, we may choose x to bewaable not free in M. Therefore, we
may use rule (eta) to deeiTh\—eqC,A [O0M:o — 1, which finishes the proof of (*).

It is now easy to see that satisfies A and G,. If x:olIA, then xoUA and so

[x]7=x10[o]n

by (*). If o0z O C,, then for eery [M] O[o] , we have Th eq CoAOM:0 by (¥).
Therefore, by rule (coerce), weveaTht-,, Co, AOM: 7and so IMO[] 5. Thus# satis-
fies G, Finally, using (*) again, we hae [M] i [ao] n, and so the unpr@ble typing
statement A, LI My:g, does not hold in environment This proves the theorem.

The completeness theorem ha® timportant implications folCC typing: CC is
semantically complete for terms in normal form, and the three containment rules are com-
plete for deducing consequences of coercion sets.

CoRoOLLARY 9. If M is in g-normal form and C,A] M:¢ holds in all lambda
models, thep C,AO M: o

Proor. Suppose C,Al M:oholds in all models.Then by Corollary ﬂ,—eqC,A 0
M: o without using rule (eta)By the equality postponement lemma, there is some N
which is gequivaent to M withi- C,A O N:a. But since M is ingnormal form, N must
reduce to M. Therefore, by the subject reduction lemma, ivislkbat- C,A 0 M: o

CoroLLARY 10. If g0t holds in every model and ¥nonment satisfying coer

cionsetC,theng ol r.

Proor . Note that if C semantically implies(] r, then C,{xg} [x:7 must be walid
for ary variable x. Since x is in normal form, this typing statement isvebte using rule
(var), (app), (abs) and (coerce). But then it is easy to see that the only applicable rules are
(var) and (coerce). ThusfCo O t.

The proofs of both corollaries rely on equality postponement and the subject reduc-

tion lemma. Although rule (arrow) is not used in the proof of Theorem 8, it is used

-21 -

critically in the proof of subject reduction.

5. Typing Algorithm with Unrestricted Coercions

5.1. Introduction

Since semantic typing characterized cbgzeq and ay nontrivial lambda theory is
undecidable, it is impossible to build a practical type checker bas@d:g)@ Howeve,
CC forms a natural subset of tItiECeq system, and we will see that there is dicient
algorithm forCC typing. Whileit might seem tha€C+(eta) would also provide a rea-
sonable basis for practical type checking, recall that by Lemma 4, the consequences of
the CC rules are closed under rule (eta). Therefore, we will study algorithmic properties
of CC typing in the remainder of the papeection 5 will be concerned with unrestricted
CC typing. InSection 6 we will consider a restriction©€ typing in which only atomic

containment hypotheses are allowed.

One plausible approach to type inference with subtyping might be ‘aera term
M and coercion set C as input to a typing algorithm, and then compute a description of
the set of all A an@r such that-C,ALM: 0. Howevae, this approach does not seem fruit-
ful. The main problem is that there does not seem to lyesaccinct, understandable
description of all suitable types and type assignmelfitevery term had a semantically
minimal type, in each context, then this would be a natural way of characterizing all other
types. Havever, typable terms do not ki@ haveminimal types in each conte To give a
simple example, let us suppose weeh@ypression and type constants; the same phe-
nomenon occurs without this assumption, but slightly lessoably. Now suppose the
only coercion igntUreal, and that function constant f has typeal — bool. In this con-

text, the expression
AX.K X (fX),

where K3lu.Av.u returns its first argument and discards its second, has itypesnt,
int - real, and real — real. It is easy to see thadht — int is contained innt — real, but
from Corollary 10 we can see that, neitidr— int [] real — real, nor the reerse con-
tainment, is semanticallyalid. Thereforethere is no semantically minimal type to use

-22 -

as a representation of all other typdsis suggests that the seemingly natural approach

of leaving the set of coercionsdit is impractical. Instead, our type inference algorithm

will compute a minimal set of coercions necessary to typ&ea ¢grm. Althoughthere

iS a certain computational cost associated with this, since sets of coercions must be

manipulated, there is an added generality which provides some insight into typing.

The general typing algorithm presented in this section is a straightforward general-
ization of the special case presented in [Mitchell 84a] to arbitrary coercionAlgts.
rithm GA of this paperwnhich only allavs a restricted form of coercion set, corresponds
to the original Algorithm TYPE of [Mitchell 84a].

5.2. Substitutions, instances and most general typings

A useful property of Curry typing is that the pable typings are closed under sub-
stitution. CC typings are not only closed under substitution, but also a more general rela-
tion involving entailment of coercion sets. After a brief discussion of substitution, we
will define "instance" and shothat every instance of a pr@ble typing is provable. The
correctness proof for algorithm G will later establish thvatyeterm has a "most general

typing" with all alternatre typings as instances.

A substitutionis a function from type variables to type expressions. Wiite
[0y,...0fty,...t] for the substitution mappingtb o, for 1<i < n, and mappingvery
other type variable to itselflf ois a type expression and S is a substitution, theis S
the type &pression obtained by replacing each variabledawith S(t). The composition
SeT of substitutions S and T is defined by ($o= YT o).

A substitution S applied to a type assignment A is the assignment SA with
SA={x:So|xolA}.

Similarly, the application SC of substitution S to coercion set C is defined to be the fol-

lowing set of subtype assertions.

SC ={So0 Sr| o7 OC }.

An instance of a typing statement may be obtained by applying a substitution to all
of its type expressions, and possibly choosing a "stronger" coercion hypothesis or type
assignment. Mor@recisely a typing statement C’;Al] M:¢' is an instance oC,A [J
M: gif there exists a substitution S such that

-23-

C'HSC, AOSA, and ¢ = So.

In this case we say C" Al M:¢ is an instance o€,A [0 M: o by substitutiorS. Note

that coercion sets are compared using the entailment relation, rather than syntactically
One important fact about instances is thatyeinstance of a pr@ble typing statement is
provable.

Lemma 11. Suppose C' ALl M:¢d' is an instance of C Al M:a. If - C, AL
M: g, then the instance C’,A1 M: ¢ is provable also.

ProoF. By Lemmas 1 and 3, it suffices to shthat if- C,A O M: g, then- SC,SA
0 M:So for ary substitution S. An easy induction on coercion proofsashthat if C-
ollr, then SG- SotJSr. Using this fact for the (coerce) case, a straightforward induction
on the dewation of C,A0 M: g proves the lemma. The details are left to the reader.

A most @neal typing for termM is a provable typing statement which haseey
other prwable typing for M as an instancélore specificallyC,A [0 M:gis a most gen-
eral typing for M if- C,A O M: g and, wheneer - C',A' O M: g, the latter typing is an
instance of C,A] M:o. Consequentlyif C,A [0 M:cgis a most general typing for M, then
FC,A OM: g iff C,A OM:7 is an instance of C,A] M:o. Since the instance relation
is easily seen to be decidable, the decision problei@@ostyping is efectively reducible

to the problem of computing most general typings.

Without coercions, a most general Curry typing is uniqiee@ for the names of
type \ariables. Inaddition, since substitutions cannot decrease the sizepodssions,
evay most general Curry typing is a Curry typing of minimal length (when written out
symbolically). Havever, because coercion sets are compared using entailment, there may
be most gener&C typings of differing lengthsFor example, both

{stt, udv}, 0 OAxx:u—v and {ulv}, O OAXXU-V

are most generdlC typings for the identity function. The first is easily seen to be an
instance of the second (by the identity substitution), since

{sOt, udv} - ubv.

Corversely the second may be obtained as an instance of the first by substituting s for t.
This reduces(st to an nstance of the reflexivity axionis.

