
 - 1 -

SCLIP: Empowering Real-time Bioinformatics Collaborations via Social Networks

Gil Alterovitz1,2,3,4§, Kshitij Marwah 5, Paresh Malalur2, Anshuman Aggarwal5, Marco F. Ramoni1,3,4

1Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology,

Cambridge, MA, USA

2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,

MA, USA

3Children’s Hospital Informatics Program, Boston, MA, USA

4Center for Personalized Genetic Medicine, Partners HealthCare, Boston, MA, USA

5Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, India

§Corresponding author

Email addresses:

GA: gil@mit.edu

KM: kshtj22@gmail.com

PM: pareshmg@mit.edu

AA: anshuman.iitdelhi@gmail.com

MFR: marco_ramoni@harvard.edu

 - 2 -

Abstract

Background
Bioinformatics is a highly interdisciplinary field. Generally, researchers in this field specialize in their own
computer language and work with vast code libraries in their own community. This make collaborative project
management in bioinformatics a very complex process involving sharing of code functionalities between users and
developers. Social networks can serve both as a bridge and a source of computational power to allow effective
collaborations between researchers. Currently, there is no such framework that can allow for cross-language
communication using the immense computational power available to us via social networks.

Results
SCLIP is a framework that allows for real-time communication between different languages over a web-based
interface using social networks to facilitate seamless collaborations between researchers. It combines a facebook
application which provides an interface for sharing methods and a daemon service running on various systems for
seamless code sharing and distributed execution using social networks. It supports all the currently used
programming languages in bioinformatics over all existing platforms. Moreover, the framework also supports an
interactive editor and graph viewing functionalities for real-time analysis.

Conclusions
We have developed a framework designed to facilitate collaborations by combining languages and platforms in
real-time and using the computational power and resources available in social networks. The framework is open
source and can be downloaded from http://bcl.med.harvard.edu/proj/SCLIP.

Background
At its core, bioinformatics is essentially a
collaborative endeavor, bringing together
researchers from disparate backgrounds. By it’s
nature it involves interdisciplinary work between
biologists, mathematicians, engineers and computer
scientists. When it comes to programming
languages, these users and developers of
bioinformatics algorithms tend to specialize in
different language variants based on their training,
background, and researcher experiences. Each
knows and comes with their own language but
perhaps more importantly can access vast libraries
of code within his or her speciality’s community
written in their native language. In addition, some
specialities use one platform e.g. Mac OS X while
others use different systems e.g. PC Windows
terminal, UNIX server for calculations.

Also, social networking web sites, such as facebook,
provide a powerful framework and resources for
enabling collaborative endeavours amongst
researchers. Due to their inherent distributed nature,
they serve as a source of immense computational
power and can facilitate sharing of code
functionalities across users. This feature of social
networks can be utilized for integrating knowledge,
methods and data from different disciplines. .
Currently available, collaborative code sharing
project management tools typically allow various
researchers to work on a project based on a single
programming language in a centralized
environment. This works well when there is a
closely knit team of scientists working in a common

language and executing code on a single machine.
Also, current programming models for cross-
language communication such as SWIG,
(http://www.swig.org) use a high level language for
prototyping and low level one for optimized code.
This is suited to situations in which when there is a
team of researchers who typically use one language,
say Matlab and want to interface it with say, C for
speed. Other programming models [2] use an
interface definition [1] and a language or platform
description of a software library. These are then
processed to generate glue-code which is used for
cross-language communication. This approach
requires significant familiarity with the tools, which
greatly impairs diffusion of its use.

Various software tools that allow for distributed
computing like Globus [3] have their own toolkits
for specific languages and computing facilities for
deployment of grid-based projects [6].

There is a need for a platform which can enable
researchers to share and execute codes and
functionalities in various languages across disparate
platforms. Moreover, use of social networks as a
distributed source of computational power,
resources and as a means of sharing of methods
across users can be beneficial to the bioinformatics
community.
We have therefore developed SCLIP to allow
cooperation between developers by allowing
seamless code sharing and distributed execution
over a web-based framework using social networks.

Implementation
SCLIP is composed of two parts: 1) a facebook
application providing a web-based framework for

sharing methods and 2) a daemon running as a
service on various systems for allowing cross-
language communication (see Figure 1).

 - 3 -

The facebook application is implemented in
Facebook Markup Language (FBML), using the
facebook Application Programming Interface (API)
and AJAX. AJAX allows asynchronous loading of
data without the need to reload the page thus
providing a desktop like application behaviour.

The daemon service is graphical based,
implemented using Python, a platform independent
object-oriented programming and scripting
language.
The facebook application provides an interactive
framework for the user to view, share and execute
various methods deployed by him and his or her
friends. This functionality is broadly implemented

under three distinct interfaces in the facebook
application.

