
BitTAKA: Anonymous BitTorrent

Tural Badirkhanli
turalb@mit.edu

Amrik Kochhar
amrik@mit.edu

Albert Ni
albertni@mit.edu

Kuat Yessenov
kuat@mit.edu

May 15, 2008

Abstract

The highly popular BitTorrent peer-to-peer file sharing protocol does not provide users
any anonymity. We present BitTAKA, a modification of the BitTorrent protocol that provide
users a degree of anonymity without an overwhelming performance sacrifice. Partly inspired
by onion-based routing protocols, we analyze the theoretical anonymity of BitTAKA. We also
measure the performance loss in our protocol relative to the original BitTorrent protocol using
a customized simulation framework.

1



1 Introduction

BitTorrent[1] is one of themost popular peer-to-peer file sharing protocols on the Internet today. In
fact, according to CableLabs, a North American research and development laboratory, BitTorrent
currently accounts for approximately 18% of all broadband traffic [2]. However, the BitTorrent
protocol does not provide users any anonymity. In particular, users can easily discover the IP
addresses of other users in the network, as well as what files they are uploading and downloading.
This has become a serious concern among BitTorrent users for a variety of reasons, including the
risk of being sued for downloading a copyrighted material. In this paper we present the BitTAKA
protocol, a modified BitTorrent protocol for anonymous peer-to-peer file sharing.

1.1 TOR

TOR[3] is an overlay network that operates on the TCP stream level and provides anonymity to
its users by forwarding packets throughwhat is called a virtual circuit. The packets are forwarded
in layers of encrypted data, which is why it is called The Onion Router (TOR). TOR ensures that
every hop in the virtual circuit only knows about the previous hop the packet came from and the
next hop that it needs to forward the packet. No hop in the circuit has information about both the
source and the destination of the packet.

1.2 BitTorrent over TOR?

An obvious question to ask is why not just use the BitTorrent over TOR? A problem with using
TOR for BitTorrent traffic is that it decreases network performance substantially. One of the rea-
sons TOR is slow is that a typical circuit consists of 3-4 TOR nodes through which a packet needs
to go before reaching the destination. These nodes are located in various parts of theworld and the
traffic is often bottlenecked by one of these nodes. Another reason stems from the measure taken
to prevent a possible attack to TOR network. The problem is that TOR nodes self-report their
available bandwidths and therefore can lie about them, thus resulting in network congestion. To
prevent this, TOR assumes a maximum bandwidth (currently 1.5 Mb/s) for every node indepen-
dent of what the node reports [4]. Obviously, this leads to inefficiency because the bandwidths
of the nodes that, in fact, have more bandwidth than the enforced upper-limit are not utilized.
However, even if all the bandwidths of all the nodes were fully utilized, the TOR network would
still likely be too small to handle all of the file sharing traffic. Lastly, TOR currently tries to avoid
being used for BitTorrent traffic by rejecting certain ports that are known to belong to BitTorrent.

1.3 Organization

In Section 2, we describe our goals for the BitTAKA protocol, as well as the protocol itself. In
Section 2.5.3, we analyze the security of the system in the face of a variety of attacks. In Section
4, we describe a simulation implemented to test various aspects of the protocol, and its results.
Finally, we talk about potential improvements and conclude in Sections 5 and 7.

2



2 The BitTAKA Protocol

In this section we describe the BitTAKA protocol. In particular, we explain how BitTAKA can be
used to share files between users while still providing those users anonymity, the concept of which
is more concretely defined in Section 2.1. Terminology and notation specific to BitTAKA and this
paper is explicitly covered in Section 2.1. The BitTAKA tracker is described in Section 2.2. Further
specifics regarding how everything works are given in Sections 2.3.3 through 2.4.4.

2.1 Axiom of Anonymity

The fundamental idea behind BitTAKA is tomake it possible for any two of its clients to share a file
without either client learning any identifying information about the other. In particular, BitTAKA
aims to satisfy the following “axiom of anonymity”:

• Given an arbitrary user Ui of the BitTAKA network for which Ui has an IP address of IPUi
,

and is downloading and/or uploading a set of files FUi
, any other arbitrary user Uj of the

network can never associate IPUi
with any element of FUi

.

In other words, this says that any BitTAKA user cannot determine what files are being shared
by a given IP address, and cannot determine what IP addresses are sharing a given file. In the
simplest case where two users A and B are sharing a file f , since both users know of a file that the
other is sharing, this implies that A and B must not be able to learn each other’s IP addresses. In
order to make this possible, BitTAKA requires that all traffic between A and B go through a third
intermediary client F.

Figure 1: The simplest case, where clients A and B share parts of file f (denoted by f chunk) without
communicating directly, but rather through a forwarder, F.

In Figure 1, it is not necessary for A and B to know each other’s IP addresses. However, it is
necessary for both A and B to know IPF , and similarly, it is necessary for F to know both IPA

and IPB . Therefore, F must not know of the contents of the file f it is forwarding. Given this
basic setup, three primary issues arise, each of which will subsequently be addressed within this
section.

The first issue is how to give F any incentive to forward. In Figure 1, F gains nothing from
facilitating the sharing of f between A and B, and loses bandwidth in the process. The second

3



issue is how to bring a situation such as the one in Figure 1 into existence in the first place. In the
original BitTorrent, one of A and B would have contacted a tracker, and been given the other’s IP
address to connect to. Obviously this protocol is no longer viable. In particular, where F comes
from in the very first place must be determined. Lastly, the third issue is how to keep F from
learning the contents of f.