-24 -

5.3. Unification

A unifier is substitution which makes twexpressions syntactically equaMore
generally if E is a ®t of pairs of expressions, then substitutionn8iesk if So=Sr for
evay pair <g,r> [JE. Sincesuch a set of pairs may beyeeded as set of equations to be
solved, we often write the pairsog> [E in the formo=r. As in ML typing [Milner 78],
we will use unification to combine typing statements aboutgubssions. Althougive
will see that the unification problemsvoived in Algorithm G hae vey simple solu-
tions, more difficult unification problems will occur in the specialized versions of the
algorithm considered in later sections of the pajgerce we will need a general unifica-
tion algorithm gentually, it makes sense to start right @fith one here.

The unification algorithm computes most general unifying substitutions, where we
say substitution $ moe ¢enerl thanR, and write & R, if there is a substitution T
with R = TeS.

LEMMA 12.

[Robinson 65] Let E be any set of equations between ggressions. Ther
is an algorithmuNIFY sud that if E is unifiable then UNIFY(E) computes a
most general unifierFurthermoe, if E is not unifiable thenuNIFY(E) fails.

If A, and A, are type assignments, then unification can be used to find a most gen-
eral substitution S such that JASA, is a well-formed type assignmenGenerally
speaking, the union of twtype assignments is a type assignment precisely when both
give each \ariable in common the same type. Therefore, to find a most general S with
SA,USA, well-formed, we simply unify the set of all equatiamsr such that xsUA and
x:r0B.

To facilitate comparisons between various containment theories, a proof of Lemma
12 is sketched in the Appendix. There are efficierdn dnear implementations of unifi-
cation [Paterson and &yman 78]. A parallel lower bound isvgh in [Dwork, Kanellakis
and Mitchell 84].

5.4. Algorithm G for most general typings

Given any term M, the algorithm G(M) produces a pable typing C,ACIM: o for
M. The algorithm is written bel in an gplicative, pattern-matching style. There are
three mutually recuréeé dauses, one for each possible form of lambda tehmthe

-5 -

abstraction clause, we use A -- gkto denote the set difference, i.e., the type assign-
ment defined by removing &from A.

G(x) ={st}, {x:s} Ox:t

G(MN) =
let C;, A; OM:o=G(M)
Co A, ON:r=G(N),
with type variables renamed to be disjoint from those in G(M)
S = WINIFY({ a=8| x:alA, and xpUOA} O{o=1-1})
where t is a fresh type variable
in
SC,USGU{St0u}, SA,LSA, L MN:u
where u is a fresh type variable

G(x.M) =
let C, A M: 7= G(M)
in if x: olJA for someo
then Ql{o— u}, (A -- {X: g}) O Ax.M:u
else Ql{s — u}, A O AX.M:u,

where s, u are fresh type variables

The algorithm could concably fail in the application case if the call teNIFy
fails. Howeve, we will see that this does not happeh.is not to hard to pne that if
G(M) succeeds, then it produces avalie typing for M.

THEOREM13. If G(M) = C,AU M:g, then- C, A0 M: 0.
It follows, by Lemma 11, thatvery instance of G(M) is a pwable typing for M. Con-
versely, every provable typing for M is an instance of G(M).

THEOREM 14. Supposer C,A 0 M:o. Then G(M) succeeds and produces a
typing with C,Al] M: g as an instance.
Both theorems are pred below.

From Lemma 2, we kmo that every term has a pra@ble CC typing. Therefore,
Theorem 14 implies G(M) afays succeeds.

-26-

CoRoLLARY 15. For every untyped lambda term M, Algorithm G(M) succeeds

in finding a most general typing for M.

In contrast to the typing algorithmwvgn in [Milner 78], Algorithm G takes a term,
but no type assignment, as inputhis style of typing algorithm for lambda terms seems
to hare aiginated with [Levant 83a]. The advantage of Algorithm Gvep Milner’s
Algorithm W is that the algorithm and the correctness condition are simpler to Istate.
addition, since the type of a lambda term is determined withgatdréo context, this
style of algorithm facilitates the extension to Nét declarations, as presented in Section
7. Thedisadwantage is that in practice, Algorithm G may compute rathege laype
assignments which must be unified. In contrast, Min@tgorithm W may be imple-
mented so that entire type assignments need not be unified or returned as results of func-
tion calls. However, it is not very difficult to use Algorithm G to @elop an algorithm
for CC typing in the style of Milnes Algorithm W.

Proor oF THEOREM 13. Theproof is by induction on the structure of terms. It is
easy to see that G(x) isnays a well-typing, so we nwe a to goplication and abstrac-
tion.

Consider G(MN). By the induate assumption, both

GM) = C, A, OM:o

G(N) = G, A, ON:7

are provable. (We will assume that the typexiables in G(N) hee keen renamed toveid
duplicating type variables in G(M), as specified in Algorithm Gijice S unifies =4 |
x:alA; and xpUAL}, the set SALISA, is a well-formed type assignment. By Lemma
11, it follows that the tw typings

SC,0SG,0{St0u}, SA,0ISA, 0 M:So

SC,USG,U{Stlu}, SA;0SA, O N:Sr
are both preable. SinceS wifiesoandr—t, we hae
SC,0SC,L{St0u}, SA,LSA, I MN:St

by rule (app), and hence G(MN) is pable using (coerce).

-27-

The third case is an abstractisaM. By the inductve assumption,
G(M) = C,AOM:r
is provable. If x:olJA for some typer, then A = (A -- {X:a})[x: d] and so by rule (abs) we
may dewe
C,(A--{xia) OxM:o- 1.

If x does not occur in A, then by Lemma 3, the typing C, A[X:iM: 7 is provable, for
ary type variable t, and so

CAUMXMt->T

follows by rule (abs).In either case, augmenting the coercion set with tClu or
s— tlu preseres proability (by Lemma 11), and so by rule (coerce) we maywerbat
AX.M has type u, as desired. This yes the theorem.

ProoF OF THEOREM 14. An easy induction on the structure of terms shows that if
G(M) succeeds, then it produces a typing C,M: g in which A assigns a type to X K
occurs free in M. This will be useful later in the proof. The main argumenpruceeds

by induction on the structure of terms.

For a variable x, suppose C,A O x:rz. Without loss of generalitywe may assume
the proof uses axiom (var) followed by rule (coercgnce x must appear in A, we let
be the type with »allA, and note that C must pre@ollz. Algorithm G returns the typing

G(x) = {sit}, {x:s} Ox:t.

To show that C,Al] x:ris an instance of G(x), let T be the substitutioy/g,t]. Itis easy
to check that

AOT{xs} and Tt=r.
Furthermore, since € T{s0t}, it follows that C,Al x:ris an instance of G(x).
Supposé- C, A MN:p. This typing must follav from provable typings

C,AOM:iyu—v

C,AON:u

by rules (app) and (coerce), where @Jp. By the inductve hypothesis, G(M) and G(N)
are most general typings for M and N. This means that these substitutions T and

-28-

T2 such that

CkT,Cp, AOTA, T,o=p—v,

CET,C, AOTA, Tyr=u

where G, C,, ec., are as in the application case of Algorithm G. Because G renames
variables, no type variables in,@&., [J N:7 appear in GA; U M:o. This allows us to
combine substitutions ;Tand T,. Anticipating the need for a substitution that hessa
properly on the fresh variables t and u introduced in Algorithm G, we let Tybmilsti-

tution such that

Ts =T,s if s gopears in the typing of M,
Ts =T,s if s gppears in the typing of N,
Tt=y,

Tu =p.
Without considering the effect of T on t or u, it is easy to see that

Cr TCl, ADTAl, To=pu—vy,

CF-TC, AOTA, Tr=y,

so that both instances are by the single substitutioByTLemma 3, the assignment A
must gve types to all free variables of M and N and, as noted eaaliegssignment pro-
duced by G alays contains exactly theaviables that occur free. Therefore, T must
unify {a=g| x:aUUA; and xpUA,}. In addition, since &=y — v=Tr— Tt, the substitu-
tion T unifieso=r—1t. SinceS is a nost general unifier for these equations, there is a
substitution V with

T =VoS.

