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Today, ontologies have become critical tools of biomedical research, providing an efficient framework for 
structuring and organizing scientific information. Integration of many different biomedical ontologies into a 
comprehensive landscape of biomedical knowledge would enable researchers to generate new hypotheses 
and identify new avenues of investigation. Here we introduce a principled computational framework for 
automated discovery of functional links amongst ontologies. We have developed a novel technique, Lexical 
Mapping, for deducing context specific functional links, by leveraging over disparate free-text literature 
resources. We start by searching for ontological terms over the corpus and caching the terms and annotations 
using a b-tree based reverse index. Next, we use a pre-computed transitive closure of the ontology graph to 
propagate the annotations up the hierarchy, and thus augment it to the index. To infer context-specific links, 
we score the model of dependency linking two terms under the given context against their model of 
independence, further penalizing it using the bayesian information criterion to get the bayes factor. We 
finally identify context-specific linked terms as those having a bayes factor greater than twenty (p < 0.01).  
To scale our algorithm over large ontologies, we develop a heuristic pruning technique, using a depth first 
branch and bound algorithm to exponentially reduce running time with marginal loss in the quantity of 
inferred links. To further augment our inferred links, we compose the existing links to relate different 
ontologies already integrated into a given ontology under the same context. Using the functional meanings of 
biomedical terms to make connections, this approach is fundamentally different from its predecessors, which 
primarily relied on connecting the lexical structures of term names. We have applied this method to 
translationalize Gene Ontology to all other ontologies available at National Center of Biomedical Ontologies 
(NCBO) Bioportal, under the context of the Human Disease ontology. This is the first time that all ontologies 
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have been included in one map. We have validated our inferred links manually by supporting published 
literature and by a domain expert. We believe, in addition to broadening the scope of hypotheses for 
researchers, our work can also be used to explore the continuum of relationships amongst ontologies to guide 
various biological experiments. 

 
1.  Introduction 

Every year, over 400,000 new articles reportedly enter biomedical literature [1]. This staggering 
growth of biomedical findings has created an unprecedented corpus of knowledge that is 
impossible to explore with traditional means of literature consultation and database searches. This 
information overload has motivated the development of structured information repositories that 
organize biomedical findings according to hierarchical ontologies. 

Ontologies are currently at the heart of two major complementary activities in biomedical 
research. Firstly, communities of researchers create and maintain these ontologies to represent 
different types of entities and relations in different domains of biomedicine. Secondly, biomedical 
experimentalists use ontologies to annotate data enabling their information to be integrated with 
other researchers data, and permitting cross-species analyses through experimental data 
annotations. This activity is greatly intensified by the development of high-throughput 
experimental platforms such as gene expression microarrays [2], SNP microarrays [3], and next 
generation sequencing platforms [4].  

The rise of such ontological organization has created a new problem, the proliferation of 
disparate and seemingly unrelated biomedical ontologies available to researchers. The National 
Center of Biomedical Ontology (NCBO) Bioportal [5], provides over 200 such ontologies to 
researchers, which is of great assistance to them. Often, researchers will need to use multiple 
ontologies to annotate their data, but which ontologies to use, and how they relate to one another is 
generally unclear. What is needed is the integration of the various ontologies in a principled 
fashion, a “grand unification” of biological terms. It has been established [6], that the integration 
of these available biomedical ontologies will have a tremendous impact on the advance of the 
biomedical sciences. These integrated ontologies would provide a complete basis of biomedical 
knowledge representation, and would act as a foundation for inference on new biomedical data. 
Furthermore, a quantitative approach to integration would make the navigation of the complex 
space of ontologies more amenable to biomedical researchers, by offering them guidance to 
numerous links amongst discrete ontologies, thus making the discovery process faster and more 
efficient. 

To date, approaches to mapping and integrating ontologies have relied on discovering links 
between semantically similar terms across ontologies [7]. Such an approach can relate terms with 
similar meanings, but would not deduce, say, relationships between seemingly disparate functional 
spaces such as diseases, drugs and anatomy. Other approaches to infer such types of links, use 
standard means of manual curation, which is a tedious and labor intensive task, unable to scale up 
to the current size of biomedical ontologies and keep up with their growth rate. 