2.2 Terminology and Notation

We introduce some terminology and notation specific to BitTAKA and/or this paper, as well as
formalize the notions behind some of general terms that have already been used in this section.

BitTAKA - The name of our file sharing network. May be used interchangeably with the phrase
“the network”.

Client - This refers to any arbitrary user, for instance a person on his/her personal computer,
connected to the network to share files. “Client” is used interchangeably with “user”.

Share - A client is said to share a file if it is either downloading or uploading that file (or both).
In particular, for a given file f, every client, from one that has just started downloading it and
possesses no part of f, to what is traditionally known in BitTorrent as a seeder for f (a client that
already possesses the entirety of f and is staying connected to the network to help distribute f to
others) is considered to be sharing f.

Peer - Two clients in the network are considered to be peers, with respect to a given file f, if they
are currently sharing f with one another.

Forwarder - A client F in the network is considered to be a forwarder, with respect to a given
file f and a given pair of peers A and B, if F is forwarding parts of f between A and B. In this
situation, we often say “F is a forwarder for peers A and B”.

Neighbor - Two clients A and B in the network are considered to be neighbors, with respect to
a given file f, if traffic related to f is being passed between A and B in some manner. Note that
this implies that A and B know one another’s IP addresses. In addition, if some client F is a
forwarder for some client C, this implies that F and C are neighbors, so for any given file, C’s set
of forwarders for that file is a subset of C’s set of neighbors.

Connection - Two neighbors in the network are always considered to have a connection between
each other. Depending on the context, connections may be considered to be directed. They also
may be file-specific or just referring to the connection throughwhich all traffic between two neigh-
bors is passing through.

Forwarding Connection - This is a directed, file-specific connection that is being used to forward
a file f from a forwarder, who does not actually care about the contents of f, to one of its neighbors
who does.

Peer Connection - This is a directed, file-specific connection that is being used to send a file from
a client to a forwarder, so that the forwarder can then subsequently forward this to the intended

4



destination peer.

IPX - Stands for “the IP address of client X”.

UIDX - Stands for “the unique ID of client X”. The purpose of UIDs is explained in Section 2.3.1.

KnowX - This is the set of IP addresses and UIDs known to client X.

2.3 Tracker

In the BitTorrent protocol[5], trackers are centralized servers which serve as an initial contact point
for BitTorrent clients when they first start downloading and/or uploading a file. Trackers also
assist clients in establishing additional connections with other clients, and communicate with all
the clients they know of periodically to aggregate statistics, update information about the state of
the network, and more.

In BitTAKA, the tracker serves a much larger role than that of a BitTorrent tracker. In this section,
we introduce the BitTAKA tracker and describe its role within the BitTAKA protocol as a whole.
We also introduce a special piece of state maintained within the BitTAKA tracker known as the
IP-UID map in Section 2.3.1. From this point forward, the term “tracker” is assumed to mean
“BitTAKA tracker”, and not “BitTorrent tracker”.

Also, note that thus far, we have referred to the BitTAKA tracker in singular terms. This is be-
cause in this section, we make the assumption that we have but exactly one tracker, that is both
centralized and trusted for everything. Readers familiar with BitTorrent may note that not only do
there exist many BitTorrent trackers, but that the BitTorrent makes it possible to have distributed,
decentralized tracking. We make the “one centralized tracker” assumption for two primary rea-
sons. First, this assumption simplifies the description of the BitTAKA protocol, as it there is no
ambiguity as to which tracker we are referring to at any given moment. Second, and more impor-
tantly, certain elements of the version of the BitTAKA protocol being presented in this section do
indeed depend on having a centralized trusted tracker. Further discussion on modifications to the
BitTAKA protocol which would remove the need for a centralized trusted tracker can be found in
Section 5.

2.3.1 Responsibilities

The primary, and in some sense only, responsibility of the tracker is to establish and regulate
communication between BitTAKA clients. Like in the original BitTorrent protocol, the tracker
serves as an initial contact point for a client seeking to share a file. However, unlike in BitTorrent,
where subsequent peer to peer communication does not necessarily have to be facilitated by the
BitTorrent tracker, in BitTAKA, all communication is strictly regulated by the tracker. Aswe saw in
Section 2.1, establishing a connection between two peers for the sharing of some file is no longer
as simple as it was in BitTorrent. In particular, a forwarder is needed, and it is the tracker’s
responsibility to find one. In addition, the tracker cannot simply assign any arbitrary forwarder
to a given pair of peers. Rules and guidelines regulating this process are detailed in Section 2.3.3.

5



To fulfill its duties, the tracker must also maintain two important pieces of state - the IP-UID map,
and the network graph.

2.3.2 IP-UIDMapping

The IP-UID map is one of the keys to BitTAKA’s anonymity. It is a two-way mapping between the
IP addresses of clients in the network, and unique IDs assigned to those clients by the tracker. The
purpose of UIDs is to act as a piece of identifying information for clients that does not expose any
further information about the client (in particular, the client’s IP address). For instance, the set of
clients sharing some file will often learn many of the UIDs of the other clients sharing that file, but
none of their IP addresses.