This implies that C,AJ MN:v is an instance of SCISC,, SA;UUSA, I MN:St by V. It
remains to consider the fresh type variable u and coerCipn

-29-

Since S is a most general unifier for a set of equations not containing u, wé&dkno
= u. Snce we chose 0 = p, it follows that \i=p. We havealready seen that V(St) &
and so putting the pieces togethesegius Cl- V(St — u). This shows that

CkV[SC, O SC, I {St - u}],
which completes the proof that CIAMN: pis an instance of G(MN) by substitution V.

The final case to consider is an abstractioM. Suppose- C', A" [0 AX.M:p. This
must follov from a preable typing C',Alx: 4] O M:v by (abs) and (coerce), where-C’
u— vp. By the inductve hypothesis, C',A[xy] O M:vis an instance of

G(M)=CAOM:.
This means that there is a substitution S such that
CSC, Ax:y OSA and v=Sr.

Without loss of generality we may assume Sul x:o occurs in A, then & must bey,
and so C' A0 Ax.M:u— vis an instance of C,A--{x} [J Ax.M:o— 7 by substitution S.
In addition, since ¢ x— vp and Su =p, the typing C',A 0 AX.M:pis an instance of
G(Ax.M) by S.

If x does not occur in A, then we may further assume without loss of generality that
Ss =u, where s is the fresh type variable introduced in Algorithm G. It is easy to check
the definition and erify that C',A [0 AX.M:y— v must be an instance of CA
AX.M:s — 1 by substitution S. Furthermore, reasoning about coercions as, al®ayan
conclude C',A [0 AX.M:p is an instance of Gk.M) by substitution S. This pves the
theorem.

6. Typing with Atomic Coercions

6.1. Introduction

In this section, we will studC typing with atomic coercions andvgi an dgo-
rithm GA for finding the corresponding form of most general typi\g.atomic coecion
is a containmentlst between type variables, or atomic type names if we wergtéme
the syntax of typex@ressions to include constants. This class of containments is practi-
cally interesting, since mgrcommon coercions l&intCreal are atomic. It also seems

-30-

that, in light of Wand's treatment of labeled record types [Wand 87], the kind of subtyp-
ing that arises in "object-oriented" languages with class hierarchies may be characterized
by subtyping axioms about atomic type namé&be reader may wish to consult [Jate-
gaonkar and Mitchell 88], which is based on the present paper.

By concentrating on atomic types, we will eliminate coercions like
(r - s)0t,

which allov terms without Curry typings to bewvgn types. Infact, with atomic coer

cions, we will see thatvery pure term that is typable with coercions is also typable with-
out. Thismeans that when we extend Algorithm GA to MLdeclarations, we will hae

an algorithm for typing with subtypes that rejects precisely the same pure terms (terms
without constants) as the ML type checkOf course, this does not mean that atomic
coercions hee ro efect; most typable terms will 2@ nore typings when coercions are
considered. & example, the application fx of f to x has typing

{intOreal}, {f: real — real, x:int} [fx:real,

while the application of a real function to an gee argument would not be typable with-
out coercions.

Another interest in atomic coercions stems from the normalization theorem for typ-
ing dervations gwen in Section 6.2. This theorem (Lemma 20) shows that wiere
typing statement C,A] M: o with only atomic coercions is pveble, there is a typing
derivation in which (coerce) is only applied tanables. Thisneans that coercions only
enter into the base case of the typing algorithm, and so we may optimize the remaining
cases. Iraddition, the restriction to atomic coercions allows various optimizations in the
representation of coercion sets, and related algorithms (which we will not go into in much
detail). Beforeanalyzing the structure of typing daiions with atomic coercions, we
will discuss some useful properties of entailment with atomic coercions.

6.2. Atomic coercions and "matching"

An atomic coercion set is a ®t of coercions(st between type variables. Although
the phrase is slightly inaccurate, we will call a typing statement [C¥:o with C
atomic amatomic typing statement

-31-

When coercion sets only contain atomic coercions, it is easy to see [that]lC
only if these tw expressions hze essentially the same "shape,” or pattern of type con-
structors (in our casep's). To be nore precise, we define tineatchingrelation on type
expressions by

() if ois a type variable, themmatcheg iff ris a type variable

(i) if o=0, - 0,, thenomatchex iff =7, —» 7, and g, matches; (i=1, 2).
It is easy to verify that matching is an eglence relation on types. In addition wevha

LemmA 16. If C|- o U 7, where C is an domic coercion set, themmatches.
This is easily preed by induction on the derétion of o [0 7 from C.

The following lemma about the structure of proofs from atomic coercion sets will be
useful for analyzing derétions of typing statements.

LEMMA 17. Let oand 7 be type gpressions witv = 0, — o, andr= 7, —
7, Then G- ol 7iff Cl- 7, U gy and G- o, U 7,

ProoF . One direction is a direct consequence of rule ¢@rd C|- 7, U o, and C
- o, 1z, then G- o 7. Itremains to pree the conerse.

We dhow that if Ci- oLl rfor ary oandrof the formo= 0, —» g,andr=1, - 1,
then there is a proof af [7 from C that ends with an application of rule (aryo We
argue by induction on the length of the proofaof] 7 from C. If the proof is one step,
then this is either an application of rule (avJpin which case the lemma \dbusly
holds, or an instance of (reflf candrare identical, then we can also pedoth o, U 7,
ando, U 7, by (ref). This lets us pre oI 7by (arrow).

For the inductve gep, assume that we\ea poof whose final step is a use of rule
(trans) from antecedentsl] p andp [J r. By Lemma 16, we knm that p has the fornp
= p; — P, Since the proofs ot [J p and p [J 7 are shorterwe may assume we ke
proofs of these inclusions ending in applications of rule \{@rrd@hus

Cr pyUoy, o,Up, oy Upy, po UL,
By rule (trans), we hee C- 7, U g, and G- o, U 7,,, which proves the lemma.

Given any coercionotlr between matching typegressionsrand r, there is a min-
imal atomic coercion set that implieslz.

-32-

LEmmA 18. Let o and r be matching typexpressions. Theris an domic
coerion set C =ATOMIC(ol17) with C- ofdr and sub that if C’ is any atomic
coerion set with C- olJr, then C'|- C. Furthermoe, C nay be calculated
from a graph representation ofand rin linear time.

Proor . It follows from Lemma 17 that we can compuatMIC(oll7) recursvely

ATOMIC(SIt) = { st }

ATOMIC (0, — 0,01, — 1,) = ATOMIC(7,(0;) O ATOMIC(0,07,)

This can be implemented efficiently using a graph representation of type expressions sim-
ply by marking "positte" and "negative' occurrences of variables mandz. Since com-

paring corresponding posié and n@dive positions is entirely straightforward, this can

be programmed to run in linear time. (The notion of pasithd ngative accurrences is
commonly used in logic. Putting an expression on the right of-apreseres sign,

while putting an expression on the left@eses the signs of all subexpressions.)

Using much the same idea, it is also easy to decide whether an atomic coercion set C
implies of7.

LemmA 19. The pedicate G- 7 [0 ois decidable in linear timegiven a sub-

routine for the transitive closarof C
The proof is straightforward using Lemma 17. Since entailment from atomic coercion
sets is easily reduced to transstidosure, a reasonable representation for atomic coercion
sets might be directed graphs or adjaganatrices. Thisvould allow transitve dosure,
and hence entailment, to be computed by standard means [Aho, Hopcroft and Ullman].