Here we propose a novel computational and methodological framework for context specific 
integration of biomedical ontologies using free-text literature analysis. We model context 
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specificity using another ontology, and derive context-dependent functional links between 
ontological concepts occurring as terms in free-text literature. We conduct our search for 
ontological concepts in free-text biomedical literature, and efficiently caching the required 
statistics using a b-tree based reverse index. We then leverage upon these cached statistics to 
compute the penalized likelihood of the model of dependency and the model of independence by 
applying the well-known bayesian information criterion (BIC) [8], over a context-sensitive model 
scoring function. Using the BIC, we then deduce the most likely model explaining the observed 
data, thus classifying the context-specific relation between terms as related or not related. We also 
rank our links according to a principled bayes factor metric with direct correspondence to the 
strength of our findings.  

Due to large scale of ontologies involved, and the complexity of the search space, a “brute 
force” computational approach would not scale using these techniques. To help circumvent this 
problem, we propose a depth first branch and bound heuristic pruning technique to help us prune 
away subgraphs of the ontologies which would not yield significant functional links. We show 
how such techniques result in exponential reduction in running time with marginal loss in quantity 
of links. To further augment our inferred links, we apply mapping composition to yield mappings 
amongst ontologies integrated via another ontology. This allows us to use the existing mappings to 
generate links amongst ontologies that have not been directly mapped.  

We believe that such a methodological approach would turn available machine-processable 
ontologies into a single landscape of integrated biomedical concepts and annotations. This would 
thus enable researchers to bear on each single finding, the entire power of established biomedical 
knowledge. 

2.  Methods 

In all, 200 ontologies from the National Center of Biomedical Ontology’s Bioportal interface were 
obtained. To enable us compute the likelihood of dependency amongst ontology concepts we 
develop a pipeline similar to the NCBO Annotator [10], but targeted towards efficient frequent 
counting and information retrieval. 

2.1.  Caching Sufficient Statistics 

We gather raw free-text literature from disparate sources, and drive our concept search by finding 
exact matches of ontology terms. We use the MGREP [11], concept recognition tool to efficiently 
find occurrence of concepts in published literature and thus annotate the documents with those 
concepts. This allows us to leverage on a consolidated vocabulary (of about 4 million ontology 
concepts) to temper the problem of missing synonyms and term permutations.  

We also use a pre-computed index containing the transitive closure of ontology terms for 
semantically expanding the annotations, propagating them up the hierarchy of the ontology. The 
document annotations and the concepts are reverse indexed using a disk based b-tree data 
structure, an approach commonly used in information retrieval domains.  
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Figure 1.  Pipeline used for caching sufficient statistics for model scoring. 

We use Lucene [12], an open source high-powered information retrieval engine to create and 
store the b-tree structure. To answer conjunctive queries for efficient counting, we use a bitmap 
hash based filter over the stored index. Our analysis over disparate corpora shows linear scalability 
of the data structure in terms of time and space on account of new corpora and new ontologies. 
The query time for counting was found to scale logarithmically with the addition of new 
ontologies. Further increase in efficiency was observed, by cleverly caching filters when 
computing frequent counts.  

2.2.  Lexical Mapping Algorithm 

For computing context dependent links between ontology terms, we have developed a novel 
technique called Lexical Mapping, which relies on the statistical analysis of literature. Lexical 
mapping uses the observed co-occurrence of terms in the literature to infer the relationship 
between two terms A and B in the context of the ontology term C. 
 

 
Figure 2. 2 x 2 contingency table to test relationship between two ontology terms A and B under C. 

To do so it builds a contingency table like the one in Figure 2, collecting the frequencies of co-
occurrence of the two terms in the in the literature, a 2 x 2 table where n++ is the number of cases 
in which the two terms appear together, n+- is the number of cases in which A appears but B 
doesn’t, n-+ is the number of cases in which B appears but A doesn’t, n-- is the number of cases in 
which neither appear in the context of term C.  
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Our method uses the bayesian information criterion to compute the penalized likelihood of 
dependency A ⇔ B | C (where two terms are related) and the model of independence A ⇑ B | C 
(where the two terms are unrelated) as  
 

 

€ 

BIC = −2MLL + k log(N)  (1) 

where N is the number of observations, k is the number of parameters of the model, and MLL is 
the marginal log likelihood of the model. 