The first interface, View Methods allows the user to
query the available shared methods by his or her
friends. The second interface, Editor enables real
time programming and execution of methods, with a
graphical window to view or download results. The
base language used for writing programs in the
editor is Python. The third interface, Multi-Mode
Console combines the first two interfaces enabling
rapid prototyping and testing. This application also
allows the users to register their daemon service so
as to enable their shared methods to be accessed by
their friends.

Figure 1
Flow Chart. This figure illustrates the overall SCLIP communication flow diagram.

Each user in the facebook application works in his
or her own address space containing the source and
the data files for each user. File handling
mechanisms are provided for uploading and
downloading of source and data files.

The daemon software enables users to integrate
their code functionalities written in various
programming languages. It provides a very intuitive
Graphical User Interface, which allows users to add
methods in all major languages used in
bioinformatics. The automatic detection and
integration mechanism in the daemon makes it very
easy to use and deploy. The daemon comes with the
latest precompiled binaries for all the languages it
supports for various platforms, so the user does not
need to install.

For up gradation of libraries or compilers the user
just needs to install the updated versions in the

daemon directory. The daemon then uses the new
versions for all further compilations and executions.

Protocol between the Facebook Application and
Daemon
SCLIP uses XML-RPC, which is a simple yet a very
robust remote procedure calling mechanism for
interaction between the application and the daemon.
This protocol uses the Hypertext Transport Protocol
(HTTP) as the transport vehicle and Extensible
Markup Language (XML) for encoding, allowing
complex data structures to be transmitted, processed
and returned [13]. The data types supported range
from primitive data types such as integers, doubles
and strings to complex data types such as arrays and
structures.

The use of XML-RPC enables SCLIP to make
remote procedure calls over the Internet and we
preferred this for it’s simplicity, minimalism, easy

 - 4 -

of use and that most programming languages
support libraries for this protocol.

Interplay among the Facebook Application and
Daemon
SCLIP uses methods or functions in programming
language as atomic constructs to be shared and
executed amongst users.

A user who wants to share his methods with his
friends, adds them to be shared by him using the
daemon software. Integrating methods from various
language is made vey intuitive and easy by the
daemon. The videos and the manual available on the
web-site provide a detailed explanation on this
process. The user then registers his daemon service
using the facebook application so as to enable their
sharing and execution across his friends.

The user’s friends can now select functions offered
by him. For accessing shared methods there is a
special syntax

>> clip.<Method Name>(<Arguments>)

When the code is executed, interspersed with these
shared methods, the requested method is parsed by
the backend of the facebook application to extract
out the function name and the arguments. Next, the
associated system with the function is directed to
execute the function. The system containing this
function spawns a language specific XML-RPC
service, and evaluates the function. The result is

sent back to the facebook application for further
computation or to be displayed to the user.

Results and Discussion
The SCLIP daemon currently supports sharing of
code functionalities for Python, Java, Lisp, Matlab,
R, Perl, C, C++ and Ruby. It has functionality for
automatically detecting and integrating XML-RPC
capabilities to any given software library.

An example of the functionality of SCLIP is
demonstrated here using an Affymetrix gene
expression dataset [12]. This study involved two
types of acute leukemias: Acute Lymphoblasic
Leukemia (ALL) and Acute Myeloid Leukemia
(AML). Clustering analysis using partitioning
algorithms like pam (partitioning around medoids)
was performed on the dataset and silhouette plots
were produced using SCLIP (Figure 2).

In this example, the user specified the code for R-
implemented algorithm via the facebook application
and this request was directed to a friend’s computer
for execution. The R function was executed, the
results were returned in a non-language specific
format, and the output was then plotted by the
facebook application (see Figure 2). Further
analysis can be done by calling methods
implementing algorithms in other languages.
Moreover, the code and the plots can be shared
between friends for further work.

Figure 2
Multi-Mode Console. Silhouette plot for Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia
(AML) datasets calculated using SCLIP.

 - 5 -

This example also highlights various methods in
disparate languages shared by the user’s friends. A
sample output of the execution of those methods is
also displayed.

We have developed an integrated platform for
enabling seamless collaborations within an
interdisciplinary workspace. The uniqueness of this
framework is in the intuitiveness and ease in which
it enables programming language interoperability
combined together with the novel use of social
networks for enabling distributed computation and
assimilation of results.

Other existing tools for programming language
interoperability, are either inadequate for the needs
that arise in bioinformatics or have a very steep
learning curve thus rendering their limited use. This
framework certainly tried to overcome these
limitations that exist in the currently available
infrastructure promising fast prototyping and
deployment of interoperable code. We have
supported all the major programming languages in
use by the bioinformatics community.

Thus, this framework provides a novel way to
seamlessly integrate analysis within an
interdisciplinary and disparate workspace across
researchers.