6.3. A normalization theorem for typing derivations

In general, a typing destion may apply rule (coerce) to a term ofydorm. For
this reason, Algorithm G for unrestrict€&lC typing, includes coercions irnve&y case.
However, with atomic coercions, we can stdhat every provable typing can be trans-
formed into a typing devéation in which coercions are only applied tariables. This
will be used to simplify Algorithm GA.

-33-

LemmA 20. For every povable atomic typing statement, CLAM: o, there is
a proof in whid rule (coece) is only used immediately after the typing axiom
(var).
The proof of this lemma appears belo
A simple example shes that Lemma 20 fails for unrestricted coercio@ansider
ary derivation of the typing

{(s-9s)dt}, O OAX.X: 1.

Since we must use (abs) togia ype toAx.x, the typing deviation must use a statement
of the form

{(s—s)dt}, O OMXX:0-T,

possibly followed by (coerce). Since (coerce) is needed touethe — from the type
of AX.X, we must use (coerce) after (abs). Thus the lemma fails.

Another class of counteramples to Lemma 20 is illustrated by the typing state-
ment

{(s-s)d(t-1t)}, y:sOAXY: tt,

where although the coercion set is not atomic, the only coercions assumed are between
matching type xpressions. Thigyping statement may be desdl by first proving
AX.y:S— s, and then using (coercé)e annot apply (coerce) to the variable y earlier in

the denvation since 8t is not provable from the coercionypothesis. Hwever, for typ-

ing with coercions between matching type expressions, we can strengthen the coercion
inference rules so that Lemma 20 holds. Specificakyffices to add the inference rule

] o-1 U0 - I
(arrow-irverse) g, g, iz,

Although this rule is not sound without further restrictions on our semantics, it does seem
fairly plausible. In addition, the algorithmic aspects of typing with coercions between
matching type expressions and rule (aroverse) seem quite similar to typing with
atomic coercions.

ProoF oFLEMMA 20. Notethat (var) is the only axiom scheme and gereproof is
essentially a tree with an instance of (var) at each M#&fthink of each node as labeled
by both the statement pad at hat node and the final rule used in that prd@iven a

-34 -

proof of a statement C,A M: g, define thedegreeof the proof to be the number of pairs
of internal tree nodesas > such that there is a path from a leaf througio 8, nodea is
labeled with a rule different from (coerce), and ngde labeled with rule (coerceNote
thata andB do not need to be adjacenntuitively, the degree ges us a neasure of he
far the occurrences of (coerce) are from thedsaWe show by induction on the dgee
of a proof that eery provable statement has a proof of degree zero.

We reed a preliminary fact about proofs for the case in which a node labeled
(coerce) follows a node labeled (abs). Suppose we aer gipoof of C,A[x:a] O M: 1
and that G- p 0 a. Then we can produce a proof of C,Adk{] M:7 by replacing eery
leaf labeled with the statement C,Adk:[] x:o by a short proof of this statementgloe
ning with C,A[x;0] O x:p and then using (coercelNote that the proof we produce has the

same degree as the proof we start with.

It is nov a gmple matter to pree by induction on the degree of proofs thaerg
provable statement has a proof ofglee zero. The three possibilities to consider are that
rule (coerce) may foll a use of rule (app), (abs) or another use of rule (coeltaye
have a ode labeled (coerce) follong another node labeled (coerce), then we can col-
lapse these tav proof steps into one using rule (trans) for inclusioB® it remains to
consider (abs) and (app).

For the (app) case, suppose GJAVIN: r follows from C,AL0 M: ¢ — rand C,Al
N:o by rule (app) and then C,A MN:p follows by (coerce). WhaveC|- rlp. There-
fore, by rule (arrow),

Cr(oc—- »l0(o— p).

So we can deve CA 0 M:g — pfrom C,A0 M:o — by rule (coerce) and then pro-
ceed to use rule (app) to dexiCA O MN: p. This reduces the degree of the proof by
one.

The final case is a node labeled (coerce) following a node labeled (abs). Suppose the

proof has a path with nodes labeled

-35-
CAlx:g)] U Mig,
CAOMXM:g; — g, (byrule abs)

CADOMXM:p; — p, (byrule coerce),

where we hee wlsed Lemma 16 to assume without loss of generality that the final type
has the fornp, — p,.

We would like to move ule (coerce) abe (@bs). Notehat since
Cl o - o,Up - p,

we hae Ci p, U gy and C|- g, U p; by Lemma 17. By the preliminary fact noted
abore, there is a proof of C, Aly;] U M:o, with the same degree as the proof of
C,Alx:g;] O M:a,. Now, goplying rule coerce, we can p@CA[x:p;] I M:p, and so
by rule (abs) we hee CA U ix.M:p; — p,. This reduces the degree of the proof by
one and finishes the proof of the lemma.

6.4. Substitutions, instances and most general atomic typings

We will apply substitutions to atomic coercion sets by computing the least atomic
coercion set that implies the substitution instan&esubstitution Srespectscoercion set
C if, for every ofl7rin C, the substitution instances 8hd S match. IfS respects C, then

we define the action of S on C by

sc=0 ATOMIC(Sol]Sy).

oJrC

The instance relation on typings with atomic coercions is defined just as with unre-
stricted coercions, except that we interpret the application SC of substitution S-to coer
cion set C usingToMIC as abwe. More preciselya typing statement C’;ALI M:¢d' is an
atomic instance of ,A J M: gif there exists a substitution S respecting C such that

CkFSC, AUOSA, and ¢ = So

Note that by Lemma 18,.S|- SC, and so by Lemma 1yg’ with C' |- SC dso satis-
fies C' SC. Thereforeit follows from Lemma 11 thatvery atomic instance of a pve

able atomic typing is also a pable atomic typing.

-36 -

LEmmA 21. Suppose C',AL M: ¢’ is an atomic instance of C,Al M:o. If |-
C,A0M:g, then-C A’ OM:Jd.

An interesting corollary is thatvery pure lambda term with an atomic typing also
has a Curry typing.

CoROLLARY 22. Suppose C is atomic and M is a euambda term without

constants. If C,A] M:g, then M has a Curry typing.
This follows from the fact that if we instantiate C,AM: g using a substitution that maps
all type variables to a singlanable t, then we va a yping for M with all coercions fol-
lowing from reflivity of containment. Therefore, this typing may bewvetbwithout
using rule (coerce). The details of are left to the reaBler the reader interested in type
constants, it is worth pointing out that if M ha€@& typing with type constants, the con-
stants may be replaced by typariables to yield a prable typing without type con-
stants. Therhy applying a substitution as almwe an produce a Curry typing.

6.5. Matching substitutions for atomic coercion sets

In the typing algorithm for atomic coercions, we will use an algorithm similar to
unification to maintain the "atomicity" constraint. The need for this arises whenwee ha
typings G,A; U M:gand G,A, LI N:7 for terms M and N, and wish to find a typing for
MN. Usingunification, we can find common substitution instances of the typing assump-
tions in A; and A, which could mak MN well-typed (if, in fact MN is typable). He-
eve, the substitution giving us a typing of MN may not respect the coercion setsdC
C,. Therefore, gien a ®t C dened from C, and G, we will need to find the most gen-
eral substitution S which, fowvery ol1700C, produces matching type expressiomsaSd
Sr. We will say that Ss a matching substitution fo€ if, for every o{17[J0C, the substitu-
tion instances &and S match.