The marginal log likelihood for the model of dependency is 
 

 

 

€ 

MLL(A⇔ B |C) = [ln(Γ(α)) − ln(Γ(α + n))]
+[ln(Γ(αk + n++)) − ln(Γ(αk ))]
+[ln(Γ(αk + n+−)) − ln(Γ(αk ))]
+[ln(Γ(αk + n−+)) − ln(Γ(αk ))]
+[ln(Γ(αk + n−−)) − ln(Γ(αk ))]

 (2) 

while the marginal log likelihood for the model of independence is  
 

 

€ 

MLL(A⇑ B |C) = [ln(Γ(α)) − ln(Γ(α + n))]
+[ln(Γ(αk + n++ + n+−)) − ln(Γ(αk ))]
+[ln(Γ(αk + n−+ + n−−)) − ln(Γ(αk ))]

+[ln(Γ(α)) − ln(Γ(α + n))]
+[ln(Γ(αk + n−+ + n++)) − ln(Γ(αk ))]
+[ln(Γ(αk + n−− + n+−)) − ln(Γ(αk ))]

 (3) 

 
where Γ is the gamma function, n++, n+-, n-+, n—are the co-occurrence frequencies as described 
above, α is the prior precision and,  αk is the prior precision per term that is α/|T|, where |T| is the 
number of terms in the dependency, in our particular case 2. In our case we use α = 4 for 2 x 2 
tables, so that for the initial prior precision we put 1 in each cell, maintaining the uniformity of the 
distribution and the lowest possible precision, so as to minimize bias on the precision. 

By plugging the marginal log likelihood into equation (1), we obtain respectively the penalized 
likelihood for the model of dependency BIC (A ⇔ B | C), where the two terms are linked, and the 
model of independence BIC (A ⇑ B | C), where the two terms are not linked. The final score is the 
bayes factor 
 

 

€ 

Score = BIC(A⇔ B |C) /BIC(A⇑ B |C) (4) 



6 
 

 
which estimates how many times the model linking term A and B in the context of C is more 

likely than the model in which the terms are not related.  
We use our cached data structure to efficiently count the co-occurrence frequencies, for 

computing the bayes factor. Context-dependent functional links are then selected as the ones 
having bayes factor greater than 20 (p < 0.01).  

2.3.  Heuristic Pruning Using A Depth First Branch And Bound Algorithm 

To apply the Lexical Mapping algorithm, we in the worst case would have to compute for all 
possible triples of terms representing the ontologies. Such an approach though would work for 
small ontologies, does not scale up to large ontologies even with the efficient caching data 
structure. We apply a depth first branch and bound algorithm and prune away ontology subgraphs 
where the likelihood of finding functional links is extremely low. We use the bayes factor as a 
scoring cue to find such subgraphs. 
 
Theorem 1.  If the bayes factor for a ontology concept A, mapped to another ontology concept B 
under the context of C is less than a given threshold ε, then the likelihood of finding a map 
amongst a major fraction of A’s children, with the concept B under C also decreases.  
 
Proof.  We use the fact that in an ontology, any instance of a specific concept is also an instance 
of a more general super concept. This implies that while propagating instances up from A’s 
children to the concept A, if enough evidence of a link was found between B and A’s children 
under C, that evidence would have propagated up the hierarchy, thus linking A to B under C. This 
further implies that, for A to be mapped to B under C, a major fraction of A’s children should also 
be linked to B under C, thus propagating enough evidence for A to be linked. By transposition, if 
the map of A to B under C is very less likely, the likelihood of finding a map amongst a major 
fraction of A’s children with B under C also decreases.    
 

We further extend the above theorem to span sub-graph under A and B under the context of  
the sub-graph under C. 

 
Theorem 2.  If the bayes factor for a ontology concept A, mapped to another ontology concept B 
under the context of C is less than a given threshold ε, then the likelihood of finding a map 
amongst a major fraction of A’s sub-graph, with a major fraction of sub-graph under B under the 
context of a considerable fraction of C’s sub-graph also decreases.  
 
Proof.  By switching the terms A and B, in Theorem 1 we can conclude the less likelihood of 
finding functional links amongst children of A and B. We further include C’s children, using 
similar logic as in Theorem 1. Since, the annotations are recursively propagated up the hierarchy 
in the ontology, we can apply Theorem 1 recursively to children of the concepts A, B and C, thus 
including the sub-graphs under them in the purview.    
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We as stated above do not give any theoretical bounds on the fraction or the likelihood of our 
matches, but experimentally analyze the effects of the threshold value to the running time and the 
amount of false negatives. The false negatives are a result of pruning the whole sub-graph under 
concepts. We varied our analyses over ontologies of different sizes, and observed the effects of the 
threshold ε, on the amount of pruning and the false negatives generated. 

We show below the exponential reduction in running time for inferring functional links as the 
minimum threshold for pruning ε, increases. 

 
Figure 3. Graph depicting exponential reduction in running time as the minimum threshold for pruning ε, 
increases. 

 
We also show below, the linear increase in the amount of false negatives, if we prune the full 

sub-graph. 