Two invariants regarding the IP-UIDmap are vital. First, it is absolutely crucial that no clients ever
learn of any element in the IP-UID map. Second, no information about a client should be exposed
through its UID. This means that clients should not be assigned permanent, or even long-term
UIDs, and that the UID of a client should not depend on its IP address in any way. In practice,
assigning clients a new, randomly generated 256-bit integer every 12 hours should suffice.

2.3.3 Network Graph

The network graph is an encapsulation of all of the connections in the network. It is not necessarily
a true graph, but rather just a full picture of the network, and contains information about all of the
clients, all of the connections, and all of the files being shared. It is important for the tracker to keep
the network graph reasonably up to date at all times, since knowing what clients are sharing what
files, and which forwarders are being used for which pairs of peers, are needed for the tracker to
manage the connections of the network.

Note that it is actually not too difficult for the tracker to maintain the network graph. While in
BitTorrent, users may form connections without informing any BitTorrent trackers, in BitTAKA,
clients are completely dependent on the tracker for forming new connections. In addition, the
BitTAKA tracker can imitate BitTorrent trackers in how they periodically communicate with the
clients of the network for status updates, or to simply ensure that the client has not abruptly
disconnected.

2.4 Circuits

Now that the tracker has been introduced, we can finally discuss the details of the BitTAKA pro-
tocol. To do so, let us introduce the BitTAKA circuit. Named in the spirit of the TOR circuit, a
BitTAKA circuit consists of the clients and connections that make the sharing of one or more files
possible, and is essentially the fundamental unit of BitTAKA.We have already seen an example of
the simplest possible circuit in Figure 1 (shown again here for convenience along with additional
labeling).

6



Figure 2: The simplest possible circuit.

In this section, we describe more complicated circuits, how they are used to address the three
issues mentioned in Section 2.1, and how they are formed in the first place.

2.4.1 Standalone Circuits

As has been noted, the circuit shown in Figures 1 and 2 provides no incentive for the forwarder to
actually perform the task required of it. Thus, let us introduce the concept of a standalone circuit,
which is a circuit that includes incentive for the forwarders in the circuit to actually forward.

Figure 3: The simplest standalone circuit.

The simplest standalone circuit consists of four clients as shown in Figure 3. In this circuit, peersA

and B are sharing file f1, and peers F and K are sharing file f2. Thus, F is acting as a forwarder
for A and B, and B is acting as a forwarder for F and K. Also,

KnowA = {IPF , UIDB},

KnowF = {IPA, IPB , UIDK},

KnowB = {IPF , IPK , UIDA},

KnowK = {IPB , UIDF }.

Of course, this construct alone does not actually provide incentive for F to forward f1 and B

to forward f2. Rather, a modified version of the BitTorrent tit-for-tat upload incentive system is
necessary.

2.4.2 Tit-for-Tat

In BitTorrent, a tit-for-tat based system is used to give peers incentive to upload, where a user’s
upload rate to a peer dictates the rate at which the user is allowed to download from that peer as

7



well. The most important feature of this system is that it makes it possible to punish a malicious
or uncooperative user that seeks to maximize its download rate and minimize the amount of its
bandwidth used for uploads.

However, in BitTAKA, not only are peers not directly connected, but the livelihood of a connection
between two peers also depend on the cooperation of a forwarder which neither seeks to upload
nor download the file being shared by the peers-in-question. This has a couple of important ram-
ifications. First, given a pair of peers A,B and a forwarder F, the download rate of A from B is
dependent on the cooperation of both F and B. However, if one of F and B are being uncooper-
ative, it is impossible for A to determine which. Second, in order for a forwarder C to have any
incentive whatsoever to actually forward, C’s download rates for files it actually cares about must
depend on more than just its upload rates for those same files, but also its forwarding rates.

Because of the aforementioned ramifications of the BitTAKA protocol, clients in the BitTAKA net-
work use a system where blame for a poor connection is distributed between forwarders and
peers. In particular, in a given circuit C containing a pair of peers and a forwarder, each peer
effectively views the forwarder and other peer as one unit, as in Figure 4.

Figure 4: A circuit C containing peers A, B and forwarder F on the left, and how A views this circuit from
a tit-for-tat perspective on the right.

Consequently, from the perspective of any given peer, a circuit involving that peer is very similar
to just a standard BitTorrent connection between two users in terms of managing tit-for-tat. We
now return to the simplest standalone circuit from Figure 3, and consider it from the perspective
of its two forwarders.

Figure 5: The view of the simplest standalone circuit from the perspective of F on the left, and from the
perspective of B on the right.

In Figure 5, from F ’s perspective, B and K are effectively one unit, and from B’s perspective, A
and F are effectively one unit. Since F wants to share a file (or files) with K, it has incentive to
satisfy the wants of both elements of the (B,K) unit so that tit-for-tat will kick in in F ’s favor.
Note that in particular, this implies that F has an incentive to satisfy the wants of B. But, since
B wants to share a file with A, this implies that F will need to forward traffic from A to B. We
perform a more formal analysis of the incentive structure below.

8



Figure 6: The simplest standalone circuit, with its connections labeled 1 through 6.