LeEmmA 23. Let C be a set of containmemjpeessions of the formlz, whereo
and r may not necessarily mé&itc Thee is an dgorithm MATCH sud that
wheneer thee is amatding substitution for C, themATCHC) produces a
most @nelal matching substitution. If C has no miattg substitution, then
MATCH(C) fails.

Algorithm MATCH, which is similar to unification, is discussed in the Appendix.

-37-

6.6. Algorithm GA for most general atomic typings

Given any term M, the algorithm GA(M) belo produces an atomic typing C,A
[OM: o for M, or fails. The algorithm is written belo in the same applicat, pattern-
matching style as algorithm G, using similar notation.

GA(X) ={sOt}, { x:s} O x:t

GA(MN) =
let C;, A; O M:g = GA(M)
C, A, ON:r=GA(N),
with type variables renamed to be disjoint from those in GA(M)
R = UNIFY({ o= x:aUA; and xpUA} U {o=1-1})
where t is a fresh type variable
S = MATCH(RC,ORC,) - R
in
S(C,0C,), SAOSA, O MN:St

GA(IX.M) =
let C, AL M: 7= GA(M)
in if x:o OA for someo
then C(A--{x:a}) OXXM:ig>T1
else CAUO XXMt
where t is a n& type variable

While Algorithm G alvays succeeds, Algorithm GA mdail in the application case
if the call toUNIFY or MATCH fails. This is to be expected since, by Corollary 22, Algo-
rithm GA must fail on eery term that does not ti@ a Qurry type. In particularGA(M)
must fail if ary subterm of M has no normal formiVe @an prave that if GA(M) succeeds,
then it produces a pvable typing for M.

THEOREM 24. If GA(M) = C,A0 M:g, then C,AlJ M:cis a povable atomic
typing statement.
It follows, by Lemma 21, thatvery atomic instance of GA(M) is a prable typing for
M. Corversely, every provable atomic typing for M is an atomic instance of GA(M).

-38 -

THEOREM 25. Suppose- C,AlJ M:cis a povable atomic typing Then GA(M)

succeeds and produces an atomic typing with 0,M:c as an atomic

instance.
Both theorems are pred at the end of this sectionOne consequence of Theorem 25 is
that if GA(M) succeeds, then we may compute a most general Curry typing from GA(M).
In stating and discussing this corollaityis useful to introduce some notation. If C is an
atomic coercion set, letEbe the set of equations

E. ={s=t| £t0C},

and for t appearing in C, let gbe the set of all s with s=t in the redilee, symmetric and
transitve dosure of k.. In other words, we write [f] for the equialence class of t with

respect to the least egglience relation containing £

CoOROLLARY 26. Let GA(M) = C,A0 M:o be a most gneal atomic typing for
M. LetS be a sbstitution that is alwice function on equivalence classeg.[t]
of type variables appearing in C, so that wheneyet,t]t] , we rave Sf =
St,Ult] - Thenl,SAL M:Scis a most general Curry typing for M.

ProoF . It should be clear from the definition of S thatSA O M:Scois an atomic
instance of GA(M). By Theorem 25yary Curry typing is an atomic instance of GA(M),
so it suffices to shw that every Curry instance of GA(M) is an instance GfSA [
M:So.

If O,A O M:d is an instance of GA(M) =C,A [0 M: ¢ by substitution Tthen [
must proe Ts = Tt for every sLitLJC. ConsequentlyT must unify E.. But since S is a
most general unifier for E as b easily verified, there is some substitution R with T =
RoS. It follows that,A" [0 M:¢g' is an instance ofl]1,SA [0 M:So by R, proving the
corollary.

Further discussion of the relationship between coercion sets and unificatieenis gi
in the appendix.The remainder of this section isviéed to proving Theorems 24 and 25.

PrOOF OF THEOREM 24. Itis easy to see that G(x) isnalys a well-typing, so we
move a to goplication and abstraction.

Consider GA(MN). By the induatée assumption, both

-39-
GAM) = C, A, OM:o

GANN) = C,, A, ON:7

are proable. (As in the proof of Theorem 13, we assume that the gpables in GA(N)

have keen renamed.) Since S is defined from the unifier R by composition, S must unify
{a=p| x:aUA; and xpLAL}, and o=r—t. Thisimplies that SAUSA, is a well-formed

type assignmentSince S is a matching substitution fojt@C,, we know that S(C,IC,)

is a well-defined atomic coercion set. Therefore, arguing as in the proof of Theorem 13,
Lemma 11, implies that the batypings

S(C,0C,)SA,0SA, O M:So

S(C,0C,)SA0SA, ON:Sr
are both preable and so
S(C,0C,)SA,0SA, 0 MN:St
follows by rule (app). Therefore GA(MN) is a pable atomic typing statement.

The abstraction case is similar to the case considered in the proof of Theorem 13,
except that no additional coercions are introduc8ohce the details are may be chetk
quite easilywe leave tis task to the readeiThis proves the theorem.

ProorF OFTHEOREM 25. Asin the proof of Theorem 14, an easy inductiorvghthat
when GA(M) succeeds, it produces a typing which A assigns a typefte ad€urs free
in M. The main agument proceeds by induction on the structure of terms, and is essen-
tially similar to the proof of Theorem 14 in thanable and lambda abstraction cases.
For this reason, we will only check the application case.

Suppose- C, AL MN:vis a pravable atomic typing statemenBy Lemma 20, this
must follow from provable atomic typings

C,AOM u—v

C,AON:u

by rules (app). By the indueg hypothesis, GA(M) and GA(N) are most general atomic
typings for M and N. This means that there exist substitutiqrex@ T, such that

-40 -
C-T,C, AUT/ A Tyo=pu—v

Cr T2-C2 Al T2A2 Tzr: U,

where G, C,, ec., are as in the application case of Algorithm Gecause GA renames
type variables, no typeaviables in G,A,, [N:z appear in G,A, [M:o. This allows us
to combine substitutions,Tand T,. Anticipating the need for a substitution that helsa
properly on the freshariable t introduced in the algorithm, we let T bg ambstitution
such that

Ts = T;sif s gopears in the typing of M,
Ts = T,s if s gopears in the typing of N,

Tt=v
Without considering the effect of T on t, it is easy to see that

C-TC, AOTA; To=u—v

CF-TC, AOTA, Tr=u

so that both instances are by the single substitutioByTLemma 3, the assignment A
must gve types to all free ariables of M and N and, as noted earkar asignment pro-
duced by G alays contains exactly theaviables that occur free. Therefore, T must
unify {a=g| x:aUA; and xpUA,}. In addition, since &=y — v=Tr— Tt, the substitu-
tion T unifieso=r—t. SinceR is a nost general unifier for these equations, there is a
substitution V with

T=VeR.

Since C is atomic, V must be a matching substitution foj[RRC,. But sinceMATCH
computes most general matching substitutions, this implies that

V =W o MATCH(RC,LIRC,)

for some Wt follows that C, ALl MN:v is an instance of .@,0IC,), SA|USA, U
MN:St by W This proves the theorem.

-41 -

7. Variations and extensions of the typing algorithms

7.1. Inserting Corversion Functions

Algorithm G and GA calculate the set of subtyping assumptions needed to type a
given term, but do not insert grtype cowersion functions. This is consistent with the
view that wheneer ois a subtype of, every values of typesis also a value of type In
practice, hwever, it may be useful to represent elementsoas some \ay that taks
adwantage of the particular features that distinguigtom 7. For example, ¥en though
the subrange of ingers from 1 to 12 is most naturallygeeded as a subset of the inte-
gers, it may be useful tossapace by allocating feer bytes to the representation of each
element of the subtype. Then, when an element of the subtype is used as an element of
the supertype, it may be desirable tovanhfrom one representation to anothéDther-
wise, it would be necessary to discriminate between representations at run-fime.)
may be accomplished by making relaly minor changes in either typing algorithm, as
sketched briefly bel. To amplify the discussion, we will only consider Algorithm GA.