Conclusions
SCLIP allows bioinformatics researchers to
collaborate in real-time by using social networks as
a means for cooperation and sharing of resources.
Most of the languages used in bioinformatics are
currently supported, allowing researchers all over
the world to communicate seamlessly. Given this
incorporation of various languages in use by
researchers in bioinformatics combined with the
enormous potential of social networks in terms of
the computational resources it provides, the
developed framework could be of great interest and
use to the bioinformatics community.

Availability and Requirements
• Project name: SCLIP

• Project home page:
http://bcl.med.harvard.edu/proj/SCLIP

• Operating System: Microsoft Windows, Linux,
Mac OS X

• Programming Language: Python, FBML, Ajax

• Other requirements: Web-browser, Facebook
Account, 800 MB of free hard drive space with
minimum 256 MB of RAM.

• Licence: GNU-GPL

• Any restrictions to use by non-academics:

GNU-GPL Licence

Installation of the SCLIP daemon is provided
through an installer and should be complete within
half and hour. Step-by-step instructions are
provided in the manual available on the web-site.
The Facebook application is browser based,
facebook specific and only requires the necessary
rights to access your profile details.

Authors' contributions
GA conceptualised the idea, design of the
application and helped in drafting the manuscript.
KM designed the application and drafted the
manuscript. He was responsible for the
implementation of the daemon and the facebook
application. PM gave valuable suggestions on the
usability of the framework. AA participated in
implementing intermediate functionaries for the
application. MFR was responsible for the overall
project coordination. All authors give final approval
of the version to be published.

Acknowledgements

References
1. Jacobsen A: Programming language

interoperability in distributed computing
environments. In Proceedings of the IFIP WG
61 International Working Conference on
Distributed Applications and Interoperable
Systems II. 1999: 287 – 300.

2. S. Kohn GK, J. Painter, C.J. Ribbens:

Divorcing language dependencies from a
scientific software library. In Proceedings of
the Tenth SIAM Conference on Parallel
Processing for Scientific Computing;
Philadelphia, PA. 2001

3. Foster I: Globus Toolkit Version 4:

Software for Service-Oriented Systems. In
FIP International Conference on Network and
Parallel Computing. 2006: 2 – 13

4. Rob Armsrtong DG, Al Geist, Katarzyna

Keahey, Scott Kohn, Lois McInnes, Steve
Parker, Brent Smolinski: Toward a Common
Component Architecture for High-
Performance Scientific Computing. In
Proceedings of the 8th IEEE International
Symposium on High Performance Distributed
Computing. 1999: 13.

5. E-Kai Shen SM, Istabrak Abdul-Fatah:

High performance adaptive middleware for
CORBA-based systems. In Proceedings of the
nineteenth annual ACM symposium on
Principles of distributed computing. 2000: 199 -
207.

6. Raffaele Montella GA, Daniele

Mastrangelo, Milena Menna: A globus toolkit 4
based instrument service for environmental

 - 6 -

data acquisition and distribution. In
Proceedings of the third international workshop
on Use of P2P, grid and agents for the
development of content networks; Boston, MA,
USA. 2008: 21 - 28.

7. Remi Bastide PP, Ousmane Sy, David

Navarre: Formal specification of CORBA
services: experience and lessons learned. In
Proceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming,
systems, languages, and applications;
Minneapolis, Minnesota, United States. 2000:
105 - 117.

8. Vinoski S: CORBA: Integrating Diverse

Applications Within Distributed
Heterogenous Environments. IEEE
Communications Magazine 1997.

9. Maria Toro TTH, Jinsong Zhu, Kangming

Liu, Victor C. M. Leung: CORBA based design
and implementation of universal personal
computing. Mobile Networks and Applications
2003, 8:75 - 86.

10. S. Brunett KC, S. Fitzgerald, C.

Kesselman, I. Foster, S. Tuecke, A.
Johnson, J. Leigh: Application
Experiences with the Globus Toolkit. In
Proceedings of the 7th IEEE International
Symposium on High Performance
Distributed Computing. 1998: 81.

11. Gary Kumfert DEB, Thomas Epperly,

James Kohl, Lois Curfman McInnes, Steven
Parker, and Jaideep Ray: How the Common
Component Architecture Advances
Computational Science. In Proceedings of
Scientific Discovery through Advanced
Computing. 2006

12. T.R. Golub DKS, P. Tamayo, C. Huard, M.

Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh,
J.R. Downing, M.A. Caligiuri, C.D. Bloomfield,
E.S. Lander: Molecular classification of
cancer: class discovery and class prediction
by gene expression monitoring. Science
1999, 286:531 - 537.

13. Allman M: An evaluation of XML-RPC.
ACM SIGMETRICS Performance Evaluation
Review 2003, 30:2 - 11.