Consider the connections labeled 1 through 6 in Figure 6. Assume that the peers A and B are
sharing the file fab, and that peers F and K are sharing the file ffk. Since connections 2 and 5 are
being used to share both fab and ffk, we distinguish these cases by calling them 2ab, 2fk, 5ab, 5fk.

Now, let us examine how tit-for-tat impacts each connection, and enforces incentive for all clients
involved in the circuit.

Connection 1 - This peer connection is used by A to send portions of fab to F with the intent of it
reaching B. If A decreases the amount of bandwidth it allocates for 1, this will cause B to receive
parts of fab at a slower rate. In turn, since B views A and F as a unit, it will respond by decreasing
the amount of bandwidth it allocates for both 5ab and 5fk. The decrease in allocation to 5ab will
result in A receiving parts of fab at a slower rate as a consequence of its original decrease of 1.

Connection 2ab - This forwarding connection is used by F to forward portions of fab that F re-
ceived from A through 1 to B. If F decreases the amount of bandwidth it allocates for 2ab, this will
cause B to receive parts of fab at a slower rate. In turn, since B views A and F as a unit, it will
respond by decreasing the amount of bandwidth it allocates for both 5ab and 5fk. The decrease
in allocation to 5fk will result in F receiving parts of ffk at a slower rate as a consequence of its
original decrease of 2ab.

Connection 2fk , 4, 5ab - These peer connections are effectively identical to Connection 1.

Connection 3, 5fk , 6 - These forwarding connections are effectively identical to Connection 2ab.

Consequently, we see that this standalone circuit does indeed stand alone in the sense that all
connections within the circuit do indeed provide incentive for the clients in the circuit to maintain
them. Thus, if BitTAKA is run over a network of standalone circuits, the result will be a BitTorrent-
esque peer-to-peer file sharing network in which there exists incentive to upload and forward files.
In the following section, we address how standalone circuits can be formed in the first place, and
how the different components of a standalone circuit learn of their standalone circuit.

2.4.3 Forming Circuits

In this section, we discuss the three primary methods used by the tracker to form standalone
circuits.

Bootstrapping

The bootstrapping method for forming standalone circuits is named after the fact that it does not

9



require any sort of preexisting network of peers, and thus can be used at any time. The tracker
“bootstraps” a standalone circuit by first waiting for two pairs of peers, A,B and C,D where A

and B want to share the same file, and C and D want to share some other file (not necessarily
different), to contact it, as can be seen in Figure 7.

Figure 7: Step 1 in the bootstrapping process - clients A, B, C, D contact the tracker informing it of the file
they each want to share.

Once this happens, the tracker sends each client the information necessary for forming a circuit.
Each client is told which IP addresses it needs to form connections which, the UIDs of the client
they will become peers with, and whether or not they need to act as a forwarder as well, as can be
seen in Figure 8.

Figure 8: Step 2 in the bootstrapping process - the tracker sends clientsA, B, C, D the information necessary
to form a circuit, as well as their assignments within the circuit.

The end result is the circuit seen in Figure 9.

10



Figure 9: The result of the bootstrapping process.

Thus, we can see that only two pairs of peers are needed to establish a standalone circuit.

Integration

In the original BitTorrent protocol, if possible, users will connect with multiple other users for
the same file. Fortunately, it is easy to do this while still using standalone circuits, using the
integration method for forming circuits. The integration method can be used with clients that are
already involved in some circuits, but would like to form more, presumably to download their
desired file at a faster rate. The integration method might also be used for a client that wishes to
switch circuits, perhaps because the peer/forwarder pair in a current circuit is misbehaving, or
simply because the client would like to try to find a new, better connection.

First, a client that is already part of one or more circuits contacts the tracker, as can be seen in
Figure 10.

Figure 10: Step 1 in the integration process - client C informs the tracker that it would like to find another
peer to share file y with.

Upon receiving this message, the tracker then finds another client in the network also seeking to
share the file in question, and sends the relevant clients the information necessary for forming a
circuit, as can be seen in Figure 11.

Note that the tracker makes use of its up-to-date network graph in both finding another client

11



Figure 11: Step 2 in the integration process - the tracker finds client E who is also sharing file y, and sends
clients A, C, E the information necessary to form a circuit, as well as their assignments within the circuit.

that is sharing the same file as C, and in knowing that C is already part of a circuit involving A.

Additionally, C could have included information about all of the circuits it is currently a part of
when originally contacting the tracker about finding a new peer. The end result is seen in Figure
12.

Figure 12: The result of the integration process.

Note that the tracker took advantage of the fact that C was already acting as a forwarder for one
of its neighbors, namely A. Consequently, A would have incentive to properly forward traffic
between C and its new peer E.

2.4.4 Addressing The Weakest Link Effect

Having traffic sent between peers in BitTAKA going through a forwarder causes an overall de-
crease in performance for three reasons. The first reason is that circuits obviously double the
number of hops required to send anything to its desired destination. The second reason is that the
bandwidth of clients is used not only to upload and download files that the client is interested in,
but also to forward files that the client is not interested in. The third reason is that the effective
bandwidth between two peers is limited by the weakest link out of the four connections involved
in a simple peer-forwarder-peer circuit.

While the first two reasons cannot be easily avoided while preserving the original intentions of
BitTAKA, the third can be alleviated. Namely, the most unfortunate situation is one where two

12



peers both have excellent bandwidth that they are willing to use to share a file, but the forwarder
between them has poor bandwidth. In such a scenario, it would be nice if the peers could switch
to another forwarder with better bandwidth, or add a new forwarder. Here, we list two such
techniques to improve the likelihood of such a course of action.