The modifications to Algorithm G are similar and left to the interested reader.

We assume that whener oflr, we ae given a orversion function g - mapping
values of typeo into typer. Given corversion functions for each subtyping assertion in
C, we may construct ceasion functions foreery ol1r provable from C. Unfortunately,
the only way to do this seems to depend on the way wee pfor from C. This illus-

trates a general problem with user-supplied type@sion functions.

If C - ollz, then we define the untyped lambda term by induction on the proof
of o0r from C, as follavs. We uwse the standard abbreviation MN for the term
AX.M(NX).

() If odrfollows from olJp andplz, then h0_1 p T hp, ° ha, o
(i) If (o — 0,)U(7; — 1) follows from

nUoy andaZD Ty, then ha L= AX haz, r, oXo th, o
The conditions in [Reynolds 80] may viewed as a natuegl of guaranteeing that the
function h__is determined by the coercions associated with the hypotheses C, and inde-

pendent the proof used to construct.h

-42 -

Two modifications to Algorithm GA are needed. The first is in the variable case,
where coercions are used. Instead of returning

GA(x) = {sOt}, {x:s} Ox:t
the algorithm inserts a coercion
GA(x) = {sOOt}, {x:s} O hS’ (x):t
The second modification is in the use of substitutions in the application case.

While substitutions are only applied to types in Algorithm GA, we must apply
substitutions to terms as well. The reason is that when the typeaoible is changed,
we must also change the gersion function associated with it. Therefore, we replace the
last line of the application case of Algorithm GA by

S(C,0C,), SA,ISA, O S(MN):St,

with S nav applied to the term MN, and define the application of a type substitution to an
untyped term with corersion functions as follows.

The effect of applying a type substitution S to an untyped lambda term M with con-
version functions is to replace each eersion function bﬂwith hSa,Sr' Recall that the
definition of har depends on the proof aflr from C. We will produce a cowversion
function rha,ST corresponding to a proof ofcSISr from SC. Specifically we will use
the proof of Sol1Sr obtained by replacing each nonlogical axionbalC in the proof of
oJrwith a proof of S&lSb from SC. (Lemma 18 and the definition ofCSguarantee that
there is a proof of $3Sb from SC.) Now that we hae fixed hSaST, itis easy to see from
the inductve cefinition of hm that 'ba,Sr may be obtained by substituting an untyped
lambda term ga,Sbfor each basic camrsion function g,bin haT.

The inductve proof of Theorem 13 may be modified to shthat if the modified
version of GA(M) succeeds, it produces a typing C[UAN:o such that AL N:ogis a
Curry typing (i.e., preable from rules (var), (app) and (abs) only), provided we assume
ha, ~o0— 1. Furthermore, if each J,]r in N is replaced by the identity function, then N
reduces to M. The proof of Theorem 14 may also be modified o tfad the ne algo-
rithm is also guaranteed to find a typing whanehere is a method for inserting een
sion functions.

-43 -

7.2. ML Polymorphism

Algorithms G and GA can also be extended to lambda calculus with a polymorphic
let construct as in ML [Gordon, et. al. 79, Milner 7&or notational simplicity we ds-
cuss only Algorithm G belw. From a theoretical point of we the simplest ay to
extend the algorithm is to considiet an abbreiation in lambda terms. If we defilet

by
letx=Min N = [M/X]N,

then it follows immediately that our typing algorithms may be used to find most general
typings for terms withet. From a practical point of we, it is more useful to extend G to
type terms withet directly. Howeve, we can use this fact that & x=M in N) should

be equralent to G([M/x]N) to provide some intuition for the extension of Geto

Since Algorithm G deduces a typing for each subterm independietigigorithm
will type every occurrence of M in [M/X]N by precisely the same procdgsve wish to

type an expression of the form
letx=M in N

without substituting M for x in N, then we may compute G(M) once and begin to type N
as usual. When we see an x inside N, we then substitute the typing tdoM. specifi-
cally, if G(M) = C,A 0 M:gis the typing for M, then we would kkto ise C,Al] x:ogas

the typing for x inside NHowever, Snce substitution [M/x]N imolves some renaming of
bound variables in N tovaid capture of free variables in M, there are some minor com-
plications rgarding variables that occur free in M. These details are easily sz5chs
described in detail in [Kanellakis and Mitchell 89, Kanellakis, Mairson and Mitchell 9+,
Mitchell 90]; see especially the appendix of [Kanellakis, Mairson and Mitchell 9+].

8. Conclusion and Futue Directions

As with Curry typing without coercions, a reladly simple set of inference rules is
sufficient to deduce all semantically valid typing statememtswever, ssmantic com-
pleteness is achied at he cost of making the set of types of a term undecidabla
type inference algorithms for the decidable set of inference rules (without term equality)
are presented, one using arbitrary subtyping assumptions, and the other restricted to sub-
typing assumptions between atomic types. These algorithms could be used to extend the

-44 -

programming language ML with simple forms of subtypivge havealso addressed the
algorithminc problem of inserting calls to type eersion functions at compile timeub

not the semantics of type aa@nsion.

We have only considered one semantic interpretation for the type comeescti.
Two additional possibilities are the quotient-set semantics [Hn8Ba] and the F-
semantics [Hindhe 83b]. It seems likely that the techniques of [HindE3a, Hindle
83Db] will suffice to prove completeness theorems for typing with coercions for both of
these semanticsSome discussion of the relationships between these semantics,-and fur

ther references, arevgn in [Mitchell 88].

Acknowledgement3hanks to Ravi Sethi for originally suggesting the study of type
inference with coercions and to Lalita $m@nkar for mag helpful suggestions.

=45 -

Appendix. Algorithms UNIFY and MATCH

8.1. Unification

Since matching is an extension of unification, we begin with a shvetwef a uni-
fication algorithm. Unification may be programmed in the same functional, pattern-
matching style as the typing algorithmisy the clauses belg we assume that gnnon-
empty set matches a pattern consisting of the uniona$dtg. Although the matching of
a %t to a pattern is nondeterministic, this does not affect the correctness of the algorithm.
We dso assume a form of pattern-matching for equations which takes commutativity into
account. Br example, we assume that an equatipr o, = s matches the pattern t=

Given a ®t of equations E and a substitution S, the algoritinry (E,S) attempts
to find the most general substitutioeS wnifying E. While we are generally interested
in calling UNIFY with the identity substitution to gen with, the substitution parameter is
useful on recurse alls.

UNIFY([J, S) =S

UNIFY(EC{t=1}, S) =
if ris the variable then UNIFY(E, S)
else if t does not occur i then UNIFY([/t]E, [7/t]-S) else fall

UNIFY(EL{ 0, - 0, = 1; — 1}, S) =UNIFY(EL{ 0y=1,, 0,=1.}, S}

Intuitively, if UNIFY(E, S) is computed using a recuesiall UNIFY(E;, S;°S), then
S, is a partial solution to E, with ,Bhe "simpler” problem remainingTo prove nore
rigorously thauUNIFY is correct, we first shothat the algorithm alays terminates.

LeEmmA 27. For every finite set of equations E and substitution S, the algorithm
UNIFY(E, S) terminates.

Proor . Termination is preed by associating a "degree" with each set E of equa-
tions, and showing that the degree decreases with each veamlsi Althoughseveral
other definitions will do equally well, we will say that ttiegreeof set E of equations is
the pair of natural numbers

- 46 -

degree(E) = <# of occurrences of, # of equations in E>.