 
Figure 4. Graph depicting linear degradation in the amount of inferred links as the minimum threshold for 
pruning ε, increases. 

 
We implement the heuristic pruning by performing a depth first search of the ontologies but 

bounding the search by the given threshold. This allows us to compute functional links with much 
greater efficiency with a trade-off in loss of some links.  
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2.4.  Mapping Composition 

To leverage on the inferred links, we further apply mapping composition to help us link ontologies 
that are not directly mapped, but have links to a common ontology under the same context. 
Though the algorithm is not provably composable, we apply this heuristic method to help us 
obtain useful connections between concepts. 

To compose existing mappings, we use transitivity as the operation, that is if a link exists 
connecting a concept A to B, and another connecting a concept B to D under the same context C, 
we also map concept A to D under the context C. To validate our composed mappings, we 
compared them with the links found by directly mapping the ontologies. 

For undirected links we found that the composed links agreed for about 45% on an average 
with the directly inferred links. Including directionality in the links, and then composing links with 
equivalent directions further increased the agreement rate to about 80%. Due to large number of 
ontologies, this method allows us to deduce new links by directly inferring from existing links, 
rather than going through the expensive process of directly mapping these ontologies.  

3.  Results 

We obtain in all about 200 ontologies from the National Center for Biomedical Ontology’s 
Bioportal interface. For caching sufficient statistics we obtain the dictionary of all available 
ontology concepts (4,153,358 terms) for searching in the corpora. We further create our b-tree 
index on the corpus containing the following: 
 
1. Adverse Event Reporting System [13] database containing about 774,606 articles. 
2. Array Express [14] containing 9281 articles. 
3. BioSiteMaps [15] data containing 1013 articles. 
4. caNanoLab [16] data containing 444 articles. 
5. Conserved Domain Databases [17] containing 34,735 articles. 
6. Clinical Trials [18] database containing 75,828 articles. 
7. Drug Bank [19] containing 4774 articles. 
8. Database of Phenotypes and Genotypes [20] having 184 articles. 
9. Gene Expression Omnibus [21] containing 15,968 articles. 
10. Stanford Microarray Database [22] containing 16,148 articles. 
11. Published articles in PubMed [23] containing about 100,000 articles. 

 
We then apply our Lexical Mapping algorithm, over the heuristic pruning technique to 

integrate Gene Ontology (containing 24,987 concepts) to all available ontologies in Bioportal 
under the context of the Human Disease Ontology (containing 12,033 concepts). The threshold for 
a significant link was set to be with a bayes factor greater than twenty (p < 0.01), while the 
threshold for pruning was set to be with a bayes factor less than zero. We further augment these 
links by composing the maps obtained, with Gene Ontology as the pivot. This allows us to 
compute mappings between any given ontologies with Human Disease as the context. 
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Figure 5.  Mapping network showing links between Gene Ontology (blue circles) and Minimal 
Anatomical terminology (green circles) under Human Disease. 

To validate the soundness of our inferred mappings, we take a random sampling of about 100 
high information content links [24], having a significantly higher bayes factor. We then use 
published literature and a domain expert to biologically validate these links. The precision number 
for the algorithm using this approach was found to be about 0.76.  

 
Figure 6.  A portion of network showing translationalization of Gene Ontology to Anatomy under Human 
Disease context. 

 
To validate the completeness of out mappings, we take a random sampling of about 100 high 

information content triplets of nodes. We then using published literature and a domain expert, 
predict links amongst these concepts. These predicted links are then matched against the ones 
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predicted by the algorithm to get the recall numbers. The recall number for the algorithm was 
found to be about 0.88. This corresponds to a f-measure of about 0.81. 

4.  Discussion and Conclusion 

Our framework and algorithms combine disparate sources of data for discovery of relationships 
between ontologies. Unlike prior work, our approach tries to find context-specific functional links 
between ontologies, which is not possible if only semantically relevant links were considered. 

By developing the novel, Lexical Mapping algorithm we identified links across ontologies, 
which can be used for guided expansion of various biomedical experiments. We then augmented 
this algorithm with heuristic approaches, for scaling up to massive data sizes with marginal loss in 
functional quality of links. We also introduced composition heuristics helping us to infer links 
between ontologies related to a different common ontology. 

We further validated the utility of our algorithm, by manual verification using a domain 
expert, increasing confidence in our methodological approach. Our work provides a new approach 
for translationalizing diverse functional spaces in biomedical domain, making this huge space of 
knowledge amenable to researchers. 
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