Bandwidth Declaration

One way two peers are able to realize that the forwarder between them may be acting as a bot-
tleneck for their bandwidth is to send each other a message (through their forwarder) about their
respective bandwidths. If both peers determine that a different or additional forwarder may be
useful, they agree to contact the tracker to establish this new circuit.

Optimistic Forwarder Unchoke

In BitTorrent, users contact the tracker and receive a list of potential peers, but do not connect to
all of them simultaneously. Instead, users occasionally perform what is known as an optimistic

unchoke, where they switch or add a new connection in hopes of finding a connection with better
bandwidth.

Recall from Section 2.4.1 that in a given circuit between peers A and B with forwarder F, A views
its peer and forwarder as a unit (F,B). Thus, BitTAKA also naturally incorporates optimistic un-
choking between peers by having A apply the same principles used in BitTorrent to the unit (F,B).
However, in the case where two peers have good bandwidth but the forwarder between them
does not, this is not the desireable course of action, because it breaks up the pairing of two peers
with good bandwidth. Instead, peers also occasionally perform an optimistic forwarder unchoke,
where one or both peers in a circuit contact the tracker and request that the tracker help find them
a new forwarder.

2.5 File Encryption

Thus far, the focus in this section has been on preventing peers from discovering each other’s
IP addresses. However, since a forwarder learns the IP addresses of both peers in a circuit, it is
necessary that a forwarder does not learn anything about the contents of the file it is sharing. In
addition, malicious forwarders could hypothetically observe and alter the contents of the mes-
sages and files they forward. In this section, we describe how we apply cryptographic techniques
in order to remedy these issues.

2.5.1 Public Key Encryption

In this section, we describe how BitTAKA applies public key encryption to hide information about
the header and contents of traffic between peers being sent through a forwarder.

Assume each client X has a public key PKX and a private key SKX (how exactly keys are dis-
tributed is discussed in Section 2.5.2). Then, given a circuit connecting peers A and B through

13



forwarder F, messages m from A are encrypted using the public key of B resulting in

m′ = EPKB
(m).

Next, m′ is sent to F, which then forwards it to IPB . The receiving peer B can decrypt the content
of the message using its private key SKB and read the message. This is similar to techniques used
in onion-routing protocols. However, unlike TOR, BitTAKA does not apply encryption at every
step. Instead, BitTAKA’s technique is closer to applying end-to-end encryption to files as used in
the BitTorrent protocol. As for the actual encryption scheme, RSA appears to be a good candidate
for use.

2.5.2 Message Authentication Codes

In addition, messages are also paired with message authentication codes to prevent altering of
their content by a malicious forwarder. Since MACs are widely used and there exists much litera-
ture on them, we do not explore this part of the protocol in detail here.

2.5.3 Key Distribution

Distribution of keys is performed by the tracker. When a client first connects to the BitTAKA
network (for instance by starting up his/her BitTAKA software), the tracker generates a public
and private key for that client. The private key is sent to the client, while the public key is made
available for all clients in the network to view. Note that communication with the tracker can be
secured by using a known public key of the tracker and a secret session key.

Diffie-Hellman key distribution scheme is applicable to the BitTAKA protocol [6]. The important
assumption of this scheme is that the key distribution center is trusted, and the generated prime
number and the primitive root are trusted to be correctly generated. In this scheme, peers of a
circuit agree on a secret symmetric key which is known only to them and not their corresponding
forwarder.

3 Security Analysis

In this section we analyze security of our system against multiple attacks. One of the crucial
invariants of our system is the following:

Invariant 1. At no point in time, can a peer in the network learn the mapping between the names
and the actual network addresses of other members except himself.

This invariant is too strict to be guaranteed by any real-life mixnet-like system. Therefore, we
discuss different variants of relaxation of the invariant.

14



3.1 Attacks

We present a list of possible attacks on the system and discuss their practicality and security risks
to our system. Since we cannot hope to cover all possible attacks described in literature [7], we
only show the most significant attacks, roughly in the order of the magnitude of their risks.

3.1.1 Malicious Tracker

Our system does not withstand attacks on the tracker in the sense that if the tracker has full access
to the tracker or its state, or can eavesdrop all communication between the tracker and the peers,
our invariants are violated. Moreover, the system relies on the assumption that the tracker is
trustworthy. For example, if the tracker generates names that are not truly random and can be sta-
tistically correlated to addresses, then an adversary can still learn something about the addresses
from the names. In section 5, we consider the possibility of making the tracker decentralized and
how it effects trustworthiness requirement.

3.1.2 Collusion of Peers

A set of different attacks on the system uses a group of malicious peers with coordinated actions.
For example, in the simple systemwe presented if the adversary has both one of the end points of
the circuit as well as all intermediate forwarders in between, then the group as a whole can learn
the mapping between the name and address of the other end point of the circuit. There are two
measures of techniques that help reduce the risks associated with this form of the attack:

1. Forwarders are selected non-deterministically; this way the probability that a newly formed
circuit is under control of an adversary is optimal assuming the tracker does not infer which
peers are malicious.