We ader degrees lécographically so hat <m,n> is less than <i,j> if either m<i or m=i

and n<j. It is easy to check that each resmarsall involves a set E of lower deese.

Since there is no infinite decreasing sequence of pairs of natural numbers, it follows that
UNIFY(E,S) alvays terminates.

LEmmA 28. Let E be a finite set of equations and S be any substitufiamy
T = S wifies E, theruNIFY(E, S) computes a unifier R for E witheTR > S.
Otherwise UNIFY(E, S) fails.

ProoF . We use induction on the deee of E, using the same degree function as in
the proof of Lemma 27. If E is a set withgilee <0, 0>, then E must be empty and so it
is easy to verify that the lemma holds.

Now suppose that E has gieee <m, n> with at least one of these numbers greater
than 0. Since E cannot be empEymust be of the form fl{o=7} for some equation
o=r. If one of these, say, is a \ariable t, then the second clause of the algorithm applies.
It is easy to see that yamnifier must map t to some substitution instance (gince the
equation t¥ must be satisfied), and must satisfy the remaining equatifiiis. [The
remaining case, with E =BE{ 0, —» 0, = 1; — 1.}, is straightforward.

8.2. Most general matching substitutions

Let C be a set of coerciox@essionsilr, whereogandr may not match. Then S is
a matding substitution focC if, for every ofrin C, the expressionsc®nd S match. A
matching substitution S israost gneal matching substitutioff every other matching
substitution R may be obtained as the composition of S with some substitufibatdh-
ing substitutions are related to unification by the following lemAaubstitution isvari-
able-to-variablef it is a function from variables to variables.

LemmA 29. Let C be a set of possibly non-matching containmemtessions
oldrand let E be the set of equations

E={o=1r| o7 OC}.

Then S is a matching substitution for Ctlifere is a \ariable-to-variable sub-
stitution T sub that TS wnifies E.

-47 -

ProoOF. Suppose T is ariable-to-ariable and S wnifies E. Since T isariable-to-
variable, S matches T(8) and S matches T(9 for every ollr in C. But since
T(So)=T(S1), S must be a matching substitution for C.

To prove the cowerse, suppose S is a matching substitution for C, and let T be the
substitution which maps all variables to some arbitrarily chosen variable t. Then, for
evay o=t in E, we knev that S and S differ only in the names of variables, and so
T(So)=T(Srt). Thus &S wnifies E.

We will use this lemma to design a matching algorithBEssentially agorithm
MATCH will first unify a set of equations, and then extract a most general matching substi-
tution from the most general unifiewhile this may seem an unnecessarily indireay w
of computing a most general matching substitution, it is actually quite efficient when we
implement unification using the usual graph representation of terms [Paterson and
Wegnan 78, Aho, Sethi and Ullman 86].

It is worth mentioning that Lemma 29 fails when constants are added tofyes-e
sions. For example, C={#&, $1b} has a matching substitution (nametlye identity sub-
stitution), lut E={s=a, s=b} cannot be unified since a and b are different constamis. Ho
eve, by treating constants asanables, we may still use Lemma 29 to reduce matching
with constants to unification with constants.

The reduction of matching to unification requires\a feeliminary definitions and
lemmas. Ifgis ary type expression, it is easy to construct a most general xypession
r matchingo simply by replacing each variable occurrenceriby a distinct fresh ari-
able. Bya amilar process, we can "factor" yasubstitution S into the composition of a
substitution $which produces a most general type matching St for each t we choose, and
a abstitution S that replaces variables to neas,>S)t=St.

LetV be a set of typeariables. Asubstitution Shooses variables freely onif (i)

for each V1V, no type variable appears twice in Sv

(i) for distinct u, VLIV, no type variable in Su appears in. S&ssentially this means that

if vy, v,, ... isan enumeration 0¥, then no type variable appears twice in the lisf, Sv

SV, ... Thefollowing lemma is easy to pve.

LemmA 30. Suppose substitution S chooses variables freely amd that T

chooses variables freely on the set of all type variables occurring,ifoSv

-48 -

v[V. Then ST chooses variables freely an

The proof is straightforward and is omitted.

We will now show how to factor ay substitution into the composition of one that
chooses variables freely and one that replaces the freely-chosen variables to produce the
original substitution. It will be useful to write 3 if substitutions S and T agree on all
variables fromV.

LemmA 31. Let S be any substitution and Wtbe a set of type variables $uc
that thee ae infinitely many type variables not \h There ae aubstitutions
S, and S, computable fom a symbolicepresentation of S in linear timeuch
that § chooses variables freely ov, substitution § is variable-to-variable
and S 5, S,°S;. Furthermoe, f S =, T,»T; for some variable-to-variable

v '2°'1
substitution '5 then thee «ists a variable-to-variable substitution R with

T= RS,
Proor . To define § and S, let v, v,, ... be an enumeratiot and let us partition
the complement o¥ into disjoint infinite setd/,, V,, ... Thisis a technical device for

associating a different set of type variables with each elemént &f will also be con-
venient to choose some enumeration of eégteay V, ={v, ;, v, ,, ..}

For each yLIV, let Sv; be the type expression desul from Sy by replacing the j-th
variable occurrence in $\reading the expression from left-to-right, say), with the j-th
variable Vi fromV,. Let S, map ¥ back to the &riable occurring in the j-th position in
Su. Since theV's are disjoint, and each variable occurrence ji, 8ontains a dferent
Vi substitution § chooses variables freely ah It should be clear from the definition
that S, is variable-to-ariable and S 7 S,0S,. Since § and S may be constructed using
a dngle left-to-right scan of a symbolic representation of S, both may be computed in lin-
ear time.

For the second part of the lemma, supposg, 3 »T,, with T, variable-to-variable.
Since § and T, are both ariable-to-ariable substitutions, the three type expressions Sv
S,v and T,v must match, for eachlW. Therefore, since Schooses variables freely on
V, there is a function (substitution) R mapping the variable occurring in the j-th position
of S,v to the variable occurring in the j-th position ofT Snce T, =, RS, this proes
the lemma.

-49 -

We may nav combine Lemmas 31 and 29 to reduce matching to unification.

LemmA 32. Ther is an dgorithm MATCH which, given a finite set of cazon
expressions C, mduces a mostemerml matching substitution for C if any
matching substitution exists, and fails otherwise.

It will be clear from the proof thalATCH has the same complexity as unification,
provided that unification produces a representation of the most general unifier S that
allows us to read 6fSt for each type ariable t. This is actually a nontrivial assumption,
since may implementations of unification will produce a compositiopSs...oS, of
several substitutions, and the number of operationslued in simplifying such a result
may be quadratic in the length of the inpttowever, when terms are represented using
graphs, the unifying substitution is generally represented as awmaeque relation.
Algorithm MATCH may then be implementedfiefently as an algorithm for accessing the
graph data structure.

Proor. Let E = {o=1| oldr O C} be the set of equations determined by C an¥l let
be the set of type variables occurring in Given C, dgorithm MATCH first computes a
most general unifier S for E. If there is no unjftaenMATCH fails. Otherwise, the algo-
rithm computes a substitution, 8hoosing variables freely o such that SgS,eS; for
some \riable-to-ariable substitution 5 and returns $as the result. By Lemma 29 and
the properties of unification, we kwdhatMATCH succeeds with Siff there is a match-
ing substitution. It remains to be shown that wihemCH succeeds, Sis in fact a most
general matching substitution for C.

Let R be ay matching substitution for C. By Lemma 29, thexists a ariable-to-
variable substitution T with dR unifying E. Therefore, since S is a most general unifier
there is a substitution U with

UoS = WeS,0S, = TeR.
By Lemma 31 we can &ftor” kS, into U; choosing variables freglpnd a \ariable-to-
variable substitution U This gives us

UyeU, oS, = TeR.