2. Circuits can consist of larger number of forwarders. This way the probability that a complete
circuit can be taken over by a malicious adversary decreases exponentially.

3. Forwarders can have rankings of trustworthiness. Since a particular form of the attack in
this category uses a large group of peers who join the network together in the hope of some
of the peers to be connected together through a circuit, we can tolerate this kind of attack by
assigning less probability of selection to recent peers rather to long-established forwarders.
Ideally, a collection of dedicated trusted forwarders can greatly reduce the risks of the attack,
although the existence of such dedicated peers is not required in our design but is certainly
useful as a practical way of improving anonymity.

3.1.3 Malicious Forwarders

There are two kinds of attacks that a malicious forwarder might undertake. One is eavesdropping
the forwarder messages, and the other kind is misbehaving in the protocol itself, i.e. not forward-

15



ing traffic. We have already discussed how encryption can be used against the first kind of an
attack. Essentially, it will reduce all information that the adversary can collect to the IP address of
the source of themessage as well as the corresponding destination address assigned by the tracker.
While there is an opportunity of correlating emmitted messages with names inside the messages,
it would require significant proportion of the forwarders under the control of a single malicious
entity.

The other attack is violating protocol specification for forwarding in order to “free-ride”, ie. get
data without contributing to the network, or otherwise degrade performance. We have mentioned
in the protocol discussion a technique of pairing forwarders so as to enforce incentives for for-
warder via distributing blame between the peer and the forwarder it is connected to. This scheme
ensures robustness of the system even with some forwarders misbehaving.

3.1.4 Malicious Peers

Our tit-for-tat algorithmmimics the Pareto efficiency of the original BitTorrent protocol. The chok-
ing algorithm ensures that peers who download excessively and do not reciprocate are “choked”,
ie. stopped from continuing to download, thus providing a strong incentive for peers to continue
to upload to their own peers.

4 Simulation

One of the primary motivations of our project was to understand the trade-off between anonymity
in large and efficient file-sharing protocols and their performance. We have constructed a simu-
lation framework modelling a network of peers operating BitTAKA protocol. In this section, we
present the description of the simulation enviornment and discuss results of various experiments
comparing performance of BitTAKA protocol relative to BitTorrent protocol.

4.1 Model

The framework is implemented fully in Java and uses non-blocking I/O for network commu-
nication. Each peer and the tracker are represented by threads in JVM and their associated TCP
sockets. The network delay is emulated artificially by delaying packets by random amount of time
approximately equal to real-life Internet latencies. Since the experiments were primarily meant to
be run on a single machine, the files transmitted over the network are artificial. They are parti-
tioned into pieces and chunks in the same way as in BitTorrent protocol, but the actual data within
chunks is truncated. In addition, a set of time-outs and sleep instructions govern peers so that the
performance of the system is network-bound rather than having a bottleneck in CPU or memory.

The results are produced on the following machine:

• Intel Core2 Duo CPU E6750 2.66GHz

16



• 2 GB of RAM

• Ubuntu Gutsy 7.10, kernel version 2.6.22-14 server

4.2 Protocol Implementation

We implemented the essential subset of BitTorrent protocol specification[5]. Since BitTAKA can be
thought of as an extension to the underlying network layer of BitTorrent, the same algorithms are
shared between both protocols. These include algorithms of piece selection, peer selection, and
choking. The key differences between our implementation and the real-world BitTorrent clients
are outlined below:

• Our files consist of 20 pieces, and each piece is partitioned into 32 chunks. The size of the
chunk is chosen to be 100 bytes so as to be sufficiently small to fit into a single TCP packet.
While the size of the file does not fully reflect the real-life files, the number of messages
needed to be sent between peers is an accurate representation of the number of messages
needed to be sent in real-life circumstances.

• The desired pieces are selected at random. In the original specification of BitTorrent, there
is a multitude of strategies applied in selecting next pieces to be downloaded such as rarest-
first, and end of game strategy. Our implementation primarily uses random selection of a
piece.

• The upload rate of peers is measured as a moving average of the number of messages sent
in the last 20 seconds, similar to the original design decision of evaluating transfer rates
although potentially differing from other implementations[1].

• Communication with tracker differs considerably from BitTorrent since it is not done over
HTTP. However, the sessions with the tracker are established infrequently, and whether it
is done over UDP or TCP did not significantly alter performance in out simulation environ-
ment.

• Individual constants are chosen so as to fit the scale of our simulation set-up. For example,
in the original implement it is suggested that the tracker reports 30 neighbor peers at the
announce request. We reduced this number to less than 10 since we do not maintain as many
peers at the same time as encountered in the real-life setting. Some other parameters, such
as the number of parallel download sessions, and the number of parallel chunk requests are
also changed.

Some of the steps of BitTAKA protocol are omitted in our implementation. Encryption on both
end points of the circuit is not used. In addition, circuits used for active download sessions are
not reset periodically and maintained for the duration of the whole session. However, circuits are
assigned by the tracker and chosen uniformly at random, so that the duty of forwarding packets
is still distributed uniformly among peers.

The simulation was primarily focused on evaluating network utilization and performance draw-
back due to excessive number of messages used for forwarding. Therefore, some other perfor-

17



mance factors such as public key encryption impact on CPU or the task of coordinating peers on
the tracker side are ignored in our performance statistics.