But by Lemma 30, we kwothat U,-S, chooses variables freely ah Therefore, by the
second part of Lemma 31, we may conclud& S, = R for some w@riable-to-variable
substitution V This shows that Sis a most general matching for C.

-50 -

References

[Aho, Hopcroft and Ullman] Aho, A.V., Hopcroft, J.E. and Ullman, Jata Structues
and Algorithms Addison-Weslg, 1983.

[Aho, Sethi and Uliman 86] Aho, A.\é&nd Sethi, R. and Ullman, J.BCompiless: princi-
ples, techniques, toolAddison-Weslg, 1986.

[Barendrgt 84] Barendregt, H.PThe Lambda Calculus: Its Syntax and Semantics
North Holland, 1984 (revised edition).

[Barendrgt, Coppo and Dezani 83] BarengteH., Coppo, M. and Dezani-Ciancaglini,
M., A Filter Lambda Model and the Completeness of Type Assignm&ng/mbolic
Logic48, 4; 1983, pages 931-940.

[Cardelli 88] Cardelli, L., A Semantics of Multiple Inheritandaformation and Compu-
tation 76,1988, pages 138-164. Special issueotel to Symp. on Semantics of Data
Types,Sophia-Antipolis (France), 1984.

[Cardelli and Mitchell 89] Cardelli, L. and Mitchell, J.C., Operations on recohds.
Math. Foundations of g. Lang Semantics 1989. T gopear Also available as DEC
SRC Technical Report 48, August 1989, 60 pages.

[Coppo, Dezani and Venneri] Coppo, M. and Dezani-Ciancaglini,akld Venneri, B.,
Principal type schemes and lambda calculus semariticslo H.B. Curry: Essays on
Combinatory Lgic, LambdaCalculus and Brmalism pages 535-560. Academic Press,
1980.

[Coppo 83] Coppo, M., On the semantics of polymorphigta Informatica20,1983,
pages 159-170.

[Curry and Feys 58] CurnyH.B and Feys, R.Combinatory Logic .I North-Holland,
1958.

-51-

[Damas and Milner 82] Damas, L. and MilnB, Principal Type Schemes for Functional
Programs. In9-th ACM Symposium on Principles ofoBramming Languges, 1982,
pages 207-212.

[Dwork, Kanellakis and Mitchell 84] Dwork, C., Kanellakis,aRd Mitchell, J.C., On the
Sequential Nature of Unificationl. of Logic Programmingl1,1984, pages 35-50.

[Fuh and Mishra 88] Fuh, Y.-C. and Mishra, P., Type Inference with Subtyipes.
ESOP-88March 1988.

[Gordon, et. al. 79] Gordon, M.J. and R. Milner and. @®Bdsworth,Edinbugh LCF
Lecture Notes in Computer Science, Vol. 78 Springer-Verlag, 1979.

[Hindley 69] Hindley, R, The Principal ¥pe-Scheme of an Object in Combinatory
Logic. Trans. AMSL46,1969. page?9-60.

[Hindley 83a] Hindlg/, R, The Completeness Theorem foypihg Lambda &rms.
Theor Comp. Sci22,1983. pages-17.

[Hindley 83b] Hindley, R., Curry’s Type Rules Are Complete with Respect to the F-
Semantics TooTheor Comp. Sci22,1983. page$27-133.

[Jateggaonkar and Mitchell 88] Jagieonkar L. and Mitchell, J.C., ML with extended pat-
tern matching and subtypesn Proc. ACM Symp. Lisp and Functionaldgramming
Languayes, July 1988, pages 198-212.

[Kanellakis and Mitchell 89] Kanellakis, P.C. and Mitchell, J.C., Polymorphic unification
and ML typing. In 16-th ACM Symposium on Principles ofogiamming Languges,
1989, pages 105-115.

[Kanellakis, Mairson and Mitchell 9+] Kanellakis,(? and Mairson, H.G. and Mitchell,
J.C., Unification and ML type reconstructiom Computational Logic, essays in honor
of {Alan Robinson}pages . MITPress, 199+. to appear

-52-

[Lambek and Scott 86] Lambek, J. and Scot,, Pitroduction to HighetOrder Catgor-

ical Logic. Cambridge studies in advanced mathematics 7, 1986.

[Leivant 83a] Levant, D., Polymorphic Type Inferencdn Proc. 10-th ACM Symp. on
Principles of Pogramming Languges, 1983, pages 88-98.

[Mac Lane 71] Mac Lane, SCategories for the Working MathematiciaGraduate &xts
in Mathematics, Vol. 5 Springer-Verlag, 1971.

[MacQueen and Sethi 82] MacQueen, D. and Sethi, R., A Semantic Modgbes for
Applicative Languages. IPACM Symp. on Lisp and Functional &gramming 1982,
pages 243-252..

[MacQueen, Plotkin and Sethi 86] MacQueen, D., Plotkin, G and Sethi, R., An ideal
model for recursie polymorphic types.Information and Contl 71, 1/2; 1986, pages
95-130.

[Meyer 82] Mger, A.R., What Is A Model of the Lambda CalculusI@formation and
Control 52, 1; 1982, pages 87-122.

[Milner 78] Milner, R.,, A Theory of Type Polymorphism in ProgrammindCSS
17,1978. page348-375.

[Mitchell 84a] Mitchell, J.C., Coercion and Type Inference (Summahy)Proc. 11-th
ACM Symp. on Principles of Bgramming Languges, January 1984, pages 175-185.

[Mitchell 88] Mitchell, J.C., Polymorphic type inference and containmémfiormation
and Computatiorr6, 2/3; 1988.

[Mitchell 90] Mitchell, J.C., Type systems for programming languages. Inad. v
Leeuwen (ed.),Handbook of Theoretical Computer Scigngg@dume B pages 365--458.
North-Holland, 1990.

-B3-

[Paterson and gman 78] Paterson, M.S. ande@han, M.N., Linear UnificationJCSS
16,1978. page$58-167.

[Remy 88] D. RemyTypechecking records and variants in a natural extension ofINL.
16-th ACM Symposium on Principles obgiamming Languges, 1989, pages 60-76.

[Reynolds 80] Rgnolds, J.C.Using Category Theory to Design Implicit Gensions
and Generic Opators in Semantics-Dected Compiler Genation , pages
211-2580.Springer-Verlag Lecture Notes in Computer Science, Vol. 94 1980.

[Robinson 65] Robinson, J.A., A Machine Oriented Logic Based on the Resolution Prin-
ciple. JAQM 12, 1; 1965. pages 23-41.

[Scott 76] Scott, D., Data Types as LatticéSiam J Computing5, 3; 1976, pages
522-587.

[Scott 80] Scott, D.S., Relating theories of the lambda calculusTo H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus aman@lism pages 403-450Aca-
demic Press, 1980.

[Smyth and Plotkin 82] Smyth, M. and Plotkin, G.D., The category-theoretic solution of
recursve domain equationsSIAM J Computingl11,1982, pages 761-783.

[Stroustrop 86] Stroustrop, Brhe $C"{++}$ Plogramming Languge Addison-Weslg,
1986.

[Wand 87] Wand, M., Complete Type Inference for Simple Objdat$roc. 2-nd IEEE
Symp. on Logic in Computer Scient@87, pages 37-44. Corrigendum in {it Proc. 3-rd
IEEE Symp. on Logic in Computer Science,} page 132, 1988.

[Wand and O’Keefe 89] Wand, M. and O’Keefe, P., On the cortplef type inference
with coercion. In Proc. ACM Conf Functional Pogramming and Computer Ahitec-
ture, 1989, pages 293-298.

-54 -