4.3 Results

We outline some of the experiments performed with the help of our simulation framework. These
experiments attempted to reflect real-life usage of the protocol for file-sharing.

4.3.1 Uniformly Distributed File

In this experiment we set up a network with peers who have a fairly random but uniform distri-
bution of pieces between them and observe how long it takes for a peer to be able to complete his
own file. This gives us a direct view of how much less efficient the BitTAKA forwarding scheme
is for a given peer at a given file completion level.

As we can see in Figure 13, forwarding has a significant effect on overall network efficiency, slow-
ing down peer downloads roughly 30% in the 20 peer case. The effect is much more pronounced
in the 50 peer case, since forwarding severely restricts the parallelism that BitTorrent provides;
although there is larger variance under BitTAKA a few “stragglers” take considerably longer than
the rest to complete the file.

18



Figure 13: Completion time for a given starting file fraction in a BitTAKA network with randomly dis-
tributed chunks for (a) 20 peers, and (b) 50 peers

19



4.3.2 Seeders and Leechers

In this setting, the network consists of 45 leechers, peers with no pieces initially, one seeder which
owns the whole file, and four additional peer which only contain randomly selected parts of the
file. This simulation reflects behavior of the network at the initial release of the file. Since in this
test, the bandwidth of the seeders becomes the crucial resource on the network, the experiment
shows the behavior of the system in bandwidth-bound scenario.

As before, we performed the same experiment with BitTorrent protocol and BitTAKA protocol.
The results are shown in figure 14.

BitTorrent
average time to completion (milliseconds) 267,219.37
standard deviation (milliseconds) 118,919.83

BitTAKA
average time to completion (milliseconds) 765,356.29
standard deviation (milliseconds) 429,483.39

Figure 14: Performance of protocols with 45 leechers, 1 full seeder, and 4 partial seeders

The large variance is most likely due to some peers receiving far more than their fair share of
forwarding traffic and thus become slowed down, and thus there are peers that get significantly
slowed down as well since they are dependent on this fowarder for a certain period of time. This
leads to a larger variance than in BitTorrent.

4.4 Conclusion

BitTAKA, like other anonymous and pseudonymous peer-to-peer networks, offers a significant
tradeoff between anonymity and performance when compared to standard BitTorrent.

5 Potential Improvements

5.1 Decentralized Tracking

One possible improvement to the security of the system is to decentralize tracking responsibilities.
This means that the querying and circuit building functionality of the tracker has to be supported
in a distributed way, and to be able to do this we will need to relax the restriction that users do not
learn the UID-IP map. Instead of having our condition of anonymity, we will instead focus on the
condition of deniability which we define as follows.

20



Definition 1. (Deniability) Peers who forward traffic to you don’t know what is being forwarded
due to the encryption, and since there is more than one file on the network they can deny knowl-
edge of transmitting copyrighted information, they were just forwarding traffic, which has no
legal precedent for prosecution.

5.1.1 Finding pieces

To achieve this, we leverage our existing BitTAKAprotocol, noting that it can be used as an overlay
network. We can then construct a distributed data store, by using a distributed hash table (DHT)
similar to that used in BitTorrent itself as an extension, to help peers find pieces of files that they
want [8]. Instead of storing IP addresses however, we store the names of peers that have pieces
we want and use the bitTAKA overlay network to contact them. Pieces of a file are stored on users
computers in a cache in encrypted form, and the decryption keys can be distributed separately
over another anonymous network such as Tor. Thus users who are discovered with pieces of the
file on their computer can again claim deniability. This is a strategy similar to that seen in the
Japanese P2P program Perfect Dark [9].

Now since bitTAKA hides the IP address origin of forwarded packets, we inherit our notion of
security by treating our overlay network as a mixnet [10]. The only way to defeat end-to-end
security is to compromise all the forwarders in the chain from sender to receiver. By randomizing
the choice of forwarders, and by increasing the minimum number of forwarders in the chain, we
can make this extremely difficult for an attacker.

5.1.2 Finding routes

To be able to get pieces from one peer to another, we need to construct a chain of forwarders
between them. We can do this by using a simple algorithm where clients on the network advertise
routes to other peers. Those who get these advertisements propagate them as their own route
for the target. This algorithm does not scale very well, however since to contact one particular
node you might end up having to do a broadcast search of the entire network. We can borrow the
algorithm used by I2P to build its routes, by creating a chain of forwarders called a “tunnel” of a
certain minimum length on each side, and then informing everyone of the end of the tunnel as a
way to contact them as seen in Figure 15.

To avoid getting routes with bad forwarders, peers can publish profiles about other peers with
data collected such as speed, capacity and failure rate [11]. Data can be signed by the peer to
ensure integrity. In the I2P instance the routes are asymmetric ie. incoming and outgoing tunnels
are not the same, but for bitTAKA to work correctly we will need them to be to enforce tit-for-
tat; this can cause a reduction in the anonymity of the network and to mitigate this effect we can
accelerate the time T between switching tunnels.

21



Figure 15: Tunnels can be constructed and used to provide routing.

6 Related Work

6.1 TOR

TOR has been increasingly used to anonymize the BitTorrent traffic. Azureus is one of the pop-
ular clients that implement the SOCKS interface for the TOR network. However, as mentioned
earlier, the TOR traffic is slow and prevents the users from utilizing all of the efficiency BitTorrent
can provide. In addition, the ports known to belong to BitTorrent are blocked by the TOR since
volunteers are unwilling to donate their limited available bandwidth for filesharing purposes.

6.2 I2P

I2P is an overlay network for anonymous peer-to-peer communication designed to work for any
traditional internet application. I2P uses what is called garlic routing to route messages. The idea
is that the sender decides on the four nodes the message is going to be transmitted through, puts
one or more messages in a four-layered encryption and sends it to be delivered to its destination.
The main difference between TOR and I2P is that TOR has a centralized view to manage the
network while I2P uses distributed database and peer selection. However, TOR is known to be
more efficient with memory usage and the TOR nodes have less bandwidth overhead. Also the
I2P developers claim that their implementation has not been completed and may have some bugs,
and thus should be used for anonymity yet. However, the BitTorrent client, Azureus, and some
other peer-to-peer file sharing protocols such as Imule, I2phex use I2P network [12].

22



6.3 Freenet

Freenet [13]is another peer-to-peer file sharing protocol that tries to achieve anonymity. The net-
work functions like a distributed hash table, where each file is associated with a key and is dis-
tributed over many connected nodes. The files stored on individual nodes are encrypted and the
claim is that it is hard for anyone to discover who is storing what file. This is true even for the
peers that have a file on their computers. Files may even be broken into pieces and distributed
over many nodes, which makes the anonymity claim even more solid. The routing is done us-
ing friend-to-friend topology, where a user only talks to the peers he trusts, that is, friends, and
talks to other peers through the friends. However, this is a significantly different system from the
BitTorrent and BitTAKA protocols as there is no incentive for the peers to upload data as they
download it. In fact, this system was not built to surve the purpose of efficient peer-to-peer file
sharing but rather the freedom of speech, which the authors believe to be possible only through a
perfect anonymity.

6.4 Closed Source: Winny and Share

There exist a few closed-source implementations of anonymous peer-to-peer file sharing protocols
as well. These include Winny, which is claimed to be inspired by the Freenet design, and Share,
which is a continuation of Winny after the arrest of the Winny’s main developer. Both of these
protocols were developed in Japan, where the IP-layer networking has much better performance
than that in Europe and North America. This is usually attributed to geographical proximity and
better network infrastructure. Thus, these protocols focused strongly on anonymity rather than
performance.

7 Conclusion

The BitTorrent protocol has become one of the most popular peer-to-peer file sharing protocols
on the internet, however, it does not provide anonymity. In this paper, we introduced the Bit-
TAKA protocol, which is fundamentally similar to BitTorrent protocol but uses onion routes to
anonymize the traffic. Having simulated our network versus the conventional BitTorrent protocol,
we measured only a 30% loss in network efficiency with a moderate number of peers. However as
the number of peers increases, regular BitTorrent’s better parallelization allows it to scale better,
and our relative network efficiency decreases.

References

[1] Bram Cohen. Incentives build robustness in bittorrent, 2003. Available from World Wide
Web: citeseer.ist.psu.edu/cohen03incentives.html.

23



[2] Leslie Ellis. Bittorrents swarms have a deadly bite on broadband nets, 2004. Available from
WorldWide Web: http://www.multichannel.com/article/CA6332098. [Online; ac-
cessed 14-May-2008].

[3] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router,
2004. Available from World Wide Web: citeseer.ist.psu.edu/dingledine04tor.
html.

[4] Nikita Borisov Robin Snader. A tune-up for tor: Improving security and performance in the
tor network. 2008.

[5] Bram Cohen. Bittorrent protocol specification, 2008. Available fromWorldWideWeb: http:
//www.bittorrent.org/beps/bep_0003.html. [Online; accessed 14-May-2008].

[6] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976. Available from World Wide Web: citeseer.
ist.psu.edu/diffie76new.html.

[7] Jean-François Raymond. Traffic analysis: Protocols, attacks, design issues and open prob-
lems. In H. Federrath, editor, Designing Privacy Enhancing Technologies: Proceedings of Inter-
national Workshop on Design Issues in Anonymity and Unobservability, volume 2009 of LNCS,
pages 10–29. Springer-Verlag, 2001. Available fromWorldWideWeb: citeseer.ist.psu.
edu/454354.html.

[8] Andrew Loewenstern. Bittorrent dht protocol, 2008. Available fromWorldWideWeb: http:
//www.bittorrent.org/beps/bep_0005.html. [Online; accessed 14-May-2008].

[9] Wikipedia. Perfect dark (p2p) — wikipedia, the free encyclopedia, 2008. Available
from World Wide Web: http://en.wikipedia.org/w/index.php?title=Perfect_
Dark_%28P2P%29&oldid=211069285. [Online; accessed 14-May-2008].

[10] David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84–90, 1981.

[11] J Random. I2p: How peer selection works, 2008. Available from World Wide Web: http:
//i2p2.de/how_peerselection. [Online; accessed 14-May-2008].

[12] I2P. I2p compared to other anonymous networks, 2008. Available from World Wide Web:
http://www.i2p2.de/how_networkcomparisons. [Online; accessed 14-May-2008].

[13] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. Lecture Notes in Computer
Science, 2009:46–??, 2001. Available from World Wide Web: citeseer.ist.psu.edu/
clarke00freenet.html.

24


